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Abstract—Semi-supervised learning (SSL) provides a way to improve the performance of predictionmodels (e.g., classifier) via the

usage of unlabeled samples. An effective and widely usedmethod is to construct a graph that describes the relationship between labeled

and unlabeled samples. Practical experience indicates that graph quality significantly affects themodel performance. In this paper, we

present a visual analysis method that interactively constructs a high-quality graph for better model performance. In particular,

we propose an interactive graph construction method based on the large margin principle. We have developed a river

visualization and a hybrid visualization that combines a scatterplot, a node-link diagram, and a bar chart to convey the label

propagation of graph-based SSL. Based on the understanding of the propagation, a user can select regions of interest to

inspect and modify the graph. We conducted two case studies to showcase how our method facilitates the exploitation of

labeled and unlabeled samples for improving model performance.

Index Terms—Semi-supervised learning, unlabeled samples, graph quality

Ç

1 INTRODUCTION

THE success of supervised learning relies on a large num-
ber of labeled samples. However, in many applications

(e.g., medical image classification), the labeling process is
often too tedious to keep up with the rate of data acquisi-
tion, which results in a large amount of data with only a
small number of labels. Semi-supervised learning (SSL) pro-
vides a way to improve machine learning performance via
the usage of unlabeled samples. An effective and widely
used method involves constructing a graph to describe the
relationship between labeled and unlabeled samples so that
label information can be propagated from labeled samples
to unlabeled samples [1]. Graph-based SSL (GSSL) has been
continually improved since it was first proposed. For exam-
ple, methods based on deep neural network models (Planet-
oid [2], graph convolutional network [3], etc.) have
achieved state-of-the-art performance [4], [5]. For GSSL
methods, graph quality is widely recognized as a key factor
that significantly affects the learning performance [1], [4],
[6]. In a high-quality graph, the edges correctly capture the
similarity relationships between samples, and thus give the

model strong generalization ability. Moreover, the model
always performs better than direct supervised learning with
labeled samples only. By comparison, in a low-quality
graph, there are a significant number of wrong edges that
connect samples in different classes (e.g., Figs. 2A and 2B).
And this will adversely affect the model performance.
Although the importance of graph quality is widely recog-
nized, previous studies either assume that the graph struc-
ture is accurate or require a lot of labeled samples and
computational resources to search for the graph struc-
ture [4]. It is still an unsolved problem to construct high-
quality graphs in a label-efficient manner.

There are two challenges to solve this problem. First, the
small number of labeled samples is insufficient to provide a
reliable judgment of the graph quality. There are a large num-
ber of graphs that can fit the limited number of labeled samples
but behave very differently on unlabeled ones [1]. Although
some criteria, such as the large margin principle [7], can auto-
matically exclude some high-risk graphs, the search space for
graphs is still extensively large. Second, automatic algorithms
are largely based on assumptions (e.g., nearest neighbors hav-
ing similar labels) and work like a “black box.” With the
increase in data quantity and complexity, these assumptions
can hardly hold true for all data. For example, in a kNN graph,
a global k is applied to all training data, but local regions often
require different k values. It is more appropriate to adaptively
set the k values based on local properties. For example, setting
k ¼ 2 for all the samples in Fig. 2 results in the wrong connec-
tions between the dogs and the black monkey (Fig. 2(a)).
Locally changing the k values of these three samples to 1 will
remove the wrong connections and result in a better quality
graph (Fig. 2(b)). However, automatic GSSL lacks the flexibility
for this kind of graph construction. The large search space, cou-
pledwith automatic algorithms, results in little control over the
learning results. It is desirable to 1) open the “black box” to
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understand how the graph structure affects model perfor-
mance, and; 2) leverage expert knowledge in the construction
of high-quality graphs.

To achieve these goals, we have developed DataLinker, an
interactive visual analysis tool that helps machine learning
experts 1) explore the graph structure and understand the
label propagation inGSSL, and 2) participate in the graph con-
struction process. To better understand the graph structure
and how it affects model performance, both the propagation
of labels and the spatial distribution of samples are required.
Thus, we provide two coordinated views: a Label Change
view (Fig. 1(b)) that shows an overview of the label propaga-
tion as an evolving river, and a Sample view (Fig. 1(c)) that
shows the spatial distribution of samples in a hybrid visuali-
zation consisting of a scatterplot, a node-link diagram, and
bar charts. The two views work together, with the Label
Change view providing guidance on problem-prone samples
that, upon selection, will be highlighted in the Sample view
for further examination and modification. A Filtering panel
(Fig. 1(a)) is also provided to filter edges/nodes according to
their attributes, such as edge importance, node uncertainty,
etc., to help quickly identify the important parts. By a coarse-
to-fine exploration strategy, the whole interface (Fig. 1) facili-
tates experts to identifywhich part of the graphmay cause per-
formance deterioration andmodify the graph structure locally.
This greatly reduces the search space for high-quality graphs.

We conducted two case studies with experts on the STL-10
dataset for image classification [8] and on retinalOCT images for
medical diagnosis [9]. Both case studies show that DataLinker
allows experts to gain a better understanding of the data and
data relationships, and in turn to make informed changes to

the graph structure. With the constructed high-quality graph,
model performance is improved. The demo and the source
code are available at http://datalinker.thuvis.org/.

The main contributions of this work are:

� A coordinated and hybrid visualization to support the
exploration of large scale graphs and facilitate the
understanding of label propagation in GSSL.

� An interactive graph construction method that takes into
consideration local data properties and leverages
expert knowledge to construct high-quality graphs.

� A visual analysis tool based on hybrid visualization,
interactive graph construction, and GSSL for improv-
ingmodel performance.

Fig. 2. (a) An example of a kNN graph where k ¼ 2. The black monkey in
the middle is predicted to be a dog due to the wrong edges A and B; (b)
the wrong edges are removed when the k values of dogs and the mis-
classified monkey are set as 1.

Fig. 1. DataLinker: (a) the Filtering panel helps focus on nodes and edges of interest; (b) the Label Change view shows label changes as an evolving
river; (c) the Sample view displays samples as a combination of a scatterplot, a node-link diagram, and a bar chart; (d) the Action Trail records the
modification history; (e) the Information view shows the image content of selected samples and their nearest neighbors.
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2 RELATED WORK

Our work is related to integrating interactive visualization
with machine learning methods to acquire high-quality
data. In the field of visualization, many methods have been
proposed to improve data quality. Based on whether the
data is labeled, the relevant work can be classified into two
categories: improving the quality of noisy labeled samples
and unlabeled samples [10].

Improving the Quality of Noisy Labeled Samples. A cost-effec-
tive way to collect labels is crowdsourcing. As the crowd-
sourced annotations are usually noisy [11], [12], various
methods have been proposed to improve their quality. Park
et al. [13] developed C2A, a visual analysis tool to facilitate the
detection of polyps in virtual colonoscopy videos by leverag-
ing crowdsourced labels. By interactively exploring crowd-
sourced labels and worker behavior with C2A, doctors can
discard most polyp-free video segments and focus on those
that are likely to have polyps. Willett et al. [14] proposed a
crowd-assisted clusteringmethod to detect and remove redun-
dant explanations provided by crowd workers. CRICTO [15]
was developed for the sensemaking of text data by construct-
ing a graph that represents entity connections annotated by
workers. Analysts can generate cohesive hypotheses by inter-
actively exploring the graph. LabelInspect [16] focuses on
identifying uncertain instances and unreliable workers to
improve the quality of crowdsourced annotations. Based on
expert verification, more instances and workers are recom-
mended for validation by an interactive and iterative proce-
dure. In practice, many datasets (e.g., ImageNet [17]) have no
information about crowd workers. To handle data quality
problems not restricted to crowdsourcing settings, Xiang et al.
[18] developed a scalable data correction algorithm to propa-
gate the labels of trusted items to other unverified items. A
hierarchical visualization was proposed to facilitate the explo-
ration and identification of trusted items.

