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OPT Problem Setting ExperimentsDePt and DeCoOp Approach
Definition
As illustrated in Figure 1, the Open-world Prompt Tuning (OPT)
problem involves tuning with only base class samples available, yet
requiring classification of both base class and new class samples
during testing, with performance evaluated using accuracy metric.

TL; DR We investigate a new problem setting OPT and propose DeCoOp to explore integrating out-of-distribution detection into the prompt tuning paradigm.

▲ Figure 2: Performance changes of different metrics
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▲ Figure 1: The overall illustration of OPT problem
Motivation
1. The requirements to recognize new class samples emerges in real-

world applications, the , and these samples cannot be identified as
a new class before testing.

2. The performance of H and accuracy metrics are inconsistent. Left
subfigure of Figure 2 demonstrates that the improvement in the H
metric corresponds to reduced accuracy, while right subfigure
shows a deterioration in H is associated with increased accuracy.

Challenges
1. Existing methods and evaluating metrics ignore the base-to-new

discriminability, i.e., distinguishing whether a testing sample
belongs to base classes and new classes. As shown in Figure 3,
prompt tuning methods will degrades base-to-new discriminability.

2. New-class discriminability degrades for prompt tuning methods,
making the prompt tuning not robust, as shown in Figure 4.
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base classes, and Yn represents the set of new classes. The
name of the i-th class is denoted as ti → T . Furthermore,
x → X represents the data. f(x) → Y and g(x) → {b, n}
denote the label of x and the specific class space to which
it belongs, where f and g are the mapping functions of the
ground truth of the labels and the class space.

In OPT problem, we are given a pre-trained vision-language
model F = {EV ,ET }, which consists of a visual encoder
EV : X ↑↓ Rd and a textual encoder ET : T ↑↓ Rd,
where d represents the dimension of model F . During
the training stage, we learn the prompt vector p on a
few-shot dataset D containing data derived from Yb. To
simplify the notation, we define ti(p) as the concatena-
tion of the tokens of the class name ti and the learned
prompt p. Consequently, weight vectors {wi(p)}Ci=1 are
generated for each class as textual embeddings, where
wi(p) = ET (ti(p)) /↔ET (ti(p)) ↔. In the testing stage,
given the test data x drawn from Y , we initially obtain its
visual embedding z = EV (x)/↔EV (x)↔. Subsequently, we
calculate the prediction probabilities as follows:

P (y|x) = exp (zTwy/ω)∑
C

i=1 exp (z
Twi/ω)

(1)

where ω represents the temperature determined by VLMs.
For convenience, we will also use P (x) to represent P (y|x)
in the subsequent paper. The prediction for x is given by
argmax

y→Y
P (y|x). The objective of OPT is to train a model

that can make robust predictions on Y , which includes both
base and new classes, without experiencing overall perfor-
mance degradation due to the presence of new classes. In
our following analyses and experiments, we perform a com-
parison between the zero-shot baseline method (referred to
as ZS) and the prompt tuning method (referred to as PT) on
OPT problem.

2.2. Problem Analysis

To tackle the OPT problem, we investigate a real-world
dataset (Krause et al., 2013) to conduct detailed analyses
of the challenges inherent in OPT. Our observation demon-
strates that while prompt tuning methods can improve base-
class discriminability, they compromise both base-to-new
discriminability and new-class discriminability. To illustrate
this observation, we present a comparison between the ZS
methods and PT methods, where we employ CLIP as ZS
method and COOP as PT method, in Figures 3 and 4.

Figure 3 indicates that the prompt tuning method results in
a decreased base-to-new discriminability compared to the
zero-shot baseline. Specifically, the AUROC for detecting
new classes using the MSP technique (Hendrycks & Gimpel,
2016) decreases, and more false positive predictions are
introduced for base classes. Moreover, Figure 4 illustrates

(a) Zero-shot Baseline ZS (b) Prompt Tuning Method PT

Figure 3. Performance of ZS and PT methods to distinguish data
from base classes and new classes (base-to-new discriminability).

(a) Zero-shot Baseline ZS (b) Prompt Tuning Method PT

Figure 4. Performance of ZS and PT methods to distinguish data
within new classes (new-class discriminability).

that the prompt tuning method also exhibits reduced new-
class discriminability compared to the zero-shot baseline.

