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Abstract. The success of machine learning algorithms generally de-
pends on data representation and recently many representation learning
methods have been proposed. However, learning a good representation
may not always benefit the classification tasks. It sometimes even hurt
the performance as the learned representation maybe not related to the
ultimate tasks, especially when the labeled examples are few to afford a
reliable model selection. In this paper, we propose a novel robust semi-
supervised graph representation learning method based on graph con-
volutional network. To make the learned representation more related to
the ultimate classification task, we propose to extend label information
based on the smooth assumption and obtain pseudo-labels for unlabeled
nodes. Moreover, to make the model robust with noise in the pseudo-
label, we propose to apply a large margin classifier to the learned repre-
sentation. Influenced by the pseudo-label and the large-margin principle,
the learned representation can not only exploit the label information en-
coded in the graph-structure sufficiently but also can produce a more
rigorous decision boundary. Experiments demonstrate the superior per-
formance of the proposal over many related methods.
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1 Introduction

The performance of machine learning methods is heavily dependent on the choice
of data representation (or features). Representation learning, i.e., learning repre-
sentations of the data that needed for the learning classifiers, has already become
an important field in machine learning [2].

One challenge of representation learning is that it faces a paradox between
preserving as much information about the input as possible, and attaining nice
properties for the output learning task [5]. Recently, there are many researches
pointed out that, the representation learning may fail to improve the perfor-
mance of classification task [2, 5]. The main reason is that the learned represen-
tation may be far from the ultimate learning task. For example, representation
learning typically pursuits the whole factors of the raw data, while the ultimate
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task may only be related to a small subset of these factors. For this reason, it is
essential to learn a robust representation, especially when the labeled examples
are few to afford a reliable model selection.

In this paper, we focus on learning a robust representation for semi-supervised
graph-structured data. It is widely accepted that graph-structured data occurs in
numerous application domains, such as social networks [14], citation networks [9]
and many others [7]. Learning an appropriate vector representation of nodes in
graphs has proved extremely useful for a wide variety of predictive and graph
analysis tasks [6, 14, 16]. Figure 1 illustrates a visualization of a classical graph-
structured data and the corresponding node embeddings. A number of graph
representation learning methods such as DeepWalk [14], LINE [16], have been
proposed recently. However, these methods require a multi-step pipeline where
the representation learning model and the classifier are trained separately. In
other words, the learned representation may be far from the classification task,
and thus hurt the performance.

Fig. 1. Graph structure of the Zachary Karate Club social network (left) and the two
dimensional visualization of node embeddings (right).

Most recently, Graph Convolutional Network (GCN) [9] is proposed to fill the
gap. Unlike previous studies where the learned representation and the trained
classifier are conducted separately, GCN jointly optimizes the representation
learning model and the ultimate classifier. Nevertheless, most ultimate classifiers
in GCN work under the labeled data, which is insufficient to learn a robust
representation in semi-supervised learning.

In this paper we propose to obtain high-confidence pseudo-labels for unla-
beled nodes from the well-known label propagation strategy to enhance the label
capacity. Our basic idea is that given graph-structured data, many label informa-
tion are encoded in the graph structure based on the smooth assumption [22],
i.e., connected nodes are likely to share similar labels. We further propose a
large-margin classifier to overcome the noise pseudo-labels induced from label
propagation. Figure 2 shows the pipeline of the proposal.

In conclusion, we make several noteworthy contributions as follows:
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Fig. 2. The structure of the proposed RoGraph.

– We propose a robust representation learning method RoGraph for semi-
supervised graph-structured data, with the idea of the classical label propa-
gation and large margin principle, which is very easy to implement.

– Experiments on real-world network datasets are conducted. The experimen-
tal results demonstrate that RoGraph achieves clearly better results than
many related methods.

The rest of this paper is organized as follows. We first introduce related works
and present preliminaries with an introduction to GCN. Next, we present the
proposed RoGraph, and then show the experimental results and discuss why
the large-margin principle can benefit graph representation learning. Finally, we
conclude this paper.

2 Related Work

The proposed algorithm is conceptually related to semi-supervised graph repre-
sentation learning and large-margin learning methods.