Improving the Quality of Unlabeled Samples. All the methods
mentioned above require labels that are noisy. However,
many datasets do not even have noisy labels. To tackle this,
various methods have been proposed to improve the quality
of unlabeled samples. A SOM-based visualization [19] was
developed where similar images are placed together. Users
can labelmultiple similar images at the same time. VASSL [20]
was proposed to detect and label social spambot groups on
social media. Five coordinated views are utilized to display
similarities between accounts from different perspectives to
facilitate identifying clusters with anomalous behavior. Rece-
ntly, a variety of methods have been proposed for integrating
learning models with visualizations to promote interactive
visual labeling [21]. Inter-active labeling was first proposed by
Hoferlin et al. [22] to enhance active learning with human
knowledge. It not only enables users to query data for labeling
via active learning, but also allows better understanding and
refining of the classification model via visualizations. Dennig
et al. [23] provided FDIVE to detect the best-fitting features and
distance functions based on labels provided by users. The fea-
tures and distance functions are then used to train a SOM-
based relevance model, which is visually explorable and can
be further refined by providing more labels. VIANA [24]
developed a language model to recommend text fragments
for annotation in argumentation mining tasks. In this work,

layered visual abstractions were designed to support five rele-
vant analysis tasks required for text fragment annotation. A
unified visual interactive labeling process was proposed by
Bernard et al. [21]. Experiments conducted by Bernard et al.
[25] showed the superiority of user-centered visual interactive
labeling over model-centered active learning. Bernard et al.
[26] also ran a quantitative analysis of user strategies for select-
ing samples in the labeling process. Results show that data-
based user strategies (clusters, dense areas) work well in early
phases, andmodel-based user strategies (e.g., class separation)
performbetter in later phases.

Although these active-learning-based methods improve
the data quality to some extent, they may deteriorate the per-
formance due to somewrong similarity relationships between
samples. In our work, the proposed interactive graph con-
struction method complements these methods by providing
high-quality relationships between samples. In particular, we
designed a river visualization and a hybrid visualization to
facilitate the understanding of how the graph structure, both
nodes and edges, affects GSSL model performance. An inter-
active graph construction method is also provided to help
experts improve graph quality in a coarse-to-finemanner.

3 BACKGROUND: GSSL MODELING

There are two steps in GSSL modeling: 1) graph construc-
tion that builds a kNN graph to describe the relationships
between labeled and unlabeled samples; and 2) label propa-
gation that propagates labels from labeled samples to unla-
beled ones along graph edges.

kNN Graph Construction. Several automatic, adaptive
kNN graph construction methods [1], [27], [28], [29], [30],
[31] have been developed, which adaptively choose nearest
neighbors for local regions. However, these methods are
easily overfitted when labeled data is scarce [27], [31]. Previ-
ous studies have shown that the traditional kNN graph con-
struction method is more robust [27], [31] and widely
used [1]. Therefore, we employ the traditional method in
DataLinker. Given n samples where l samples are labeled,
and the rest u samples (u ¼ n� l) are unlabeled, an initial
kNN graph is constructed based on the similarities between
them. Similarities between samples are measured by the
cosine similarities between the sample features. State-of-
the-art deep neural network models, such as the pretrained
models on ImageNet [32] or deep SSL models [33], are used
for feature extraction, which has been shown to achieve
state-of-the-art performance [4], [5]. With the calculated
similarities, each sample’s k nearest neighbors are deter-
mined, and the kNN graph is constructed. The weights of
edges are typically set to the sample similarities or a con-
stant 1. In practice, the two approaches have achieved simi-
lar results [34], and we pick up the later one as our
implementation. A common way of achieving high-quality
graph construction is to maintain sparsity and make sure
that each connected component in the graph has at least one
labeled sample [34]. Thus, in our implementation, parame-
ter k is set to be the smallest integer that ensures every con-
nected component has at least one labeled sample.

Label Propagation.With the constructed graph, label prop-
agation assigns labels to samples along the graph edges. It
aims to ensure that 1) similar samples have the same label
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and 2) the labeled samples keep their original labels, as
shown in Fig. 3. The predicted labels are represented by a
label matrix Fn�c where each row Fi is the label vector of
sample i. The jth element of Fi represents how likely sample
xi belongs to class j. Label propagation is achieved by opti-
mizing the following cost function:

minF
1

2

Xlþu

i;j¼1

Wij
1ffiffiffiffi
di

p Fi � 1ffiffiffiffiffi
dj

p Fj

�����

�����

2
0
@

1
Aþ m

Xl

i¼1

jjFi �Yijj2;

(1)

The first term is a manifold regularization requiring similar
samples to have similar predictions. The second term ensures
the predicted labels of labeled samples are consistent with
their provided ones. m is a weight to balance the two terms.
Matrix Wn�n records the edge weights. Wij ¼ 1 if edge xixj
exists, otherwise Wij ¼ 0. di is the sum of the ith row of W,
which is used to normalize the label vector of sample i. Y is the
ground truth label matrix for labeled samples. This optimiza-
tion problem has a closed-form solution: F ¼ ð1� aSÞ�1Y,
where a ¼ ð1þ mÞ�1, and S is the symmetric normalized Lap-
lacian matrix of W. However, when matrix W is large and
dense, thematrix inversion in the closed-form solution is time-
consuming. Amathematically equivalent solution is to solve it
iteratively [35]: Fðtþ1Þ ¼ aSFðtÞ þ ð1� aÞY. F is initialized to
Y. At each iteration, the label of each sample is propagated to
its nearest neighbors. This iterative process repeats until it con-
verges. According to the previous study [36], the iterative solu-
tion is faster when W is dense and no slower than the closed-
form solution whenW is sparse. Thus, the iterative solution is
a safer choice and is adopted in our implementation.

4 DESIGN OF DATALINKER

We designed DataLinker during an eight-month collabora-
tion with two groups of machine learning experts. Based on
interviews and discussions, we gained an understanding of
the current practices, major challenges, and user needs in
GSSL. We then distilled the requirements and designed the
system with the experts.

4.1 Requirement Analysis

To derive the requirements, we closely worked with two
groups of experts. The groups varied in terms of experience in
GSSL and their application goals. The first group consisted of
two experts (E1 andE2) specializing inGSSL.E1 is a professor
and has studied GSSL for over ten years. He has developed
state-of-the-art GSSL methods and published papers in top-
tier machine learning conferences. E2 is a Ph.D. student who
has studied GSSL for three years. E1 and E2 are familiar with
the most advancedmethods for exploiting unlabeled samples
and are eager to extend the horizon of GSSL by finding new

insights. The second group included two machine learning
researchers (E3 and E4) who have a basic understanding of
GSSL. Focusing on natural language processing and com-
puter vision, respectively, the two experts want to leverage
unlabeled samples to improve model performance. For sim-
plicity, we took the kNN graph as an example during the
requirement analysis. Despite the diverse experience in GSSL
and different goals, we identified two common challenges:

C1. How Does One Determine Which Unlabeled Samples are
Useful for Graph Construction and When Labels Must be Pro-
vided? All experts mentioned that the quality of unlabeled
samples is crucial for building a high-quality graph. How-
ever, since the unlabeled samples are crawled from the web-
site, they are usually of poor quality, e.g., contain noises that
are irrelevant to the task. For example, E1 said, “When the
task is to classify whether an image contains a dog or a cat,
it is very likely that the unlabeled samples will contain
images of rabbits or tigers. This results in degenerated
model performance.” It is also difficult to know when unla-
beled samples can benefit graph construction and when
labels must be added to improve graph quality (E1 to E3).

