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Abstract Multi-label learning studies the problem where one instance is associated with multiple labels.

Weakly supervised multi-label learning has attracted considerable research attention because of the annota-

tion difficulty. Majority of the studies on weakly supervised multi-label learning assume that one group of

weak annotations is available for each instance; however, none of these studies considers multiple groups of

weak annotations that can be easily acquired through crowdsourcing. Recent studies on crowdsourced multi-

label learning observed that the current query strategies do not agree well with human habits and that data

cannot be collected as expected. Therefore, this study aims to design a new query strategy in accordance

with human behavior patterns to obtain multiple groups of weak annotations. Further, a learning algorithm

is proposed based on neural networks for such type of data. In addition, this study qualitatively and empiri-

cally analyzes factors in the proposed query strategy that may impact further learning and provides insights

to obtain better query strategy with respect to future crowdsourcing in case of multi-label data.
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1 Introduction

Multi-label learning [1], which assumes one instance is associated with multiple labels simultaneously,
has been studied for decades and achieved successful application in various domains, including image
classification [2, 3], text classification [4, 5] and computational biology [6, 7].

Despite the success, one of the problems associated with multi-label learning is that the annotation in-
formation is difficult to obtain, resulting in a weakly supervised problem. The weakly supervised problem
associated with general machine learning has been investigated in [8], in which such type of problem is
categorized into three different types: incomplete supervision, inexact supervision and inaccurate super-
vision. The weakly supervised problem associated with multi-label learning can also be categorized into
these three types. In [9], only some of the relevant and irrelevant labels are assumed to be annotated.
These types of studies can be considered as multi-label learning with “incomplete supervision”. In some
studies, weak labels have been considered wherein only some of the relevant labels are available [10, 11].
These studies can be referred to as multi-label learning with “inexact supervision”. Recently, multi-label
learning with partial labels [12,13] has become popular, wherein a candidate label set containing all true
labels is given for instance. These studies can be considered as multi-label learning with “inaccurate
supervision”.

These studies on weakly supervised multi-label learning assume that only one source of supervision is
provided for an instance. In reality, crowdsourcing [14] is always used. Thus, we can collect data from
crowds to achieve data annotation, resulting in different sources of annotations. The existing studies on
crowdsourced multi-label learning [15,16] assume that each user is given all labels and that users annotate
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each instance label by label based on their expertise. Finally, each label-instance pair is expected to have
an annotation. Ref. [15] observed that users tend to annotate only a few relevant labels before they give
up by studying the real crowd annotated multi-label data. Hence, current query strategies for users to
annotate in a label-by-label manner may not be in agreement with the human behavior pattern; thus,
the annotation task cannot be completed in the expected way. Although Ref. [15] tackled this problem
by estimating the expertise of the users, the main problem is whether we can resolve this problem from
another viewpoint, i.e., by designing a better annotation strategy that agrees well with the behavior
pattern of humans, thereby reducing the heavy load of the annotation task.

To achieve this, we must first understand human behavior patterns. Neuroscientists have studied
the manner in which humans look at an image through eye tracking [17]. They observed that there
are variations in the order which parts of the image are gazed at first, and which parts are gazed later
when humans gaze at an image, depending not only on the content of the image but also on the gazer’s
appreciation and knowledge. Thus, we can expect that different users may recognize the relevant labels
from the same image in different orders. Similar behavior patterns can also be observed when reading
online articles. Ref. [18] shows that when people read online, they do not read word by word. Instead,
they go back and forth through the article depending on their motivation, current needs, and personal
characteristics. Based on these studies that have investigated the human behavior patterns, we design
a novel methodology to annotate data, wherein we provide a subset of labels to the users and let them
provide positive feedback if any relevant label is present in the subset. In this way, the annotation task
can be simplified because the users are not expected to identify every label. The game ends as soon as
they find one true label. Formally, we provide different subsets of labels (called groups of labels) to the
users, and they will provide us with feedback on whether any relevant label is present in a given group
for a specific instance. After collecting these group-supervised multi-label data, new problems include
how do we learn to classify based on such data, and more importantly, what factors in the data collection
process will impact the group-supervised multi-label learning.

As a pioneer work exploiting this problem, we propose a method for group-supervised multi-label
learning, and analyze the factors that will impact the learning performance. We hope that this study can
provide some insights with respect to the design of an improved crowdsourcing strategy for multi-label
data. In particular, we first design a framework for multi-label learning that can generalize algorithms
learning from both strongly supervised and weakly supervised data and is flexible with respect to the used
loss functions and regularizers. Based on the general learning framework, we extend it to the grouped-
supervised multi-label learning, and propose a learning algorithm compatible with neural networks. Thus,
the techniques developed for modern deep learning, such as Adam [19] or Dropout [20], can be employed.
Further, we discuss the qualitative effects of different factors, such as ambiguity degree and label cover-
age, on the learning performance. Such qualitatively studied factors are further explored via empirical
studies. We verify the number of groups, relevant/irrelevant labels per group, and relevant/irrelevant
labels covered and observe their effect on the generalization performance. Our empirical results may
provide future insights with respect to advanced crowdsourcing query strategies.