We emphasize that the existing H metric is incapable of mea-
suring base-to-new discriminability, making it unsuitable for
comprehensive practical applications. In OPT problem, the
accuracy evaluated in the entire class space can effectively
address this limitation.

2.3. Problem Decomposition

The above analysis reveals that the zero-shot baseline sur-
passes the prompt tuning method in terms of both new-class
discriminability and base-to-new discriminability. This ob-
servation motivates us to incorporate OOD detection tech-
nique to combine ZS method and PT method. This approach
aims to preserve the new-class discriminability using ZS
while enhancing the base-class discriminability using PT.
Therefore, we decompose the original classification problem
into separate OOD detection and two classification prob-
lems:

P (y|x) =
∑

i→{b,n}

P (y|y → Yi,x) · P (y → Yi|x)

= P (y|y → Yk,x) · P (y → Yk|x)
(2)

where k always equals g(x) for the sake of simplicity, repre-
senting the ground-truth label space of x. The second term
is an OOD detector to determine whether x belongs to the
base or new class space. The first term is a classifier for the
corresponding class space.

Equation 2 motivates us to propose a novel Decomposed
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▲ Figure 3: Base-to-new 
discriminability

▲ Figure 4: New-class 
discriminability 

DePt Framework
We propose a Decomposed Prompt Tuning (DePt) framework, which
integrates a zero-shot baseline !"#, a prompt tuning baseline !$%, and
an OOD detector !&&' using the following formulation. The main idea
is to distinguish OOD samples and let zero-shot and prompt tuning
methods handle the base classes and new classes respectively.

ü This research was supported by National Science and
Technology Major Project (2022ZD0114803) and the
National Science Foundation of China (62306133,
62176118).

ü If you are interested in this paper, please feel free to contact Zhi
Zhou (zhouz@lamda.nju.edu.cn) or visit our project homepage for
more details (https://wnjxyk.github.io/DeCoOp) .

Theoretical Analysis of DePt
We prove that the DePt framework can achieve better performance
compared to the zero-shot baseline, measuring their error using the
cross-entropy metric.

DeCoOp Approach
Motivated by DePt framework, we propose a Decomposed Context
Optimization (DeCoOp) approach, shown in Figure 5. The main idea
is to train better OOD detector ℳ' using the leave-out strategy and
train classifiersℳ) for stronger generalization for new classes based
on DePt framework. The leave-out strategy address the challenge of
lacking knowledge of new classes during training. The stronger
generalization ofℳ) is achieved by simulating the emergence of new
categories during training with the help of leave-out strategy.
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▲ Figure 5: The overall illustration of DeCoOp approach

Research Question #1
Can the empirical results of the DePt framework on real-world datasets
conform to our theoretical analysis?
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Table 1. Comparison of average performance across 11 datasets
was conducted among three approaches: ZS, PT, and our DEPT
framework, utilizing ViT-B/16 and ViT-B/32 architectures. These
results are consistent with our theoretical analysis.

METHOD
VIT-B/16 VIT-B/32

NEW ACC. ACCURACY NEW ACC. ACCURACY

ZS 65.49 63.92 63.95 60.36
PT 57.73 65.57 53.01 61.03
DEPT 68.15 68.03 65.45 62.92

class detectors, {Mi

D
(x)}K

i=1, and then make the prediction
according to our DECOOP approach, defined as:

PDECOOP(x) =






PZS(x), if max
i→{1,··· ,K}

Mi

D
(x) < ω,

Mi
ω

C
(x), if max

i→{1,··· ,K}
Mi

D
(x) → ω,

(8)
where i

ω = argmaxi→{1,··· ,K} Mi

D
(x). DECOOP ap-

proach selects single sub-classifier to predict each test-
ing data instead of aggregating the results from all sub-
classifiers. As a result, our approach requires K times
computation for the new-class detectors compared to the
zero-shot CLIP baseline. In our experiments, we set K to
3, which does not impose a heavy computational burden.
We conduct experiments about evaluation time in Appendix
B.7, demonstating that DECOOP is relatively efficient.