C2. How does one Debug and Refine the Graph Structure Effec-
tively? Currently, graph refinement is still based on a time-
consuming trial-and-error procedure (E1 to E4). There is no
way to fully understand how the key parameter k impacts the
graph,what the learned edges are, and how the learned edges
impact the final predictions. Compared with supervised
learning, model (graph) refinement is even more difficult for
GSSL, since there is no effective quantitative criterion for thor-
oughlymeasuring the graph quality (E1 toE3).

Both challenges require a better understanding and more
effective refinement of the learned graph, whose structure is
influenced by its nodes, i.e., unlabeled or labeled samples
(C1), edges, and the key parameter k (C2). Based on these
observations, we then derived the following requirements
through six 60-minute participatory design sessions with
the experts. We divided the requirements into two groups,
according to whether they focus on understanding and
debugging or graph refinement.

To better understand and debug the graph, the experts
wanted to understand how the graph structure affects the
final prediction (understanding), with an emphasis on the
problematic aspects (debugging). For example, E2 said, “I
hope that the system can show the deficiency of the graph,
for example, which samples cannot be easily classified and
which parts of the graph lead to the issue.” To achieve this
goal, we need to display the graph in terms of both temporal
influence and spatial structure, i.e., how the final prediction
is derived by propagating labels along the graph edges dur-
ing iterations (temporal), and how the distribution of the
nodes and edges impact the prediction results (spatial).
Accordingly, we distilled two requirements:

R1. Displaying how Labels Propagate Along the Graph Dur-
ing Iterations. All experts agreed that it is important to
understand the temporal change in labels, i.e., how the
labels propagate along the graph edges. E1 and E2 said that
this could help identify some problematic samples, e.g.,
samples whose labels frequently change during iterations.

R2. Revealing How the Graph Structure Impacts the Final
Results at Different Levels of Detail. In particular, the experts
need to know how the distribution of nodes (both unlabeled

Fig. 3. An example of label propagation: (a) a graph with two labeled
samples; (b) the final prediction.
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and labeled) impacts the edges, and how both node and edge
distributions contribute to the final prediction results. Since
the number of nodes and edges is large, it is important that
both overview and details can be obtained on demand. More
importantly, problematic samples (e.g., samples with high
uncertainty) and important edges should be highlighted so
that the experts can debug quickly. For example, E1 said, “I
would like to knowwhich samples are the riskiest andwhy.”

To better refine the model, the experts required to directly
make modifications in the visualization. According to the
discussions on challenges, the most desirable functions are
related to the refinement of graph nodes (C1), edges, and
the key parameter k (C2).

R3. Guided Refinement of Graph Nodes, Including Both Unla-
beled and Labeled Samples. According to the experts, three
types of modifications on the graph nodes are needed: add-
ing labels, adding unlabeled samples of specific classes, and
deleting noisy samples. Since the number of samples is very
large, it is important that this refinement process is guided
by the designed visualization.

R4. Efficient Modification of Graph Edges. Graph edges have
a large impact on the final results. According to the experts,
it is very possible that some edges wrongly connect nodes
in different classes in a kNN graph or are missing from the
graph. E3 said, “It will be very cool if we can quickly iden-
tify the incorrect edges and remove their influence on the
prediction.” To ensure that the edges can be modified effi-
ciently, we need to support different granularities of inter-
actions, i.e., both local and individual edge modification.

R5. Interactive Tuning of the Key Parameter k and Observe its
Influence on the Graph Structure. In current practice, experts
can only tune k globally (i.e., for all samples). They are
intrigued by being allowed to directly change k in the sys-
tem both globally and locally for a group of samples.

4.2 System Overview

Motivated by these requirements, we designed a visual analy-
sis tool, DataLinker, to assist the construction of a high-quality
graph. Fig. 4 shows the overview of DataLinker. It contains
two modules: GSSL modeling and visualization. The two
modules work together to support a coarse-to-fine strategy
for constructing a high-quality graph.

Given a set of labeled and unlabeled samples, state-of-
the-art deep neural networks, such as the pretrained models
on ImageNet [32], are used to extract features from input
data. Then based on the cosine similarities between the
extracted features of samples, an initial kNN graph is con-
structed, and labels are propagated through the graph. To
help experts better understand how the graph structure
influences the final predictions and interactively construct a
high-quality graph, a visualization module is provided. By
examining how labels propagate through iterations in the
Label Change view (R1), experts can select problematic
samples, such as those propagated to at later iterations, and
turn to the Sample view for further analysis. The Sample
view utilizes a hybrid visualization to present the distribu-
tions of both the nodes and the edges of the graph. Filters
are provided to help experts focus on important informa-
tion, e.g., edges that have large impacts on the final predic-
tions. The two views, along with the filters, help experts
explore from a global overview to local details and under-
stand how labels are propagated through the graph (R2).

Based on the understanding, a coarse-to-fine strategy is
supported to construct a high-quality graph interactively.
Experts can adjust labels and augment unlabeled samples
to make sure that the graph nodes are sufficient and appro-
priate (R3). After that, the key parameter k controlling the
graph structure can be modified in local regions with the
proposed interactive graph construction method (R5). The
graph can be further refined by modifying individual nodes
and edges (R3, R4). The process of interactive graph con-
struction, label propagation, and visual exploration iterate
until a high-quality graph is constructed.

5 DATALINKER VISUALIZATION

In this section, we describe the visual design of DataLinker
and the interactions for exploring and modifying graph
structures.

5.1 Visual Design

The visualization consists of two major components: 1) a
visualization of label changes to give an overview of the
label propagation process (R1); 2) a hybrid visualization of
samples to reveal both the samples and their relationships

Fig. 4. DataLinker overview. The GSSL modeling module constructs an initial kNN graph and propagates the labels from labeled samples to unla-
beled ones; the visualization module helps understand how the graph structure influences the final predictions and interactively construct a high-qual-
ity graph.
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in the graph structure, and how they influence the label
propagation process (R2). An Information view is also pro-
vided to assist the exploration. The Information view dis-
plays the selected samples and their nearest neighbors.

5.1.1 Label Change

As discussed in Section 4.1, experts expressed their need to
understand the label propagation process, which can help
identify the problematic samples. For example, a frequent
label change of a sample indicates that the label of this sample
is influenced by the samples from different classes. In such a
case, this sample may have wrong edges that lead to misclas-
sification [34]. Thus, the experts expressed their need to exam-
ine such samples. The iterative solution, as mentioned in
Section 3, can naturally reveal the temporal changes in labels,
which is a further advantage over the closed-form solution.
With the iterative solution, the visualization needs to present
1) how the samples are distributed among the classes at each
iteration, and 2) how the distribution changes through itera-
tions. To this end, we propose to use a river flow meta-
phor [37], which has been used to present dynamic change of
topics in visual text analysis [38], [39].