The paper is organized as follows. In Section 2, we summarize related work and their relation with our
studied problem. Section 3 provides the general framework of our studied problem and the implementation
of our proposed method. In addition, we discuss the factors that could impact learning. The empirical
studies are shown in Section 4, and the conclusion is presented in Section 5.

2 Related work

In this section, we briefly discuss multi-label learning (MLL), weakly supervised MLL, and crowdsourced
MLL. Figure 1 presents an example of different types of supervision information for multi-labeled data.

2.1 Multi-label learning

The previous studies on multi-label learning [21] attempted to solve the problem by decomposing it into
multiple binary classifications, i.e., one for each label. This type of method, termed as binary relevance
has been criticized because it ignores the label correlations. Subsequently, various methods have been
proposed considering the label correlations. For example, LabelPowerset [22] treated each subset of labels
as one “label” and learned a multi-class classifier. Classifier Chain [23] achieved sequential learning in a
label-by-label manner, and the prediction results of previous labels are used as features for latter training.
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Figure 1 (Color online) Different types of supervision information for multi-labeled data.

RankSVM [24] optimized the overall learning risk for all labels plus a regularizer to incorporate the label
correlation. Recently, MLL has focused on the problem of learning with extreme labels [25], wherein
tens of thousands of labels are available. More information can be found in the survey study conducted
by [26].

The extreme label problem can be solved via label space embedding [27–30], i.e., embedding the high-
dimensional label space into a low-dimensional label space, resulting in effective testing. The embedding
methods are not suitable for group-supervised MLL. They assume all the supervised information are
available and learn the embedding in an ad-hoc manner; however, the given supervision is already in the
grouped form in this study.

2.2 Weakly supervised MLL

To annotate a multi-class dataset, users will select only one true label. This is easy when compared with
the MLL in which each label has to be checked one by one. This results in a heavy annotation load,
especially when there are several labels. Thus, the weakly supervised MLL data are collected. Based on
these data, the research community aims to provide robust learning algorithms. Subsequently, we briefly
discuss three different types of weakly supervised MLL.

Incompletely supervised MLL. In incompletely supervised MLL, some part of the supervised in-
formation for both relevant and irrelevant labels are provided. The algorithms for incompletely supervised
MLL used low rankness or manifold smoothness to regularize the label space such that the incomplete
information can be compensated. For example, Refs. [9, 31–33] combined the low-rank assumption with
various basic learning models for incompletely supervised MLL. Refs. [34, 35] used the smoothness as-
sumption that similar instances should be labeled in a similar manner, such that the annotations for
one instance will supplement that for another instance. In case of incompletely supervised MLL, the
annotation information is provided with respect to individual labels, whereas our study does not consider
an annotation for each label.

Inexactly supervised MLL. In inexactly supervised MLL, the annotation information with respect
to only part of the relevant labels is given. This type of problem can be considered as a special case of
incompletely supervised MLL, wherein all the irrelevant label annotations are missing. Thus, some of the
methods, such as the method used by [32] to solve the incompletely supervised MLL can be generalized
to solve the inexactly supervised MLL.

There are also some other methods that are specially devoted to solve the inexactly supervised MLL.
For example, Ref. [11] used group lasso to find the relevant labels missed and maintain the sparseness of
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the learned annotations. Ref. [10] assumed that the classification hyperplane moved across the low-density
regions and proposed an algorithm based on the fact that the number of relevant labels is considerably
less than that of the irrelevant labels. The annotation information on individual relevant labels is also
available in this case, whereas it is not available in case of group-supervised MLL.

Inaccurately supervised MLL. Partial MLL [12] is a situation of inaccurately supervised MLL,
in which a set of candidate labels is given for each instance, and the candidate labels contain at least
one of the true labels. This type of learning is different from the group-supervised MLL for two aspects.
One aspect is that in case of inaccurately supervised MLL, only one set of supervision information
is provided per instance, whereas multiple sets of supervision information are given in this study. In
addition, information about negative groups is available besides information about positive groups in
group-supervised MLL.

2.3 Crowdsourced MLL

In crowdsourced MLL, the instances are distributed to multiple annotators (or users) and each annotator
will annotate according to their own expertise. Ref. [15] comprehensively investigated this problem, and
proposed two algorithms, among which one learns the user expertise and uses this expertise together with
their annotations to learn a classifier. They further proposed a method to collect annotations actively by
querying the user with labels agreeing well with their expertise.