4. Experiments
In this section, we conduct experiments to answer the fol-
lowing three research questions:

RQ1: Can the empirical results of the DEPT framework
on real-world datasets conform to our theoretical analysis?

RQ2: Can the DECOOP method surpass existing baseline
and SOTA methods, thereby demonstrating its robustness?

RQ3: Does the DECOOP successfully improve the base-
to-new discriminability, as designed?

4.1. Experimental Setup

Evaluation Protocol. We adopt the few-shot prompt tun-
ing setting as previously explored in studies such as (Rad-
ford et al., 2021; Zhou et al., 2022a; Wang et al., 2023b).
This setting involves partitioning the class space of each
dataset equally, with 50% of the classes designated as base
classes and the remaining 50% as new classes. Conse-
quently, for each dataset, prompts are learned for down-
stream tasks using 16 labeled samples per base class, drawn
from the training set. The efficacy of these learned prompts

Table 2. The average performance across 11 datasets using ViT-
B/16 and ViT-B/32 architectures. The best performance is in bold.

METHOD
VIT-B/16 VIT-B/32

H ACCURACY H ACCURACY

CLIP 70.84 63.92 67.13 60.36
PROMPT ENS. 71.65 65.39 67.76 60.73
COOP 72.14 65.57 67.86 61.03
COCOOP 74.72 67.67 70.77 62.96
SHIP 72.26 64.51 69.25 59.91
DECOOP(OURS) 76.13 69.69 72.51 65.75

is subsequently evaluated on the entire testing set, encom-
passing both base and new classes. In DECOOP method, we
report the Accuracy as well as previously reported H metric.
As per the definition in CoCoOp (Zhou et al., 2022a), H
metric separately evaluates the accuracy on base classes
and new classes, denoted as Accbase and Accnew. Then, H
metric is computed using their harmonic mean, defined as
H = 2↑Accbase↑Accnew

Accbase+Accnew
. The metric H evaluates the overall

performance of classifying both base and new classes sepa-
rately, which we refer to as base-class discriminability and
new-class discriminability. We evaluate the accuracy of the
entire class space, which includes a mix of base and new
classes, denoted as Accuracy. This metric evaluates the over-
all performance of classifying both base and new classes,
while additionally measuring base-to-new discriminability
compared to the H metric.

Datasets. Following the CoOp framework (Zhou et al.,
2022b), we conducted evaluations of our proposed DE-
COOP framework along with comparison methods on
various image classification tasks. These tasks included
general object recognition using ImageNet (Deng et al.,
2009) and Caltech-101 (Fei-Fei et al., 2007) datasets, fine-
grained object recognition involving datasets such as Ox-
ford Pets (Krause et al., 2013), Food-101 (Bossard et al.,
2014), Stanford Cars (Krause et al., 2013), Oxford Flow-
ers 102 (Nilsback & Zisserman, 2008), and FGVC Air-
craft (Maji et al., 2013). Additionally, we performed a
remote sensing recognition task using the EuroSAT (Helber
et al., 2019) dataset, a texture recognition task using the
DTD (Cimpoi et al., 2014) dataset, an action recognition
task using UCF101 (Soomro et al., 2012) dataset and a large-
scale scene understanding task using SUN397 (Xiao et al.,
2010) dataset. For each dataset, we developed a few-shot
training set for prompt tuning and employed the full testing
set to evaluate the effectiveness of the learned prompts.

Compared Methods. We compare our approach with five
existing prompt-based methods. CLIP (Radford et al., 2021)
uses a hand-crafted prompt to generate the target classifier
on the downstream task. Furthermore, we compare the
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▲ Table 1:Performance of DePt framework

Research Question #2
Can the DeCoOp method surpass existing baseline and SOTA methods,
thereby demonstrating its robustness?
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Table 3. Performance comparison on 11 datasets using ViT-B/16 architecture. The best performance is in bold.

AVERAGE IMAGENET CALTECH101 OXFORDPETS
H ACC. H ACC. H ACC. H ACC.