At each iteration, a stacked bar (Fig. 5A) is used to repre-
sent the distribution of samples among classes, where the
bar color indicates the class, and the bar height encodes the
number of samples. The top bar with the color “gray” repre-
sents samples that haven’t been propagated to. Between
consecutive iterations, connections between stacked bars
represent the exchange of samples, and the width of the
connection encodes the number of samples. For example,
the highlighted connection (Fig. 5B) represents samples that
change their labels from “banana” to “apple” from iteration
(t) to (tþ 1). The connection color is a blending of colors
from one end to the other. From this visualization, experts
can have an overview of the label propagation process and
quickly identify problematic samples, e.g., samples that are
propagated to at later iterations and/or frequently change
during iterations.

5.1.2 Samples and Their Relationships

To help experts understand the impact of samples and their
relationships on label propagation, both the sample distri-
bution and the graph structure should be displayed simul-
taneously. We propose a hybrid visual representation that
combines a scatterplot, a node-link diagram, and a bar chart
(Fig. 1(c)). In addition, samples are hierarchically organized
to support the exploration of a large amount of data.

Hybrid Visual Representation. The hybrid visual representa-
tion consists of a scatterplot, a node-link diagram, and a bar
chart. In the visualization, samples are presented as nodes in a

2D scatterplot, while edges reflect the relationships between
samples. To facilitate experts in quickly identifying problem-
atic samples, an uncertainty value is calculated for each sample
and visually displayed in the scatterplot. To effectively display
a large number of graph edges, we design the edge visualiza-
tion at two levels: 1) to individually display edges between
samples in local regions of interest (node-link diagram), and 2)
to statistically convey the overall distribution of edges (bar
chart). In the following, we will introduce the key components
in the hybrid visual representation, i.e., uncertainty-aware
scatterplot, individual edges, and edge distribution.

Uncertainty-Aware Scatterplot. An intuitive way to visualize
the samples and their relationships is to use graph layouts,
such as force-directed graph layouts. However, our experi-
ments have shown that the sample distribution generated by
the force-directed graph layout is cluttered (Fig. 6(a)). Sam-
ples in different classes are mixed together, failing to convey
the data distribution as required by the experts. This result
is also consistent with the findings of previous work that the
force-directed graph layout can easily become stuck in a bad
local minimum [40], [41]. Moreover, it does not utilize the
predicted classes of samples to get better class separation.
Another popular method for visualizing sample distribution,
t-SNE-based projection, uses an early exaggeration strategy
to attract similar samples to be gathered into clusters during
initial iterations, which avoids a bad local minimum [42].
Existing studies have shown that it is effective for preserving
neighborhoods and clusters [43]. In our implementation, we
use a supervised t-SNE [44], which utilizes the predicted
classes to reduce the distance between the projected samples
of the same class. As shown in Fig. 6, using the supervised
t-SNE results in better class separation than using the force-
directed graph layout.

During the interviews, experts expressed the need to
examine not only the predicted classes of samples but also
their prediction uncertainties (R2). Uncertainty is a widely
used measure to indicate problematic unlabeled samples
when ground truth labels are not available [45]. It has
proven to be useful in many tasks [46], [47]. According to
the widely used large margin principle [7], low uncertainty
usually means better prediction results. Inspired by the
uncertainty glyphs in [48], [49], here we also encode uncer-
tainty in glyphs and display them in place of the nodes in
the scatterplot when required. The glyph design is shown in
Fig. 1E. The color of the central dot encodes the predicted

Fig. 5. Label change.

Fig. 6. Sample distributions generated by (a) the force-directed graph
layout and (b) the supervised t-SNE.
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class. The semicircular ring consisting of multiple colored
arcs represents the predicted class distribution. The length
of each arc encodes the probability of belonging to the corre-
sponding class. The angle between the two sliders encodes
the degree of uncertainty, which is calculated as the entropy
of the predicted probabilities. The larger the angle, the
higher the uncertainty.

Individual Edges. Edges are displayed on demand upon
selecting a region of interest. We use tapered edges [50]

to encode their directions where an edge starts at
the wide side and ends at the narrow side. The color of an
edge is the blending of the predicted class colors at its two
ends. As the number of edges is usually large, nearby edges
of the same type, i.e., edges with the same starting classes
and ending classes, can be grouped to reduce visual clutter
and facilitate tracing. We thus turn to the divided edge bun-
dling [51]. It is a force-directed-based method where edges
in the same direction attract each other, and edges in oppo-
site directions repel each other. To group edges by types,
the same as grouping edges by directions, we utilize the
divided edge bundling method to attract edges of the same
type and repel edges of different types.

Edge Distribution. For each class, the edges connected to
samples can be categorized into homogeneous edges (homo-
edges) connecting samples of the same class and heteroge-
neous edges (hetero-edges) connecting samples of different
classes. A higher ratio of hetero-edges indicates a heavier con-
fusion of this class with others. To give an overview of the
edge distribution, a bar-chart-based distribution visualization
and a Voronoi-based space partition are combined. A bar
chart (Fig. 1P1) is displayed for each class showing the homo/
hetero-edges distribution within the class. The height of each
bar encodes the ratio of homo/hetero-edges, and the color
indicates the type (colored: homo-edges, gray: hetero-edges).
The hetero-edge bar can be further expanded to show the
detailed distribution of edges connecting each of the other
classes (Fig. 1D). Clicking on a bar will display the corre-
sponding edges in the Sample view. The Voronoi-based parti-
tion aims to allow easy perceptual separation of different
classes and link the classes with corresponding bar charts.
Each partition should 1) try to include samples of only one
specific class; and 2) following Gestalt theory [52], be as con-
vex as possible tomake clusters more evident. To satisfy these
two constraints, we propose a two-step partition method
based on the Voronoi tessellation [53].

The first step is to generate an initial partition based on the
Voronoi tessellation (Figs. 7(b) and 7(c)). A straightforward

way is to generate the Voronoi tessellation on all samples
and then merge adjacent Voronoi cells of the same class for
generating the partitions. However, this method suffers
from high computational costs. To accelerate the process,
instead of generating the Voronoi tessellation on all samples,
we only use the ones on the boundary of each class for the
tessellation. Here we use a-hulls [54] to represent the bound-
aries (Fig. 7A). The a-hull is a generalization of the convex
hull, which can capture the shape more accurately than the
convex hull by allowing internal angles to be larger than 180
degrees. As the a-hull is sensitive to outliers [55], we utilize
the local outlier factor algorithm [56], one of the most
widely-used outlier detection methods [57], to remove out-
liers for each class before generating its a-hull. With this
strategy, the number of samples for the Voronoi tessellation
is largely reduced. However, as shown in Fig. 7(c), this step
cannot guarantee the convexity of partitions. The second step
thus follows to improve the convexity. A direct solution is to
replace the polyline-based border of two partitions with a
line segment. However, it may introduce errors to the parti-
tions, i.e., each partition may contain samples other than of
the main class. To balance between error and convexity, we
propose to use a polyline with a smaller number of vertices
(Fig. 7(d)) as a balance between the original polyline and a
line segment. In particular, we define the partition cost as

CðP Þ ¼
Xc

i¼1

fEðPiÞ þ bð1� V ðPiÞÞg; (2)

where c is the number of partitions; EðPiÞ measures the error
of partition Pi by the number of misplaced samples in it;
V ðPiÞ is the measure of convexity in Pi using the measure
defined in [58]. The idea behind is that the line segment
between any two samples in the partition should lie within
the partition as well if the partition is convex. The ratio of line
segments that lie within measures the convexity of the parti-
tion. b is the balancing parameter and is empirically set as 2 in
our tool to balance the magnitude of these two measures. Our
goal is to minimize costCðP Þ by replacing groups of consecu-
tive line segments on the border with straight lines. The opti-
mal solution can be obtained using dynamic programming.