Ref. [15] conducted a simple user behavior study based on the collected data. Further, they concluded
that users would only select some relevant labels that they are familiar with. This type of study is one
motivation of this study to design a new annotation strategy that could potentially reduce the labeling
cost associated with future crowdsourcing tasks. Unlike [15], this study also focuses on learning directly
from the group-supervised data; thus, this study does not involve the estimation of user expertise. This
study may be combined with the expertise estimation in [15] to improve the crowdsourced MLL.

3 Group-supervised MLL

In this section, we present the formulation of the studied problem. Then, a general optimization objective
is presented for MLL. This objective is extended to the grouped-supervised MLL problem. This objective
is quite general, and various loss functions and regularizers can be used. This objective is also flexible
to be optimized using various basic learning models. We implement an algorithm that optimizes this
objective using neural networks because of their ability in achieving satisfactory empirical performance.

Further, we qualitatively discuss the factors that may impact the learning performance, and present a
probabilistic generation model for the group-supervised MLL data based on the discussed factors.

3.1 Formulation

Let us assume we have instances space X ⊂ R
d and label space Y = {0, 1}m, where d is the number

of features and m is the number of labels. In case of strongly supervised MLL, we have a dataset
D = {(x1,Y1), . . . , (xn,Yn)}, the element (xi,Yi) of which is drawn i.i.d. from X ×Y. If the jth label is
relevant for the instance xi, then Yij = 1; otherwise, 0. In case of MLL, the target is to learn a classifier
f : X → Y. This target is usually relaxed to learn a classifier with real-valued outputs, i.e., g : X → R

m,
such that the jth element of g(x), i.e., gj(x) measures the relevance of the jth label with respect to the
instance x.

In grouped-supervised MLL, we consider a simplified case, wherein an oracle will always provide the
correct annotation. Thus, we propose an algorithm to learn a classifier for MLL from such data, and
discuss the potential factors that may impact the performance of the learned classifier. In particular,
in case of xi, the supervision information Si is provided, where Si = {(Si

1, y
i
1), (S

i
2, y

i
2), . . . , (S

i
Ki

, yiKi
)}.

Here, Ki is the number of groups for instance xi. S
i
k ∈ [m] is the group of labels, i.e., a subset of all the

indices of the labels. The label group Si
k with a label yki ∈ {0, 1} suggests the existence of any positive

label within the group. Hence, yik for Si is determined by Yi, i.e.,

yik =





1,
∑

j∈Si
k

Yij > 0,

0, otherwise.

(1)
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In the problem setting, the groups {S1, . . . , SK} are different for different instances. Thus, our proposal
is different from MLL studies on ECOC [36].

3.2 Learning objective for MLL

Similar to the majority of learning problems, we want to learn the classifier g ∈ G by minimizing the
classification risk associated with MLL.

R(g) = E(X,Y )[ℓ(g(X),Y )],

where ℓ(·, ·) must be a proper loss that is continuous, non-negative, and zero when we achieve accurate
predictions. Ideally, we have

g∗ = argmin
g∈G

R(g) (2)

as the optimal classifier that we can learn. However, we usually obtain our classifier through empirical
risk minimization because we cannot have an accurate expectation in the presence of limited data, i.e.,

ĝ∗ = argmin R̂(g) = argmin
g∈G

n∑

i=1

ℓ(g(xi),Yi). (3)

Practically, we realize learning by minimizing the following objective to control the complexity of the
learned model, ensuring that overfitting is prevented or the label correlation associated with MLL is
considered.

min
∑

i

ℓ(f(xi),Yi) + λΩ(f), (4)

where Ω(·) is the regularizer and λ is the trade-off parameter.
Eq. (4) is a general objective for learning multi-labeled data, and many classical methods, regardless

of strongly supervised or weakly supervised MLL, can be generalized to learning with such an objective.
For example, the classical work for MLL RankSVM [24] optimizes the following objective:

min
∑

i

∑

j1:Yi,j1
=1

∑

j2:Yi,j2
=0

−(wj1x−wj2x) + λ
∑

j

‖wj‖
2,

where wj is the coefficient of the linear classifier for the jth label. Another example is incomplete MLL
method Maxide [9], which learns through the following optimization objective:

min
∑

(i,j)∈Ω0

(gj(xi)− Yij)
2
+ λ ‖[g(x1); . . . ; g(xn)]‖tr , (5)

where Ω0 contains the indices of the observed instance-label pairs and ‖ · ‖tr is the spectral norm of a
matrix.

Given the generalization of (4), we will attempt to extend such a generalized learning objective for
MLL to group-supervised MLL.