Semi-supervised graph representation learning Inspired by the Skip-
Gram [13], many semi-supervised learning methods for graph-structured data
have been proposed in recent years. DeepWalk [14] learns embeddings via the
prediction of the local neighborhood of nodes, sampled from random walks on
the graph. There are also many works based on DeepWalk, such as LINE [16] ex-
tends DeepWalk with more sophisticated random walk and node2vec [6] extends
DeepWalk with breadth-first search schemes. For all these methods, however, a
multi-step pipeline including random walk generation and semi-supervised train-
ing is required where each step has to be optimized separately, so the learned
representation may not the best representation for the classification task. Plan-
etoid [20] alleviated this by injecting label information in the process of learning
embeddings. GCN [9] generalize traditional convolutional networks to graph-
structured data and can learn representations end-to-end.
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Large-margin learning methods There have been many large-margin
learning methods in many fields. Max-margin markov network [17] firstly in-
troduced the large-margin principle into markov networks. MedLDA [21] pro-
posed a maximum entropy discrimination LDA to learn a discriminative topic
model (e.g., latent Dirichlet allocation [3]). LEAD [10] adopted the large-margin
principle to judge the quality of graph. MMDW [18] combined large-margin loss
function with DeepWalk to learn discriminative network representations.

It is notable that to our best knowledge, the large-margin principle has rarely
been applied to graph-based methods. We show that large-margin principle is
indeed helpful for robust graph representation.

3 Preliminaries

In this section, we introduce some notations used in our method and give a brief
introduction to the idea of graph convolutional networks.

3.1 Notations

We consider the problem of representation learning on a graph G = (V, E), where
V is the node set and E is the edge set. The given information includes a feature
matrix X ∈ RN×M which xi is a feature description for every node i, N is
the number of nodes and M is the dimension of input features; an adjacency
matrix A = Aij ∈ RN×N , where Aij = Aji = 1 if node i and node j has a
link, otherwise Aij = Aji = 0; a labeling matrix Y ∈ RN×K with K being the
number of classes. In the setting of semi-supervised learning, we have set YL
which includes all labeled nodes and set YU which includes all unlabeled nodes.
The size of YL is much smaller than the size of YU . The learned representation
is matrix X̄ ∈ RN×F , where F is the dimension of output feature per node. The
prediction is matrix Z ∈ RN×K , where Zij indicates the probability that node i
belongs to class j.

3.2 Graph Convolutional Networks

Graph convolutional network [9] generalizes the convolutional network into graph-
structured data and proposes an efficient layer-wise propagation rule. The tra-
ditional GCN model contains the following components:

(1) Renormalization: Adding an self-loop to each node, which results in a
new adjacency matrix Ã = A + I where I is the identity matrix and the new
degree matrix D̃ with D̃ii =

∑
j Ãij . After that, symmetrically normalize Ã and

obtain Ãs = D̃−
1
2 ÃD̃−

1
2 .

(2) Graph Convolutional layer: The graph convolutional layer uses the prop-
agation rule:

H(l+1) = σ(ÃsH
(l)W(l)) (1)

where H(l) is the matrix of activations in the l-th layer and H(0) = X, H(L) = X̄
with L is the number of layers in the network, W(l) is a layer specific trainable
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weight matrix in layer l, and σ(·) denotes an activation function, such as the
ReLU(·) = max(0, ·).

(3) Softmax cross-entropy loss: Applying a fully connected layer as the clas-
sifier to the learned representation X̄: Z = X̄WL, where WL ∈ RF×K is a
trainable weight matrix of the fully connected layer. Then evaluates the softmax
cross-entropy loss over labeled nodes. The loss can be written as:

L =
∑
i∈YL

− ln(
eZiyi∑
j e
Zij

) (2)

where YL is the set of labeled nodes and yi is the label of the i-th node.

4 Our Proposed Method

In semi-supervised learning, the number of labeled nodes is usually limit to
provide a reliable model selection, thus, the learned representation using only
the labeled data may be not robust for the ultimate classification task.

Observed that in graph-structured data connected nodes are likely to share
the same label, we propose to assign a high-confidence pseudo label for some
unlabeled nodes according to this property so that we can exploit more label
information encoded in the graph structure and enhance labeled data. More-
over, the large-margin principle is often used to train a robust classifier, thus,
we propose to adopt the large-margin softmax cross-entropy loss function [12]
instead of the original softmax function to help decrease the impact of noise in
the pseudo-label and produce even more robust representation.