CLIP 70.84 63.92 70.20 ± 0.00 66.73 ± 0.00 95.41 ± 0.00 92.90 ± 0.00 92.93 ± 0.00 88.03 ± 0.00
PROMPT ENS. 71.65 65.39 72.00 ± 0.00 68.48 ± 0.00 96.20 ± 0.00 94.08 ± 0.00 92.42 ± 0.00 86.37 ± 0.00
COOP 72.14 65.57 64.95 ± 1.11 61.79 ± 1.09 95.96 ± 0.39 93.24 ± 0.68 95.38 ± 0.33 89.61 ± 0.34
COCOOP 74.72 67.67 72.71 ± 0.33 69.41 ± 0.36 95.55 ± 0.24 93.43 ± 0.37 95.71 ± 0.76 90.24 ± 1.32
SHIP 72.26 64.51 67.29 ± 0.38 63.65 ± 0.32 95.83 ± 0.23 92.93 ± 0.37 94.44 ± 0.54 86.78 ± 1.32
DECOOP(OURS) 76.13 69.69 72.98 ± 0.04 69.62 ± 0.08 96.52 ± 0.09 94.50 ± 0.22 95.27 ± 0.08 88.87 ± 0.28

STANDFORDCARS FLOWERS102 FOOD101 FGVCAIRCRAFT
H ACC. H ACC. H ACC. H ACC.

CLIP 68.75 ± 0.00 65.39 ± 0.00 72.74 ± 0.00 67.28 ± 0.00 90.18 ± 0.00 85.40 ± 0.00 30.25 ± 0.00 23.94 ± 0.00
PROMPT ENS. 69.36 ± 0.00 65.95 ± 0.00 72.14 ± 0.00 67.03 ± 0.00 90.32 ± 0.00 85.54 ± 0.00 29.42 ± 0.00 23.31 ± 0.00
COOP 68.22 ± 0.49 63.81 ± 0.44 78.33 ± 2.26 72.11 ± 2.36 86.65 ± 1.38 80.84 ± 1.50 29.38 ± 1.78 24.80 ± 1.23
COCOOP 71.49 ± 0.62 67.75 ± 0.68 80.04 ± 1.46 71.95 ± 1.24 90.41 ± 0.24 85.61 ± 0.43 27.87 ± 11.36 21.46 ± 7.42
SHIP 69.71 ± 0.43 64.67 ± 0.55 76.85 ± 2.18 70.40 ± 2.01 86.84 ± 1.49 77.39 ± 2.19 27.13 ± 1.10 24.44 ± 0.96
DECOOP(OURS) 73.24 ± 0.15 69.64 ± 0.19 84.16 ± 0.27 78.61 ± 0.59 90.68 ± 0.09 85.83 ± 0.07 31.44 ± 0.39 25.15 ± 0.31

SUN397 DTD EUROSAT UCF101
H ACC. H ACC. H ACC. H ACC.

CLIP 72.26 ± 0.00 62.57 ± 0.00 57.32 ± 0.00 44.56 ± 0.00 58.16 ± 0.00 41.40 ± 0.00 71.00 ± 0.00 64.97 ± 0.00
PROMPT ENS. 75.04 ± 0.00 65.97 ± 0.00 59.63 ± 0.00 46.28 ± 0.00 58.45 ± 0.00 48.91 ± 0.00 73.17 ± 0.00 67.33 ± 0.00
COOP 71.37 ± 1.21 61.82 ± 1.11 57.22 ± 2.37 48.18 ± 1.78 74.33 ± 4.35 59.65 ± 5.07 71.68 ± 2.84 65.41 ± 2.18
COCOOP 77.17 ± 0.27 68.17 ± 0.33 60.59 ± 1.51 47.90 ± 1.43 73.77 ± 3.58 58.08 ± 1.49 76.59 ± 0.79 70.39 ± 1.25
SHIP 72.57 ± 0.38 60.42 ± 0.48 56.82 ± 2.18 47.58 ± 1.62 73.29 ± 2.67 54.11 ± 1.73 74.09 ± 2.09 67.24 ± 1.94
DECOOP(OURS) 78.11 ± 0.09 69.33 ± 0.05 62.72 ± 1.23 51.44 ± 1.04 74.61 ± 3.82 61.90 ± 3.72 77.67 ± 0.50 71.71 ± 0.79