3.3 Learning objective for group-supervised MLL

In group-supervised MLL, we have an objective similar to (4), i.e., learning through empirical risk mini-
mization:

min
∑

i

L(g(xi),S
i) + λΩ(g),

where L(·, ·) is also a proper loss function defined specially for group-supervised MLL. We assume that
L(·, ·) can be decomposed into each group, i.e.,

L(g(xi),S
i) = Lk(g(xi), (S

i
k, y

i
k)).
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If we assume the loss function in (4) can also be decomposed onto each label, such as that in (5), we
obtain

ℓ(g(xi),Yi) = ℓj(gj(xi), Yij).

Considering the relation between the group label yik and the original label Yi, we can rewrite (1) as

yik = min
j∈Si

k

Yij ,

which implies that we only need to care about the relevant labels in Si
k if yik = 1. However, all the labels

in Si
k are irrelevant when yik = 0, and we can incorporate all of them into the learning process to save

the provided information. Thus, we establish a connection between the MLL loss function ℓj(·, ·) and the
group-supervised MLL loss function Lk(·, (·, ·)),

Lk(g(x), (Sk, yk)) = yk min
j∈Sk

ℓj(gj(xi),+1) + (1− yk)
∑

j∈Sk

ℓj(fj(xi), 0).

In addition to the above definition, we can assign different weights to different groups of labels according
to practical requirements when either relevant or irrelevant labels are more important. In the current
version, we omit the weights to clearly illustrate the effect optimizing this loss function.

With the loss function L(·, ·) defined for group-supervised MLL, we can obtain the optimal classifier
gS as

g∗
S = argmin

g∈G
RS(g) = argmin

g∈G
E(x,S) [L(g(x),S)] = argmin

g∈G
E(x,S)

[
∑

k

Lk(g(x), (S
k, yk))

]
, (6)

and the same empirical risk minimization principle can be applied to obtain

ĝ∗
S = argmin

g∈G
R̂S(g) = argmin

g∈G

∑

i

(
L(g(xi),S

i)
)
= argmin

g∈G

∑

i

(
∑

k

Lk(g(xi), (S
k
i , y

k
i ))

)
. (7)

A regularizer can be also added to reduce overfitting practically and consider the correlation between
labels, resulting in our learning objective of

∑

i

(
∑

k

Lk(g(xi), (S
k
i , y

k
i ))

)
+ λΩ(g). (8)

Remark. The theoretical properties of the proposed learning objective are worth exploring. One prop-
erty is how the optimal algorithm g∗

S acquired through (6) is different from that acquired through (2).
In other words, when sufficient data are available, how will the classifier learned from group supervision
be different from the normal MLL classifier? Another property is related to the estimation error, i.e., the
difference between the empirical optimal classifier ĝ∗

S and the optimal classifier g∗
S . A recent study [37]

on multi-class partial label learning proposes a loss function based on the min operator. Insights can be
obtained based on their studies with respect to the theoretical properties of the minimizer for the loss
function. We will consider such types of studies in the future.

3.4 An implementation through neural networks

Based on the learning objective, i.e., Eq. (8), we propose an algorithm named group-supervised multi-label
learning GS-MLL using neural networks. The procedures are summarized in Algorithm 1.

Here we explicitly write the parameterized g as g(x; Θ), where Θ indicates the parameters associated
with the neural networks, including the coefficients and biases. The dataset used can be applied to
determine the structured of the neural networks. We select simple networks with one hidden layer for
simple datasets. Deeper and wider neural networks can be used for large datasets. We will learn Θ
using gradient descend optimizers. Line 1 of the algorithm is to set the optimizer A that can be either
stochastic gradient descent (SGD) [38], Adam [19], or L-BFGS [39]. We shuffle the data into B mini
batches, compute the empirical risk associated with each mini batch, calculate the gradient, and perform
gradient descent accordingly using the given optimizer. Such an algorithm is flexible with respect to the
loss function used. In this study, we use the simplest mean squared error as the incomplete supervised
MLL [9]. For the regularizer, we use the L2 loss on the coefficients for ensuring simplicity.
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Algorithm 1 GS-MLL: group-supervised multi-label learning

Input: the training set D = {(x1,S1), . . . , (xn,Sn)}; epoch number T ; number of mini batches B;

Output: Θ, the model parameter for g(x; Θ);

1: Let A be any stochastic optimization algorithm;

2: t = 1;

3: while t 6 T do

4: t = t + 1;

5: Shuffle D into B mini-batches;

6: b = 1;

7: while b 6 B do

8: Pick the bth mini batch;

9: Compute the empirical risk L on the mini batch by (8);

10: Calculate the gradient −∇ΘL;

11: Update Θ by A;

12: b = b + 1;

13: end while

14: end while

3.5 Factors impacting learning

Here we discuss the factors that will impact learning. The supervision information deficiency determines
the learning performance. The learning performance deteriorates with the increasing information loss.
This intuition has been verified by empirical studies in other weakly supervised MLL works, such as [9].
Thus, in this subsection, we qualitatively discuss the factors that determine the supervision deficiency
associated with group-supervised MLL.