4.1 Enhance Labeled Data

The underlying assumption in graph-based semi-supervised learning is the smooth
assumption, i.e., connected nodes likely to share the same label. With this as-
sumption, we can exploit more label information using the graph structure in-
formation and produce a classification task related representation.

A simple method to mine the label information encoded in the graph struc-
ture for unlabeled nodes is label propagation [22]. The label propagation method
only takes the graph matrix A and the labeling matrix Y as input and the ob-
jective is to find a prediction matrix Ŷ ∈ RN×K of the same size as the labeling
matrix Y by minimizing both fitting error and smooth regularization:

Ŷ = arg min
Ŷ
C(Ŷ) (3)

= arg min
Ŷ
{||Ŷ −Y||22︸ ︷︷ ︸

fitting error

+α tr(Ŷ>LŶ)︸ ︷︷ ︸
regularization

}

= arg min
Ŷ
{
∑
i∈YL

(Ŷi −Yi)
2 + α

n∑
i,j

Aij(Ŷi − Ŷj)
2}
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where L is the graph laplacian matrix.
In Eq.(3), the fitting error term enforces the prediction matrix Ŷ to agree

with the label matrix Y, while the smooth regularization term enforces each
column of Ŷ to be smooth along the edges. The scalar α is a balancing parameter.

A closed-form solution of the unconstrained quadratic optimization problem
can be obtained by setting the derivative of the objective function to zero:

Ŷ = (I + αL)−1Y (4)

For small-scale data, we can simply use Eq.(4) to get the prediction of unla-
beled nodes. However, for large-scale data, Eq.(4) is time consuming because it
needs to compute the inverse of the matrix I +αL. To address this problem, we
use Stochastic Gradient Descent (SGD) to solve Eq.(3).

Let

Ci(Ŷ) = α

n∑
j=1

Aij(Ŷi − Ŷj)
2 + I(i) · (Ŷi −Yi)

2 (5)

where I(i) = 1 if i ∈ YL, otherwise, I(i) = 0 , i ∈ {1, 2, · · · , N} represents the

index of the chosen instance. It is easy to verify that E[∇Ci(Ŷ)] = 1
n∇C(Ŷ).

Therefore ∇Ci(Ŷ) is an unbiased estimator of 1
n∇C(Ŷ) where 1

n is a constant

given a graph. Hence, we can adopt SGD strategy to solve Ŷ by updating:

Ŷ(t+1) = Ŷ(t) − η∇Ci(Ŷ)

where the gradient ∇Ci(Ŷ) = αA>i (Ŷi − Ŷj) + I(i) · (Ŷi − Yi). We adopt
the interesting stochastic label propagation method [11] to derive the gradient

efficiently. The element Ŷij in the learned prediction matrix Ŷ indicates the
probability of node i belongs to class j. For an unlabeled node i, if the maximum
Yij in Ŷi is greater than a threshold, we think the node i has a high confidence
in class j and add node i to the labeled node set YL. After this process, we derive
a larger labeled node set ỸL to learn a better representation.

4.2 Large-Margin Cross-Entropy Loss

Obviously the pseudo-label derived by the label propagation may consist of noise.
To make the learned representation robust, it is necessary to overcome the affect
caused by noise. Intuitively, if the decision boundary has a large margin to the
nearest training data point, the model turns out to be a robust classifier accord-
ing to margin theory. An additional benefit is that the large margin principle
works as a regularizer and thus help avoid overfitting issues, which is particularly
useful when labeled data is limited. Thus, to learn a robust representation [12],
we use a generalization of the original softmax cross-entropy loss function termed
Large-Margin Cross-Entropy Loss.

Observed in GCN that Zij = X̄iW
L
j . This can be reformulated as: Zij =

‖WL
j ‖‖X̄i‖ cos(θj) where θj is the angle between the vector WL

j and X̄i. Thus
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the original softmax cross-entropy loss function can be rewritten as:

Li = − ln(
e‖W

L
yi
‖‖X̄i‖ cos(θyi )∑

j e
‖WL

j ‖‖X̄i‖ cos(θj)
) (6)

In RoGraph, we propose to use large-margin softmax instead of the orig-
inal softmax. For example, once an instance x with the label +1, the original
softmax is to force W>