PROMPT ENS. method, an ensemble technique that utilizes
multiple classifiers to enhance the performance of CLIP,
adhering to the guidelines set by CLIP. COOP (Zhou et al.,
2022b) learns a soft prompt by minimizing the classification
loss, and COCOOP (Zhou et al., 2022b) extends COOP by
further learning a lightweight neural network to generate
for each image an input-conditional token. SHIP (Wang
et al., 2023b) follows variational autoencoders to introduce
a generator that reconstructs the visual features by inputting
the synthesized prompts and the corresponding class names
to the textual encoder of CLIP.

Implementation Details. The number of tokens in each
prompt is set to 16 for DECOOP approach and comparison
methods. We train the prompts of new-class detectors for 50
epochs using the SGD optimizer and subsequently train the
prompts for sub-classifiers for 100 epochs, also using the
SGD optimizer. The learning rate lr is set to 0.002, and it
follows a cosine decay schedule. The margin ω is set to 0.4
for all datasets. We use the PROMPT ENS. method as our
zero-shot baseline within the DECOOP approach. The batch
size for images is 32 across all datasets. All experiments
were conducted on Linux servers equipped with NVIDIA
A800 GPUs. We report the average results over 5 runs with
different random seed {1, 2, 3, 4, 5}.

4.2. Empirical Results

RQ1: Can the empirical results of the DEPT framework on
real-world datasets conform to our theoretical analysis?

To verify Theorem 2.1, we conducted experiments on 11
datasets using ViT-B/16 and ViT-B/32 architectures. We em-
ployed CLIP as the zero-shot baseline ZS and COOP as the
prompt tuning method PT. Subsequently, we constructed
our DEPT framework by integrating these two methods,
as presented in Equation 3. Here, the OOD detector used
in our DEPT framework directly derives from CLIP using
MSP method (Hendrycks & Gimpel, 2016). Each method
is evaluated on the entire class space Y , and the average
performance across all datasets is reported. The results
include New Acc. and Accuracy, indicating the average per-
formance of new classes and all classes, respectively. The
results presented in Table 1 consistently demonstrate that
our DEPT framework outperforms both ZS and PT methods
when evaluated using the New Acc. and Accuracy metrics.
This observation suggests that the DEPT framework effec-
tively mitigates performance degradation on new classes
through the utilization of the OOD detector, which aligns
well with our theoretical analysis.

RQ2: Can the DECOOP method surpass existing baseline
and SOTA methods, thereby demonstrating its robustness?

To assess the effectiveness of the DECOOP approach, we
conducted experiments on 11 datasets using ViT-B/16 and
ViT-B/32 architectures. The average performance across all
datasets, as well as the detailed performance on each dataset
measured by two metrics, i.e., H and Accuracy, is reported.
The results obtained using the ViT-B/16 architecture are
presented in Table 3. Our DECOOP approach demonstrates
superior average performance on both the H metric and
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Research Question #3
Does the DeCoOp successfully improve the base-to-new discriminability?

▲ Figure 6: AUROC of OOD detection
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Figure 8. The roc curve for detecting new classes of each method on 11 datasets.

Figure 9. Correlation between performance of MO and accuracy.

B.6. Simple Ensembling of COOP Method

We also conduct experiments to evaluate whether directly ensemble multiple COOP learners can achieve similar performance.
The results, shown in Table 8, indicate that the ensemble of multiple COOP prompts does not yield significantly better
performance compared to the COOP method. These results prove that the performance gain does not derive from simple
prompt ensembling.

B.7. Evaluation Time

Our DECOOP approach adopts multiple prompts to detect OOD, so it may take more time. We compared the running time
taken by COOP, COCOOP, and DECOOP methods when evaluating the testing set of two datasets in Table 9. The results
show that the running time of the DECOOP is not significantly longer than the COOP method since the computation can be
performed in parallel. However, our DECOOP approach runs in two stages (i.e., OOD detection and classification stages),
therefore, the running time will be approximately double compared to the COOP method. However, the running time of
COCOOP rises significantly as the number of categories increases, where demonstates our DECOOP is efficient.