3.5.1 Ambiguity degree

The first type of information deficiency can be observed within each group. There are two types of
groups. In the positive groups, i.e., y = 1, the information deficiency depends on the number of relevant
and irrelevant labels contained in the group. The information contained in the group increases with the
increasing number of relevant labels and decreasing number of irrelevant labels. Thus, the ambiguity of
a positive group can be considered as one factor impacting the performance. On the other hand, in case
of negative groups, no ambiguity can be observed because all of the labels in the groups are negative.
Thus, we first define the ambiguity degree for a positive group.

Definition 1 (Ambiguity degree for positive group). For (xi,S
i) with unobserved supervised informa-

tion Yi, the ambiguity degree for positive group δik for the ith instance of a positive group (Si
k, 1) ∈ Si

is defined as

δik =

∑
j∈Sk

Yj

|Sk|
.

The ambiguity degree for a particular instance is defined as follows.

Definition 2 (Ambiguity degree for an instance). For (xi,S
i) with unobserved supervised information

Yi, the ambiguity degree for an instance δi for the ith instance is defined as

δi =
1∑
k y

i
k

∑

k

δik,

where δik is the ratio of the percentage of relevant labels in a positive group.

The ambiguity degree associated with the positive group δik is dependent on the number of relevant
and irrelevant labels in this positive group. In case of the ambiguity degree δi, it is not only dependent
on each δik, but also on the number of positive groups. We will vary the number of relevant labels per
positive group, the number of irrelevant labels per positive group, and the number of positive groups in
the empirical studies, and observe the manner in which the performance of the group-supervised MLL is
affected.

Finally, only the δik, i.e., the ratio of the percentage of relevant labels in a positive group, may not be
sufficient. We also need to define the co-occurrence of relevant labels in a positive group. However, there
may be no method using which two labels can be differentiated if two labels always occur together. This
has been verified theoretically via studies on single-labelled partial label learning problem [40].
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Definition 3 (Ambiguity degree for co-occurrence). For (xi,S
i) with unobserved supervised informa-

tion Yi, the ambiguity degree for co-occurrence ζik for the ith instance of a positive group (Si
k, 1) ∈ Si is

defined as

ζik =
1∑
j Yij



∑

j∈Sk

Yij − 1


 .

This definition is applied to each group. The label co-occurrence for instance i which is associated with
multiple groups can then be defined as

∑
k ζ

i
k. The definition presented in this study gives the average

percentage with respect to the number of additional relevant labels in one positive group.

3.5.2 Label coverage

Another factor that may impact the learning of group-supervised MLL is the number of labels that are
covered in the supervision information. Only those labels carried by positive groups can carry information
about relevant labels. Similarly, only the labels carried by negative groups can carry information about
irrelevant labels. We define two values representing the label coverages for group-supervised MLL in this
study.

Definition 4 (Relevant label coverage). For (xi,S
i) with unobserved supervised information Yi, the

relevant label coverage γp is defined as

γp =
1∑
j Yij

∣∣∣∣∣∣
j : j ∈

⋃

k:yi
k
=1

Si
k and Yij = 1

∣∣∣∣∣∣
,

which is the percentage of relevant labels appearing in at least one group.

We can also define another value.

Definition 5 (Irrelevant label coverage). For (xi,S
i) with unobserved supervised information Yi, the

irrelevant label coverage γn is defined as

γn =
1∑

j(1− Yij)

∣∣∣∣∣∣
j : j ∈

⋃

k:yi
k
=0

Si
k

∣∣∣∣∣∣

which is the percentage of irrelevant labels appearing in at least one negative group.

Less information about relevant labels is carried under supervision S with a small γp; thus, the data
deficiency is critical, and it may be difficult to learn a satisfactory classifier. Similarly, the information
deficiency on irrelevant labels is critical with a small γn, adding difficulty to learning.

Remark. In crowdsourcing tasks, the situation may be a bit different because an objective of crowd-
sourcing is to save labor, i.e., reduce the difficulty of the annotations task; otherwise, the annotation
may be quite expensive. There exist some contradictions between annotations and learning with respect
to difficulty. For example, annotators may want the co-occurrence to be high such that observing only
one relevant label is sufficient to skip all the remaining relevant labels in the group. However, a high
co-occurrence may deteriorate the learning performance. On the other hand, a high irrelevant label cov-
erage is welcomed by the succeeding learning algorithms, whereas the user may need to check the labels
one by one if they are all negative in a group. Therefore, there is a trade-off between the crowdsourcing
and learning tasks, and such a trade-off needs to be carefully considered in the future.