1 x > W>
2 x, i.e., ‖W1‖‖x‖ cos(θ1) > ‖W2‖‖x‖ cos(θ2),

in order to classify x correctly. In contrast, the large-margin softmax want to
make the classification more rigorous in order to produce a large-margin deci-
sion boundary. Thus, the large-margin softmax requires ‖W1‖‖x‖ cos(mθ1) >
‖W2‖‖x‖ cos(θ2)(0 ≤ θ1 ≤ π

m ) where m is a positive integer.
Observed that the following inequality always holds:

‖W1‖‖x‖ cos(θ1) ≥ ‖W1‖‖x‖ cos(mθ1) > ‖W2‖‖x‖ cos(θ2) (7)

Therefore, we have ‖W1‖‖x‖ cos(θ1) > ‖W2‖‖x‖ cos(θ2). Therefore, the new
classification criteria correctly classifies x, and produces a more rigorous decision
boundary. Figure 3 illustrates a geometric interpretation for the advantage of the
large-margin softmax function [12].

Fig. 3. Illustrative geometric interpretation. The left (right) presents the original soft-
max (large-margin softmax).

Formally, the large-margin softmax cross-entropy loss is defined as:

Li = − ln(
e‖W

L
yi
‖‖X̄i‖φ(θyi )

e‖W
L
yi
‖‖X̄i‖φ(θyi ) +

∑
j 6=yi e

‖WL
j ‖‖X̄i‖φ(θj)

) (8)

where

φ(θ) =

{
cos(mθ), 0 ≤ θ ≤ π

m

D(θ), π
m ≤ θ ≤ π

and D(θ) is a monotonically decreasing function, D( πm ) = cos( πm ).

According to the work in [12], we let φ(θ) = (−1)k cos(mθ)−2k, θ ∈ [kπm ,
(k+1)π
m ]

where k ∈ [0,m − 1]. The m is related to the classification margin. The larger
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the value m is, the larger the classification margin becomes. Then, we have the
final loss function

L-Softmax(X̄,WL) =
∑

i∈ỸL

Li (9)

where ỸL is the set of extended labeled nodes after label propagation.
In short summary, the proposed RoGraph includes these steps: we first

propagate the label information from the labeled nodes to unlabeled nodes using
the graph structure. Then, we renormalize the adjacency matrix and use graph
convolutional layers to produce the representation of each node. Finally, we add
a fully connected layer to the learned representation as the classifier and adopt
the large-margin cross-entropy loss to derive the final representation.

5 Experiments

In this section, we evaluate the proposed RoGraph in benchmark network
datasets and show the effectiveness of our proposal. Besides, we give the loss
vs. epoch in both training set and validation set.

5.1 Experimental Setup

Cora, CiteSeer and PubMed [15] are three benchmark network datasets. The
statistics of datasets are summarized in Table 1. In these networks, nodes are
documents and edges are citation links. Each document is represented by a sparse
0/1 feature vector. Citation links between documents constitute a 0/1 undirected
graph. If vi cites vj or vice versa, then Aij = Aji = 1, otherwise Aij = Aji = 0.
Each document has a class label. For training, we only use 20 labels per class
and all feature vectors for each dataset.

Table 1. The statistics of experimental network datasets.

Dataset Nodes Edges Classes Features

CiteSeer 3,327 4,732 6 3,703
Cora 2,708 5,429 7 1,433

PubMed 19,717 44,338 3 500

For the used datasets, we trained RoGraph with two graph convolutional
layers and a fully connected layer and evaluate the prediction accuracy on a test
set of 1, 000 labeled examples. We train our models on all three datasets for a
maximum of 200 epochs using Adam [8] with a learning rate 0.01, 0.5 dropout
rate, 5 × 10−4 weight decay rate and early stopping with a window size of 10.
We use a hidden layer of 16 units and we initialize weights using the Xavier
initialization [4]. The threshold of assigning a pseudo-label to unlabeled nodes
is set to 0.8 for all the experiments. The parameter m is fixed to 2 for the
large-margin softmax loss on all the experiments.
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5.2 Compared Results

We compared the proposed RoGraph with many state-of-the-art methods [9],
including label propagation (LP) [22], semi-supervised embedding (SemiEmb) [19],
manifold regularization (ManiReg) [1], skip-gram based graph embeddings (Deep-
Walk) [14], iterative classification algorithm (ICA) [15] and Planetoid [20].