Hierarchy Construction. To allow efficient exploration of a
large number of samples, we organize the samples in a hierar-
chy. An uncertainty-biased samplingmethod [18], [59] is used
to build the hierarchy. This sampling method takes both
region density and classification uncertainty into consider-
ation and increases the sampling ratio from dense regions

Fig. 7. Illustration of the Voronoi-based partition method: (a) positions of all samples; (b) finding samples on the boundary of each class; (c) generat-
ing the Voronoi tessellation for samples on the boundaries and merging adjacent cells of the same class; (d) approximating the polyline-based bor-
ders by a set of polylines with a smaller number of vertices.
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with low uncertainty to sparse regions with high uncertainty.
As such, it preserves more uncertain samples while maintain-
ing the overall data distribution.

The hierarchy is built in a bottom-top manner. The bot-
tom layer L0 contains all samples. When sampling from
layer Ll�1 to layer Ll, the sampling rate is set as 25 percent,
and each sample in layer Ll�1 will be assigned as a child to
its nearest sample in layer Ll. This process repeats until the
number of samples in the top layer is less than a certain
threshold (1,000 in our implementation). During explora-
tion, experts can zoom in/out to navigate the hierarchy.

5.2 Interactive Exploration and Graph Construction

To help experts easily examine the samples of interest and
make informed changes to the underlying graph structure,
two main interactions, i.e., graph filtering and interactive
graph construction, are provided. The first interaction helps
identify the samples of interest more efficiently. The second
interaction follows a coarse-to-fine strategy and enables
experts to make efficient changes to the graph structure at
different levels, including global (R3), local (R5), and indi-
vidual levels (R3, R4).

5.2.1 Graph Filtering

A set of filters (Fig. 1(a)) are provided to help experts find
the graph nodes and edges of interest. Scented Widgets [60]
are used as the visual guidance for filtering out unimportant
information and focusing on the information of interest.
Information filtering can be carried out according to five
attributes of nodes or edges:

� Predicted class allows experts to focus on specific clas-
ses of interest. (Fig. 1C1);

� Uncertainty helps identify unreliable samples with
higher prediction uncertainties (Fig. 1C2);

� Path length limits the length of the propagation path
to be displayed (Fig. 1C3).

� Edge directionallows the selective display of edges
that start or end in the selected region (Fig. 1C4).

� Edge importanceenables the display of edges that con-
tribute the most to the final predictions (Fig. 1C5).

To quantitatively measure edge importance, we utilize
the AURORA algorithm described in [61]. This algorithm
defines the edge importance as the derivative of the predic-
tions with respect to an edge, which approximates the
change in prediction scores after removing this edge.

5.2.2 Interactive Graph Construction

Efficient modifications of the graph structure at the global,
local, and individual levels are the essential requirements of
our experts. For adjusting labels and augmenting unlabeled
samples at the global level, and removal of incorrect edges
and noisy samples at the individual level, the interactions are
straightforward, such as directly deleting incorrect edges
from the graph. At the local level, however, interactively
determining the parameter k to modify the local graph struc-
tures is nontrivial due to the limited labeled samples. To help
experts tune parameter k in a local region, a local graphmodi-
ficationmethod based on the largemargin principle [7] is pro-
posed. Combining the visualization and the proposed local

graph modification method, a coarse-to-fine strategy is pro-
vided to help experts interactively construct high-quality
graphs. In addition, an Action Trail is developed to record the
modification history and allows experts to return to a previ-
ous step.

Local Graph Modification. A straightforward method to
determine the best k value for a local region is to choose the
value that performs best on a given set of labeled samples.
However, it is often difficult to obtain a certain number of
labeled samples in practice. To solve this problem, we utilize
the largemargin principle [7], which has been shown promot-
ing GSSL model performance [6], to guide the search for the
best k. The margin for a sample is the difference between the
probabilities of its top two predicted classes. A larger margin
indicates a more discriminative prediction. For multi-class
classification problems, a large margin is achieved by mini-
mizing the entropy of predictions [62]. Given a set of nodes X
in the local region and a search range ½k0; k1�, a grid search is
applied to determine the best k in the range.More specifically,
for each k0 in the range, a candidate graph is constructed with
k0 nearest neighbors of nodes in X. Label propagation is then
applied to obtain predictions and the corresponding entropy.
The k0 with the lowest entropy is the best k. The candidate
graph may contain multiple components when the new k0 is
small. To tackle this issue, we apply a greedymethod for con-
necting all components. Starting with the two largest compo-
nents, we connect them by connecting the two nodes from
each of themwith theminimumdistance. This process repeats
until only one component exists.

Graph Construction Workflow. Fig. 8 illustrates a typical
workflow of DataLinker to construct a high-quality graph
interactively. With the initial kNN graph construction, the
expert first examines the overall sample distribution to
make sure each class has enough labeled and unlabeled
samples (global). From both the Label Change view and the
Sample view, the expert can find problematic samples that
may need label adjustment and classes that are with insuffi-
cient unlabeled samples (Fig. 8(a)). After the adjustment of
samples, the expert then turns to the local modification of
graph edges (local). From the Sample view, regions with
inappropriate k values can be identified (Fig. 8(b)). For
example, a small cluster with limited connections to the
major cluster of this class may need a larger k. The local
graph modification is then used to find the best k for each of
these regions and update the graph locally. Further individ-
ual refinement will be carried out for the remaining small
number of samples with high uncertainty (individual). Their
propagation paths are first examined (Fig. 8(c)) to under-
stand why the GSSL model makes such predictions on
them. Based on that, experts can identify and remove the
problematic nodes/edges that result in the wrong predictions.
The quality of nodes and edges are mutually influenced. The
changes in one (e.g., the nodes) will affect the quality of the
other. Therefore it is appropriate to carry out iterative modifi-
cations. The experts can start a new round of modifications to
further improve the graph quality (Fig. 8(d)).

ActionTrail.Weprovide anAction Trail (Fig. 1(d)) to record
the expert’s modification actions and allow them to roll back
to a previous step. Each row represents a step that the expert
has made, and the rows are ordered by time stamps. For each
step, three kinds of information are recorded: 1) the action
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types, 2) the number of samples with changed predictions,
and 3) the average uncertainty of all samples. With the Action
Trail, experts knowwhat kinds of actions they havemade and
what changes these actions bring. Based on the understand-
ing, they can then stop the modification when there are little
changes in the prediction result.

6 CASE STUDY

Two case studies have been conducted to evaluate how
DataLinker helps understand the influence of the graph
structure on GSSL and improve the learned models by mak-
ing informed changes to the underlying graphs. We invited
two machine learning experts, E2 and E4, to conduct case
studies on two datasets, the STL-10 [8] and the OCT (Optical
Coherence Tomograph) [9]. STL-10 is a popular dataset for
SSL [63], which E2 has often used in his research. As a
researcher in SSL, E2 has a focus on analyzing the influence
of graph structures on final results. E4 is currently working
on a collaborative project on OCT image classification and
is familiar with the OCT dataset. His analysis is more per-
formance-driven.