3.6 Data generation model

All the aforementioned factors determine the supervision information for group-supervised MLL. In this
subsection, we present a data generation process and show that the generation process considerably
intervenes with the factors impacting learning.

During the sampling process, we have an instance (x,Y ) based on the probability distribution p(x,Y ).
By considering as a condition, we need to obtain p(x, Sk, yk). In particular, we have

p(x, Sk, yk) =
∑

Y

p(x, Sk, yk,Y ) =
∑

Y

p(Sk, yk|x,Y )p(x,Y ) =
∑

Y

p(Sk|yk,x,Y )p(yk)p(x,Y )
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=
∑

Y

p(Sk|yk = 0,x,Y )p(yk = 0)p(x,Y ) + p(Sk|yk = 1,x,Y )p(yk = 1)p(x,Y ), (9)

where p(yk = 0) and p(yk = 1) are related to the number of positive and negative groups. p(x,Y ) is
shared with normal MLL. In case of p(Sk|yk = 0,x,Y ), we obtain

p(Sk|yk = 0,x,Y ) =
∑

j∈Sk

p(j|yk = 0,x,Y ) =
∑

j∈Sk

p(j|yk = 0,x, Yij = 0),

where p(j|yk = 0,x, Yij = 0) corresponds to the irrelevant label coverage γn.
Another probability p(Sk|yk = 1,x,Y ) can be written as

p(Sk|yk = 1,x,Y ) =
∑

j∈Sk

p(j|yk = 1,x, Yij = 0) + p(j|yk = 1,x, Yij = 1),

where p(j|yk = 1,x, Yij = 1) corresponds to the relevant label coverage γp. The ratio between p(j|yk =
1,x, Yij = 0) and p(j|yk = 1,x, Yij = 1) gives the ambiguity degree for positive group δik. Finally, the
ambiguity degree for co-occurrence ζik is decided by both

∑
j Yij and p(j|yk = 1,x, Yij = 1).

The process to generate the group-supervised MLL data is summarized as follows. We first generate
(x,Y ) according to p(x,Y ). Then we decide whether to generate a group with label yk through p(yk).
After determining the label of a group, we generate either a positive group or a negative group. If the
group is negative, we generate the group label by label according to p(j|yk = 0,x, Yij = 0). Otherwise,
we generate relevant and irrelevant labels through p(j|yk = 1,x, Yij = 1) and p(j|yk = 1,x, Yij = 0),
respectively, in a label-by-label manner. This generation process will be presented in Section 4 for
empirical studies.

4 Experiments

In this section, we will show the performance of our proposed method using real-world dataset and the
manner in which different factors affect the learning performance.

Data generation. We generate the group-supervised MLL datasets through a benchmark data
set Yeast [24], which contains 2417 instances and 14 labels according to the data generation model in
Subsection 3.6. On an average, each instance in Yeast contains more than 4 relevant labels different
from other multi-label datasets that only have a small number of relevant labels, making it a suitable
medium-sized dataset for analyzing the factors impacting learning.

We first set the number of positive and negative groups to generate the data corresponding to p(yk)
in (9). Without losing generality, we set the number of negative groups to be 1 because all the labels
inside will be considered as irrelevant labels. We vary the number of positive groups to be within {2, 3, 4}
and verify their impacts on performance.

One important factor required to generate a negative group is the irrelevant label coverage. Here, we
sample a part of all the irrelevant labels to be included in the negative group, and vary the ratio to be
within {0.25, 0.5, 0.75, 1.0} and observe their impacts on the learning performance.

To generate the positive group, we first consider the relevant labels in the positive group. We control
the relevant label coverage to be within {0.25, 0.5, 0.75, 1.0} based on which a candidate set for relevant
labels is generated. By sampling uniformly at random from the candidate set, the positive group has its
relevant labels. We control the number of relevant labels per positive group to be within {1, 2}. Finally,
we sample uniformly at random from all the irrelevant labels that have to be added to the positive group.
The number of irrelevant labels is varied within {1, 2, 3}.

For each generation parameter, we generate 10 data using different random seeds, such that the ob-
tained results are the average of 10 results. The dataset is split into training and testing parts, with
1500 training instances and 934 test instances. After training the classifier using the training data, the
performances on the test instances are reported.