We further compare against with conventional GCN. For GCN, the hyper-
parameters are same with RoGraph. To validate the effectiveness of the two
proposed technologies separately, we also compare with two variants of Ro-
Graph, i.e., RoGraph-P (RoGraph with pseudo-label only) and RoGraph-
M (RoGraph with L-Softmax only).

The experimental results are summarized in Table2. For GCN, RoGraph-
P, RoGraph-M, RoGraph, we reported the mean accuracy over five random
splits. Results for all other methods are taken from [9].

From Table 2, we can see that, on all the datasets, RoGraph achieves a clear
performance gain over the GCN method. It demonstrates the effectiveness of the
proposed RoGraph. In addition, RoGraph-P and RoGraph-M also achieve
better results than GCN but are not as good as RoGraph. It indicates that the
two introduced technologies (label propagation and large-margin principle) are
both useful to robust representation.

Table 2. Summary of results in terms of classification accuracy.

Method Citeseer Cora Pubmed

MainReg 60.1 59.5 70.7
SemiEmb 59.6 59.0 71.1

LP 45.3 68.0 63.0
DeepWalk 43.2 67.2 65.3

ICA 69.1 75.1 73.9
Planetoid 64.7 75.7 77.2

GCN 69.6 80.8 77.8

RoGraph-P 72.4 82.4 77.8
RoGraph-M 71.4 83.2 78.1
RoGraph 73.1 83.8 79.1

5.3 The Confidence of Assigning Pseudo-Label

In this section, we show the confidence of assigning a pseudo-label to unlabeled
nodes after label propagation. For each unlabeled node i, The confidence of
assigning a pseudo-label is the maximum number in Ŷi after row-normalization.
The results for all three datasets are shown in Figure 4. From Figure 4, we can see
that even we set the threshold as 0.8, we can still give a pseudo-label to about half
of the unlabeled nodes. This demonstrates that the label-propagation process
does help us exploit more label information encoded in the graph structure.
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Fig. 4. The confidence of assigning a pseudo-label to unlabeled nodes.

5.4 Loss vs. Epoch

Figure 5 illustrates the relationship between the loss and the epoch on Cora
dataset (On the other two datasets, we achieve similar results). One can see that
the proposed RoGraph not only achieves the lowest loss in both training set
and validation set but also needs fewer epochs to converge than traditional GCN,
though we adopt a harder loss function. This is consistent with the numerical
results in Table 2 and also verifies the effectiveness of the proposal.

Fig. 5. Loss vs. Epoch on Cora. The left (right) presents training (validation) loss.

6 Discussion

Graph representation learning has attracted significant attention in recent years.
Meantime, the large-margin principle is also widely used to train a robust classi-
fier and help avoid overfitting issues. However, to our best knowledge, the large-
margin principle has rarely been applied to graph representation learning. In
this paper, we successfully fill this blank by applying the large-margin principle
to GCN and show the effectiveness through empirical results. It demonstrates
that the large-margin principle can work well with graph-based methods.
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We think that one key reason for why the large-margin principle can work
well with graph-based methods is that, the underlying assumption for the large-
margin principle (large-margin assumption) and graph-based methods (manifold
assumption or smooth assumption) are kind of complementary. Specifically, the
manifold assumption requires the learned representation of nodes in the same
classes are similar to each other. It emphasizes that the data closeness within
the same classes, whereas ignores the data separability between different classes.
By contrast, the large-margin assumption requires the learned representation of
nodes between different classes have a large margin. It emphasizes the data sep-
arability between different classes but ignores the data closeness. Therefore, by
taking the two assumptions into account simultaneously, one can encourage both
the inter-class separability and intra-class compactness between learned repre-
sentations for graphs and leads to a better decision boundary. It is innovative
for the algorithm design of graph representation learning.

7 Conclusion

We have introduced a novel and easy-to-implement approach RoGraph for
robust semi-supervised representation learning on graph-structured data. Ro-
Graph leverages label propagation to obtain high-confidence pseudo-label for
unlabeled nodes, which can exploit label information encoded in the graph struc-
ture sufficiently. Besides, we adopt the large-margin softmax cross-entropy loss
function instead of the traditional softmax function to produce a more rigorous
decision boundary. Both of these technologies can help produce a robust rep-
resentation. Experiments on a number of benchmark network datasets suggest
that the proposed RoGraph achieves better results than many state-of-the-art
methods. In future, we will extend the proposed strategy to edge representation
rather than only node representation in this work.
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