In the two cases, we constructed the preliminary graph
structures using the features obtained by deep neural net-
work models. In particular, for the first case with natural
images, we employed pre-trained supervised learning mod-
els on ImageNet for feature extraction, where ImageNet is a
well-known large-scale natural image dataset with broad
and diverse image coverage. The features extracted by the
pre-trained models on ImageNet have proven helpful with
natural image classification tasks [64]. However, for image
datasets that are significantly different from the ImageNet
dataset, such as OCT images, the extracted features will
actually hurt performance [64]. As a result, for the second
case involving OCT images, we instead train MixMatch [33],
a recent state-of-the-art deep SSL model, on OCT images for
feature extraction.

6.1 Case Study on the STL-10 Dataset

STL-10 consists of 105,000 training images (5,000 labeled
images and 100,000 unlabeled images) and 8,000 test images
[8]. In this case study, a subset of 12,840 training images (50
labeled images, 12,790 unlabeled images) from this dataset
was used for training. Our images comprise 11 classes (air-
plane, bird, car, cat, deer, dog, horse, monkey, ship, truck,
snake), with only five labeled images in each of the first ten

classes. Our test images include: 1) all the test images in STL-
10 (800 for each of the first ten classes; and 2) additional 100
randomly selected images from the remaining snake class
training images. The low ratio of the labeled samples (50=
12840) and noisy samples (samples of other classes) makes
classification on this dataset a challenging task. Initially, an
accuracy of 88.91 percent was achieved using a state-of-the-art
GSSL model developed by Iscen et al. [5], which was not satis-
fying. Thus, E2 would like to use DataLinker to examine and
modify the underlying graph for improving classification
accuracy.

Overview of Label Propagation (requirements R1 and R2). An
initial graph was constructed with k ¼ 6, the smallest integer
that ensures every connected component in the graph has at
least one labeled sample. Labels were propagated from the
labeled nodes to unlabeled ones along the constructed graph.
To know how the propagation progressed through iterations,
E2 first looked at the Label Change view. He noticed that
most samples were propagated to within four iterations
except for a small number (Fig. 9B). He also noticed a high
ratio of label changes among these samples in later iterations
(Fig. 9C), indicating some uncertainty in the predicted labels.
E2 considered these samples might be misclassified and
would like to find where they resided in the graph. He
selected these samples in the Label Change view and turned
his attention to the Sample view.

Adjusting the Distribution of Labeled Nodes (requirements
R2 and R3). The Sample view shows the spatial distribution
of samples (graph nodes) in a 2D scatterplot. An even distri-
bution of labeled nodes in each class is expected to construct
a high-quality graph. Based on this expectation, E2 exam-
ined the distributions of the selected samples (highlighted)
and the labeled ones (starred) for each class and observed a
noticeable deficiency of dominant labeled samples in two
regions, as shown in Figs. 9A1 and 9A2. In A1, there were
no labeled samples for this cluster. Checking the sample
images in A1, E2 found they were images of snakes, a class
that hadn’t been considered before. As there were not any
labeled samples for this class, these samples were all
wrongly predicted. E2 thus manually labeled five samples
(stars with circles in A1’) in this region to include this new
label into the propagation process. In A2, the highlighted
green (dog) samples were relatively far from their labeled
ones, which were clustered at a corner of the class (Fig. 9D).
“This elongated the propagation paths and reduced the
effective information passing,” pointed out by E2. The high

Fig. 8. A typical workflow of DataLinker is a coarse-to-fine graph construction process. Experts usually start from (a) adjusting graph nodes at the
global level; then (b) modify local k values according to local properties; they (c) further refine individual nodes with high uncertainty; and (d) start a
new round of modification.
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uncertainties (0.6 - 1.0) of these highlighted samples in this
region confirmed E2’s speculation. E2 then evenly labeled
three more dog samples (stars with circles in A2’) in region
A2. Upon update, most samples were labeled within four
iterations, and label changes were also largely reduced
(Figs. 9B’ and 9C’). The Action Trail showed a reduced over-
all uncertainty from 0.315 to 0.27 (Fig. 1(d)).

Selecting the remaining unlabeled samples in B’ (Fig. 9(b))
and checking their images in the Information view, E2 found
a few more samples from other classes (A3, A4 in Fig. 9(b)).
As E2 considered these samples to be noise, he deleted them
directly.

Coarse-to-Fine Modification of Graph Edges (requirements
R2, R4, and R5). The following steps are executed to interac-
tively modify the graph edges from coarse to fine.

Increasing k. E2 noticed some monkey images were
wrongly predicted. (Fig. 9A5). To find the cause, E2 zoomed
into this region to examine how the labels were propagated in
this local region. He noticed two clusters thatwere all monkey
images but wrongly predicted as dogs (green) or birds
(orange), as shown in Fig. 10A5. To examine the reason for the
incorrect label propagation,E2 displayed the important edges
going into A5. He found a relatively small number of impor-
tant edges from the monkey (yellow) class compared to those
from the bird (orange) or dog (green) classes, indicating a
smaller influence. E2 reasoned that the insufficient influence
from the main monkey cluster to this region resulted in the
wrong predictions. To increase the influence, E2 considered
increasing the connectivity between the main monkey cluster
and the clusters in A5. He thus selected the region around the

Fig. 9. Label Change view and Sample view after (a) constructing the initial graph; (b) adjusting labels; (c) edge distributions before and after
decreasing k values. The ratios of hetero-edges decrease after decreasing k values, but still noticeably high in partition P1.

Fig. 10. Local and individual modification: sample and edges of the selected region (a) before and (b) after increasing the local k value; (c) propaga-
tion paths of selected samples.
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boundary betweenA5 and themonkey cluster (Fig. 10A6) and
increased the k value in this local region. k ¼ 26 was finally
determined by a grid search in the range of [7,40].

Refining. The operation of increasing k locally reduced the
number of wrongly predicted monkey images (Fig. 10A5’).
However, a few still existed. Given the small number, E2

decided to examine their label propagation paths individu-
ally. Selecting s1, a monkey image wrongly classified as a
bird, he noticed its label was propagated from s2, which was
further propagated from s3, a labeled bird image. Looking for
similarities among the three images, E2 speculated the same
state of “on a tree” connected the three samples and wrongly
propagated s3’s label (bird) to s2 and to s1.E2 wanted to break
the connection by either deleting nodes or deleting edges. s2 is
a noisy sample whose class (red panda) is not of interest. But
checking the important edges starting from s2 (Fig. 10A), E2

found s2 adversely affected the labeling of several other mon-
key images. To this end,E2 deleted s2 to break the connection.
s4 in the green cluster was another sample checked byE2. It is
a black monkey but had its label propagated from two black
dogs (s6 and s7). This time, E2 speculated the same “black”
color resulted in the wrong propagation. Checking the impor-
tant edges starting from s4, E2 found s4 further passed the
incorrect label to s5, an image of two blackmonkeys. As label-
ing s4 would lead to wrong label propagation from s4 to s6
and s7, E2 decided to delete the incorrect edges from s6 to s4
and from s7 to s4. E2 continued checking the propagation
paths in the two clusters and deleted nodes/edges for another
six wrongly predicted nodes. Upon update, the overall uncer-
taintywas reduced from 0.270 to 0.251.