Settings. We implement our proposed algorithm using PyTorch. In particular, we set the structure
of the neural network as one hidden layer with 52 hidden neurons according to the recommendation
of [41]. We add the L2 norm of coefficients as a regularizer and use the mean squared error (MSE) as
our loss function. We use SGD with momentum as the optimizer, and the momentum parameter is set
as 0.9. Subsequently, we perform cross-validation to select the best step size and weight decay parameter
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2 (Color online) Test results show how the number of positive groups impacts learning. x-axis is the epoch, and y-axis is

the MSE. The shadow area shows the standard deviation (STD) of ten random trials under the same setting. ir is the number of

irrelevant labels in each positive group, and rc shows the relevant label coverage. The number of relevant label per group is fixed

to be 1, and the irrelevant label coverage is fixed to be 0.5. (a) ir: 2, rc: 0.25; (b) ir: 2, rc: 0.5; (c) ir: 2, rc: 0.75; (d) ir: 2, rc: 1.0;

(e) ir: 4, rc: 0.25; (f) ir: 4, rc: 0.5; (g) ir: 4, rc: 0.75; (h) ir: 4, rc: 1.0.

from {10−10, 10−9, . . . , 105}. Finally, we present the performance obtained with respect to the MSE. We
also evaluated our proposed algorithm using classical multi-label measurements such as hamming loss or
ranking loss. Since they show the same trend as MSE, we report only MSE in this study because of space
limitation.

4.1 Number of positive groups

In this subsection, we fix the remaining factors and observe the manner in which the variation of the
number of positive groups affects the learning performance. The results are shown in Figure 2. We obtain
96 different results. Here, we only show 8 of them because of space limitation. We fix the number of
relevant labels per group to be 1 and the irrelevant label coverage to be 1/2. Subsequently, we varied
the remaining values. Based on the results, the performance is observed to improve with the increasing
number of positive groups when the remaining conditions are fixed. However, when the number of
irrelevant labels reaches 4, the advantage obtained by increasing the number of positive groups becomes
marginal.

4.2 Relevant label coverage

In this subsection, we fix the remaining factors and observe the manner in which the variation of the
relevant label coverage can affect the learning performance. We report 8 experimental results, wherein
the number of positive groups is fixed to be 3 and the number of relevant labels per group is fixed to be
1. Then, we vary the number of irrelevant labels per group and the irrelevant label coverage. Figure 3
shows the results. The results indicate that contradictory to our intuition, the relevant label coverage
does not considerably affect the learning performance.

4.3 Irrelevant label coverage

In this subsection, we fix the remaining factors and observe the manner in which the variation of the
irrelevant label coverage can affect the learning performance. We report 8 experimental results by fixing
the number of irrelevant labels per positive group to be 2 and the number of relevant labels per group to
be 1. Then, we vary the number of positive groups and the relevant label coverage. The results are shown
in Figure 4. Thus, the results are observed to be contradictory to our intuition, i.e., the performance
deteriorates with the increasing number of irrelevant labels in the negative group. We intend to further
explore this interesting observation in the future.

4.4 Relevant labels per positive group

We analyze the manner in which the number of relevant labels per positive group affects learning. Here,
we fix the number of positive groups to be 3 and the relevant label coverage to be 0.5. Further, we
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Figure 3 (Color online) Test results show how the relevant label coverage (rc) impacts learning. x-axis is the epoch, and y-axis

is the MSE. Under the same setting, the shadow area shows the variance of ten random trials. ir is the number of irrelevant labels

in each positive group, and ic shows the irrelevant label coverage. The number of relevant label per group is fixed to be 1, and the

number of positive groups is fixed to be 3. (a) ir: 1, ic: 0.25; (b) ir: 1, ic: 0.5; (c) ir: 1, ic: 0.75; (d) ir: 1, ic: 1.0; (e) ir: 2, ic: 0.25;

(f) ir: 2, ic: 0.5; (g) ir: 2, ic: 0.75; (h) ir: 2, ic: 1.0.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4 (Color online) Test results show how the irrelevant label coverage (ic) impacts learning. x-axis is the epoch, and y-axis

is the MSE. Under the same setting, the shadow area shows the STD of ten random trials. ng is the number of positive groups,

and rc shows the relevant label coverage. The number of relevant label per group is fixed to be 1, and the number of irrelevant

label per group is fixed to be 2. (a) ng: 2, rc: 0.25; (b) ng: 2, rc: 0.5; (c) ng: 2, rc: 0.75; (d) ng: 2, rc: 1.0; (e) ng: 3, rc: 0.25;

(f) ng: 3, rc: 0.5; (g) ng: 3, rc: 0.75; (h) ng: 3, rc: 1.0.

vary the irrelevant label coverage and the number of irrelevant labels per positive group. Figure 5 shows
the results. Here, the result is contradictory to our intuition, i.e., the performance improves with the
increasing number of relevant labels per group.

4.5 Irrelevant labels per positive group

In this subsection, we present the manner in which the number of irrelevant labels per positive group
impacts learning. Here, we fix the number of relevant labels per positive group to be 1 and the relevant
label coverage to be 0.5. Then we vary the irrelevant label coverage and the number of positive groups.
Figure 6 shows the results. Here, we were surprised to observe that the performance improved with the
increasing number of irrelevant labels in the relevant label set.