16
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Table 4. The base-to-new discriminability of each method evalu-
ated using MSP method (Hendrycks & Gimpel, 2016) and AUROC
metrics. The best performance is in bold.

DATASET CLIP COCOOP SHIP DECOOP(OURS)

IMAGENET 88.34 88.05 84.71 97.48
CALTECH101 97.03 95.71 96.94 99.58
OXFORDPETS 92.66 91.15 93.30 98.12
STANFORDCARS 86.24 83.00 87.23 97.63
FLOWERS102 84.92 79.63 84.84 95.75
FOOD101 89.88 88.19 89.92 97.59
FGVCAIRCRAFT 75.08 69.00 75.78 84.06
SUN397 72.46 73.75 74.78 90.21
DTD 62.29 60.65 60.66 75.47
EUROSAT 56.40 57.74 59.32 77.78
UCF101 82.03 79.03 80.35 93.56
AVERAGE 80.67 78.72 80.71 91.57

Figure 6. The ROC curve for detecting new classes of each method
on Flowers102 and StandfordCars datasets.

Accuracy, showcasing its robustness. Regarding the detailed
performance on each dataset, our approach outperforms
the comparison methods on 10 out of 11 datasets, while
achieving comparable performance on the remaining dataset.
The detailed results using the ViT-B/32 architecture are
provided in Appendix B.1, which yield similar conclusions.

Furthermore, these results reveal a positive correlation be-
tween the H metric and Accuracy in most cases. However,
specific datasets such as FGVCAircraft (Maji et al., 2013)
show that higher H metric values do not necessarily lead
to improved Accuracy. This observation suggests that the
H metric is inadequate for measuring base-to-new discrim-
inability, emphasizing the significance of OPT problem.

RQ3: Does the DECOOP successfully improve the base-to-
new discriminability, as designed?

The DECOOP approach introduces new-class detectors with
the aim of improving base-to-new discriminability while si-
multaneously enhancing the discriminability of new classes.
We evaluate the base-to-new discriminability of our ap-
proach and selected methods using the MSP (Hendrycks
& Gimpel, 2016) method with the ViT-B/16 architecture.
Specifically, for each method, we use the maximum prob-
ability on base classes as the scores and report the AU-
ROC (Bradley, 1997) in Table 4. The results clearly indicate

Figure 7. Performance using different values of margin ω.

that our DECOOP approach significantly improves base-to-
new discriminability, which accounts for its SOTA perfor-
mance. We have omitted some methods and standard devia-
tions due to space limitations. Please refer to Appendix B.2
for full results. Additionally, we present the ROC curves for
two representative datasets in Figure 6, which demonstrates
similar findings. Due to space limitations, the ROC curves
for all datasets are provided in Appendix B.3. Furthermore,
we explore the correlation between the performance of new-
class detectors and the model in Appendix B.4.

Hyperparemeter. The margin ω serves as a hyperparam-
eter for learning new-class detectors in our DECOOP ap-
proach. It controls the margin in the optimization process
of the detectors, which may affect their performance. To an-
swer the robustness question of ω, we conduct experiments
on six datasets. Figure 7 demonstrates the robustness of the
DECOOP approach to changes in ω.

Comparison with Ensembling of COOP. In Ap-
pendix B.6, we conduct an experiment to determine if
directly combining multiple COOP prompts can lead to
performance improvement. The results demonstrate that
combining 2, 4, or 6 COOP prompts does not effectively
enhance performance and, at times, even deteriorates the
performance. This indicates that our performance gains
cannot be attributed to simple prompt ensembling.

Running Time. In Appendix B.7, we conduct an experi-
ment to compare the COOP, COCOOP, and DECOOP meth-
ods as shown in Table 9. On the EuroSAT dataset, the
runtime of DECOOP increased only slightly compared to
COOP (14.1s vs. 34.1s), but it is significantly more efficient
than COCOOP (62.0s), demonstrating the efficiency of the
DECOOP algorithm.

5. Related Work
Few-shot Prompt Tuning. Prompt learning aims to for-
malize various NLP tasks to mask language modeling prob-
lems, which is similar to the pre-training of language mod-
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▲Table 3: AUROC of OOD detection