Decreasing k. After the above step, E2 zoomed back to the
top Sample view. He found the confusions between classes
were still observed, especially around the cluster bound-
aries (e.g., Fig. 1A7). To better examine the cause of the con-
fusion, E2 displayed the partitions and the bar charts. From
the bar charts, E2 found four partitions (P1, P2, P3, P4) had
a relatively higher ratio of hetero-edges, indicating heavier
confusions. E2 wanted to find the confused regions, exam-
ine their local graphs, and make proper corrections. He
started with partition P1, which had the highest ratio of het-
ero-edges. The detailed distribution of hetero-edges in P1
(Fig. 1D) showed that the cat (red) and the dog (green) clas-
ses had the highest confusion. The accordingly displayed
important hetero-edges guided E2 to find where the confu-
sion occurred (Fig. 1A6). E2 selected the confused region
and zoomed in (Fig. 11(a)). From the edge bar chart inside
this region (Fig. 11A), he found that the ratio of the hetero-
edges was much higher than that of the red class, and many
of the samples had high uncertainty (0.6 - 1.0). Checking the
nearest neighbors of these uncertain samples in the Infor-
mation view (Fig. 1(e)), E2 further observed that many of
these samples were wrongly predicted, and they tended to
have lower-ranked neighbors in wrong classes (marked
with black borders). From these observations, E2 concluded
that k ¼ 6 was too large for this local region, and he wanted
to reduce the k value in this local region. k ¼ 2 was finally
set by a grid-search in the range of [1,5].

Refining. For the small number of remaining uncertain
samples shown in Fig. 11(b), E2 again checked their individ-
ual propagation paths and deleted nodes/edges for these
samples in the same way as the refining step before.

In the same way, E2 analyzed the confusions in P2, P3,
and P4, and reduced the k values in these local regions. The
remaining uncertain samples were further refined. As
shown in Fig. 9(c), after this step, hetero-edges in these par-
titions were reduced. The overall uncertainty was reduced
from 0.251 to 0.213.

Incremental Exploitation of Unlabeled samples (requirement
R3). After the modification of labeled nodes and graph edges,
a cleaner data distribution with fewer confusions and uncer-
tainties was achieved. However, the bar charts showed the
ratio of hetero-edges in partition P1was still noticeably higher
than others (Fig. 9(c)). As the ratio was determined by both
the number of hetero-edges and the number of homo-edges,
E2 speculated that the reasonmight lie in the small number of
homo-edges at this step. The relatively small number of cat
(red) samples (Fig. 1C1) confirmed his speculation. A bal-
anced number of samples among classes was needed for clas-
sification. When there is a suspicion that some classes have
fewer samples, it is a common practice to findmore data from
other sources, e.g., on the internet [63] or in a larger repository
of unlabeled samples. Semi-supervised learning is no excep-
tion. Although the labels were unknown, more samples can
be added to a cluster based on the commonly used sample
similarity measures (e.g., the cosine similarity of two sam-
ples). As a large number of unlabeled samples in STL-10were
not used as training data in the case study, E2 decided to
search in this large repository and add more unlabeled sam-
ples to the predicted cat cluster. He selected a large set of sam-
ples in the red cluster and loaded 500 more unlabeled
samples that were similar (i.e., nearest neighbors) to the
selected ones. With the update, the ratio of hetero-edges in P1
was reduced, and the overall uncertainty, as shown in the
Action Trail, was reduced from 0.213 to 0.205.

The increase in nodes inevitably caused some local changes
in the graph structure. E2 thus carried out a second round of
modifications, starting by checking the distribution of labeled
nodes. After the second round, the overall uncertaintywas fur-
ther improved from 0.205 to 0.186. Although the uncertainty
and the decrease were small, misclassified samples might still
exist. To checkwhether thereweremany such samples,E2 fur-
ther sampled 1 percent of samples from the test data and
labeled them. The accuracy of the sampled data was 95.06 per-
cent. Hewas satisfiedwith the results and ended the process.

6.2 Case Study on the OCT Dataset

The OCT dataset [9] contains the OCT images of the retina,
which are of 4 classes: Normal, ChoroidalNeoVascularization

Fig. 11. Sample and edge distributions of the selected region (a) before
and (b) after decreasing the local k value.
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(CNV), Diabetic Macular Edema (DME), and Drusen. Correct
classification ofOCT images is important for guiding the diag-
nosis and treatment of eye diseases. For this case study, 10,000
images (3,458 CNV, 1,013 DME, 794 Drusen, and 4,735 Nor-
mal) were randomly selected from the dataset, among which
1,000 (370 CNV, 109 DME, 81 Drusen, and 440 Normal) were
labeled. As mentioned, the state-of-the-art deep SSL model,
MixMatch [33], was trained for feature extraction. Another
10,000 images (3,539 CNV, 972 DME, 792 Drusen, and 4697
Normal) were used as the test dataset to evaluate the perfor-
mance of theGSSLmodel. Initially, 92.90 percent test accuracy
was obtained.

Modifying the Graph at the Local Level (requirements R2
and R5). An initial graph was first constructed with k ¼ 5,
which is the smallest k that ensures every connected compo-
nent in the graph has at least one labeled sample. From the
Label Change view, E4 was satisfied that most unlabeled
samples had been propagated to within three iterations.
Considering the relatively large ratio of labeled samples (10
percent) and their balanced distribution in the Sample view,
E4 believed it was unnecessary to adjust the labeled samples
and moved on to check the edge distribution in the Sample
view. From the bar charts (Fig. 12(a)), it was observed that
the green (P1), blue (P2), and orange (P3) classes had rela-
tively higher ratios of hetero-edges. He started his analysis
with the green one (P1) that had the largest ratio. The
detailed distribution of hetero-edges showed that most het-
ero-edges existed between the green and blue classes and
were around the boundary (Fig. 12A1). Selecting this region
where the hetero-edges resided, higher uncertainties were
observed for samples in these regions. The Information
view further demonstrated that these uncertain samples
tended to have lower-ranked neighbors in the wrong classes
(Fig. 13(b)). As with the STL-10 case, E4 decided to decrease
the k values for this region and the others in partitions P2

and P3. Upon update, the Sample view showed an obvious
reduction of uncertain samples, and the Action Trail con-
firmed the improvement with the overall uncertainty
reduced from 0.029 to 0.014 (Figs. 12(b) and 13(a)).

Refining the Graph at the Individual Level (requirements R2
and R4). For the remaining uncertain samples, E4 zoomed in
locally and further refined the local graph structures by check-
ing and editing the nodes and edges individually. During the
process,E4 noticed that sample s1 had a high prediction uncer-
tainty between the DME and Normal classes (Fig. 12(b)).
Checking the propagation path to s1, it was found that the
most important edge was from s3, which also had a high pre-
diction uncertainty between the DME and Normal classes. E4

consulted with his collaborated ophthalmologist, who con-
firmed that both s1 and s3 should be Normal. s3 had its label
propagated from both s2 and s4, where s2 was Normal, and s4
was DME. Comparing the images of s3 and s4, the domain
expert pointed out that s4 was DME because of the obvious
cystoid cavity in themiddle (Fig. 12H). The blurredblack patch
in themiddle of s3 is not considered typical for DME, but does
make s3 visually similar to s4. E4 further checked the samples
that were propagated from s3 and found two more wrongly
predicted samples, s5 and s6. Based on the observations, E4

Fig. 12. Propagation overview of the OCT dataset: Label Change view and Sample view after (a) constructing the initial graph and (b) decreasing
local k values.