Summary. Based on the above experimental results, the performance will improve with the increasing
number of labels in the positive label group, regardless of whether they are relevant or irrelevant. However,
covering more irrelevant labels in a negative group may not result in better performance. Moreover, the
relevant label coverage only exhibits a minor impact.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5 (Color online) Test results show how the number of relevant labels per positive group impacts learning. x-axis is the

epoch, and y-axis is the MSE. Under the same settings, the shadow area shows the STD of ten random trials. ir is the number

of irrelevant labels per positive group, and ic shows the irrelevant label coverage. The number of positive groups and the relevant

label coverage are fixed to be 3 and 0.5 respectively. (a) ir: 1, ic: 0.25; (b) ir: 1, ic: 0.5; (c) ir: 1, ic: 0.75; (d) ir: 1, ic: 1.0; (e) ir:

2, ic: 0.25; (f) ir: 2, ic: 0.5; (g) ir: 2, ic: 0.75; (h) ir: 2, ic: 1.0.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6 (Color online) Test results show how the number of irrelevant labels per positive group impacts learning. x-axis is the

epoch, and y-axis is the MSE. Under the same setting, the shadow area shows the STD of ten random trials. ng is the number of

positive groups, and ic shows the irrelevant label coverage. The number of relevant labels per group and the relevant label coverage

are fixed to be 1 and 0.5, respectively. (a) ng: 2, ic: 0.25; (b) ng: 2, ic: 0.5; (c) ng: 2, ic: 0.75; (d) ng: 2, ic: 1.0; (e) ng: 3, ic:

0.25; (f) ng: 3, ic: 0.5; (g) ng: 3, ic: 0.75; (h) ng: 3, ic: 1.0.

5 Conclusion

In this study, we investigate the problem of group-supervised MLL, wherein labels are organized into
groups. One group is considered to be positive if it contains any relevant label, and negative if it does
not contain any relevant label. This problem setting is motivated by crowdsourced MLL and human
behaviour pattern studies conducted by neuroscientists. Based on the collected data, we propose an
algorithm based on neural networks and discuss the potential factors that may impact learning. We
finally show empirically how the learning performance is impacted. Our empirical observations provide
some interesting results that are contradictory to our assumptions. These results may provide insight for
realizing future crowdsourced MLL. We also plan to explore the manner in which the proposed method
will perform when using other loss functions, inlcuding logistic loss and sigmoid loss.

References

1 Zhou Z-H, Zhang M-L. Multi-label learning. In: Encyclopedia of Machine Learning and Data Mining. Berlin: Springer, 2016.

875–881

2 Cabral R S, de la Torre F, Costeira J P, et al. Matrix completion for weakly-supervised multi-label image classification. IEEE

Trans Pattern Anal Mach Intell, 2015, 37: 121–135

3 Chen M, Zheng A X, Weinberger K Q. Fast image tagging. In: Proceedings of the 30th International Conference on Machine

Learning, 2013. 1274–1282

4 Chalkidis I, Fergadiotis M, Malakasiotis P, et al. Large-scale multi-label text classification on EU legislation. In: Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics, 2019. 6314–6322

https://doi.org/10.1109/TPAMI.2014.2343234


Xu M, et al. Sci China Inf Sci March 2021 Vol. 64 130101:13

5 Nam J, Kim J, Menciaa E L, et al. Large-scale multi-label text classification — revisiting neural networks. In: Proceedings

of the 25th European Conference on Machine Learning, 2014. 437–452

6 Zhou J, Chen L, Guo Z. iATC-NRAKEL: an efficient multi-label classifier for recognizing anatomical therapeutic chemical

classes of drugs. Bioinform, 2020, 36: 1391–1396

7 Zhang J, Zhang Z, Wang Z, et al. Ontological function annotation of long non-coding RNAs through hierarchical multi-label

classification. Bioinform, 2018, 34: 1750–1757

8 Zhou Z H. A brief introduction to weakly supervised learning. Natl Sci Rev, 2018, 5: 44–53

9 Xu M, Jin R, Zhou Z. Speedup matrix completion with side information: application to multi-label learning. In: Proceedings

of Advances in Neural Information Processing Systems 26, 2013. 2301–2309

10 Sun Y, Zhang Y, Zhou Z. Multi-label learning with weak label. In: Proceedings of the 24th Conference on Artificial Intelligence,

2010

11 Bucak S S, Jin R, Jain A K. Multi-label learning with incomplete class assignments. In: Proceedings of the 24th Conference

on Computer Vision and Pattern Recognition, 2011. 2801–2808

12 Xie M, Huang S. Partial multi-label learning. In: Proceedings of the 32nd Conference on Artificial Intelligence, 2018. 4302–

4309

13 Yu G, Chen X, Domeniconi C, et al. Feature-induced partial multi-label learning. In: Proceedings of the 2018 International

Conference on Data Mining, 2018. 1398–1403
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