Fig. 13. The OCT dataset: (a) Action trail; (b) Information view.
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deleted the wrong edge from s4 to s3. In collaboration with the
ophthalmologist, E4 corrected the propagation paths for 18
more uncertain samples. After being updated, the overall
uncertaintywas further reduced from0.014 to 0.011 (Fig. 13(a)).

As with the STL-10 case study, E4 carried out a second
round of modifications. After that, two more labels were
provided, and 21 edges were deleted. The uncertainty was
reduced from 0.011 to 0.010. Following E2 in the first case
study, the ophthalmologist also sampled 1 percent of the
test data. The accuracy of the sampled data was 95.00 per-
cent. Both E4 and the ophthalmologist were satisfied with
the result and ended the modification at this point.

6.3 Post Analysis and Expert Feedback

Post Analysis for the Case Studies. To objectively evaluate the
effectiveness of the interactive construction process using
DataLinker, classification of test data was carried out after
each step. Table 1 shows the step-by-step improvements of
the classification accuracy on the test data. In both cases, the
learned model improved performance with each step. As
adjusting labels influenced the graph structure at a global
level, it offered the greatest increase in classification accuracy.
Adjusting the local k values and refining the nodes and edges
modified the graph structures in local regions and offered a
smaller yet steady improvement. Exploiting more unlabeled
samples achieved further improvements on a smaller scale, as
can be expected. A second round of modifications improved
the accuracy further. Using DataLinker, the classification
accuracy on STL-10 was improved from the initial 88.91 to
95.60 percent, while on OCT was improved from 92.90 to
94.27 percent, showing a larger gain on datasets with smaller
ratios of labeled samples.

To evaluate the effectiveness of DataLinker to reduce
expert effort, we also compared it with HSE [65], an effective
graph-based active learningmethod, on STL-10.After labeling
eight samples using both methods (HSE: samples recom-
mended by the algorithm; DataLinker: samples selected by
the expert with the help of interactive visualization), the accu-
racy achieved with DataLinker (92.60 percent) was higher
than that ofHSE (89.99 percent). To achieve the same accuracy
of 92.60 percent, 21 samples were needed to be labeled for
HSE. DataLinker reduced expert effort by 61.90 percent. This
is because the Label Change view and the Sample view effec-
tively help experts findmore problematic samples to label.

Expert Feedback. We had a discussion with both experts
after the case studies. They commented positively on the visu-
alization for providing an effective and efficient way to

improve their GSSL models. E2 was especially impressed by
the 6.69 percent gain in classification accuracy. Without visu-
alizations, he usually selected uncertain samples to label.
However, it usually takes more effort to label more samples
for satisfactory performance, which is very time-consuming.
“With the Label Change view and the Sample view, I can
quickly identify regions lacking labeled samples. Labeling
samples in such regions results in relatively large gains. To
achieve similar accuracy, DataLinker reduces my labeling
effort by around 60 percent,”E2 said. He also pointed out that
it would be hard to improve the prediction accuracy even
though the local region had enough labeled samples but an
incorrect graph structure. This is because the wrong connec-
tions between samples will lead to wrong label propagation
and thus low prediction accuracy. For example, the misclassi-
fication of the black monkey in the first case was caused by
the incorrect label propagation from two black dogs. How-
ever, labeling the black monkey will lead to misclassification
of these two black dogs because the label can be propagated
from the monkey to the dogs. “Modifying the graph structure
seems to be a more effective method,” E2 commented. In
addition to effectiveness, both experts found the tool helped
them efficiently locate problematic regions and identify sam-
ples/edges that lead to wrong predictions, thanks to the com-
bination of Label Change view and Sample view, as well as
edge filtering. Both experts also agreed that the tool helped
identify the reasons for wrong predictions. For example, the
interactive identification of outliers, such as the red panda
image in the first case and the wrong edge connecting the
DME and the Normal samples in the second case, were help-
ful for improving the graph quality. However, they also
pointed out that they wanted to verify these suspected causes
and gain insights into how to make use of these observations
in refining the employed models. Overall, with DataLinker,
the experts now have more confidence that the unlabeled
samples have been used effectively.

7 DISCUSSION AND FUTURE WORK

DataLinker has been successfully applied to two real-world
applications with satisfying results, which demonstrates its
effectiveness and efficiency in improving GSSL models and
increasing user confidence in exploiting unlabeled samples.
Image data is used in these applications to illustrate the idea.
However, DataLinker can be easily generalized tohandle other
types of data, such as textual data, with suitable methods for
feature extraction. Only minor changes in the Information
view are needed to display samples of other types. Apart from
generalization, several other improvements are also desired
by experts andwill be the subject of our future research:

Reasoning Power. DataLinker can help identify causes for
wrong predictions by tracing individual propagation paths.
As desired by experts, one direction of research is to investi-
gate how to go further from these discrete causes and provide
more reasoning power to the tool. One potential avenue is to
integrate automatic outlier detectionmethods intoDataLinker
for automatically detecting more outliers, which can then be
presented to experts for a better understanding of the root
cause of these occurrences. Based on this understanding,
users can figure out the deficiencies in the employed GSSL
model and improve it for better performance.

TABLE 1
Improvement of Test Accuracy After Each

Step Using DataLinker

Step STL-10 OCT

Accuracy Gain Accuracy Gain

Initial 88:91% 92:90%
Adjusting labels 92:60% 3:69% - -
Modifying graph 94:40% 1:80% 94:12% 1:22%
Augmenting samples 95:01% 0:61% - -
Second round 95:60% 0:59% 94:27% 0:15%
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Streaming Data. Currently, DataLinker handles a graph
constructed with the labeled/unlabeled samples at hand. In
real-world applications, unlabeled samples may come in
over time in a streaming manner. In such a scenario, more
timely updates of the learning models are desirable. An
interesting direction for future research is to study how we
can effectively visualize the dynamic changes in a graph
structure and incrementally update GSSL models with the
arrival of new unlabeled samples.

Action Confidence. DataLinker currently incorporates expert
action as ground truth. For example, it is assumed that labels
provided by experts are correct, and the deleted edges are
truly wrong.While this assumption is correct most of the time,
sometimes experts can make mistakes. To make the tool more
robust to the noise introduced by experts, a possible solution is
to evaluate the confidence of each action and take this into con-
sideration duringmodel construction and visualization.

Learning Curve. The visual metaphors used in DataLinker,
such as river flow, bar chart, Scented Widgets, and Voronoi-
based partition, are all common ones. Thus, the experts can
quickly grasp these visual encodings. It usually takes the
experts 10-30 minutes to become familiar with DataLinker,
especially the interactions. The experts believe that the bene-
fits brought by the tool via interactive visualization undoubt-
edly outweigh the learning cost. To further reduce the
learning cost, we also added a tour function to help experts
quickly become familiar with the visual encodings and inter-
actions of DataLinker.

Generalization to Other Datasets. DataLinker can help
experts improve the quality of graphs. However, participa-
tion in the graph construction for each dataset is still ineffi-
cient. It would be desirable to generalize expert effort from
one graph to other datasets. A possible solution is to use the
model trained on the refined graph to make predictions on
unlabeled samples of other datasets. The predictions with
high confidence can be treated as candidate ground truth
labels to refine other models. This strategy is also widely
used in the field of machine learning [66], [67].

8 CONCLUSION

In this paper, we have presented DataLinker, a visual analysis
tool to helpmachine learning experts interactively construct a
high-quality graph for better exploitation of unlabeled sam-
ples in GSSL. A coordinated and hybrid visualization has
been developed to help experts understand label propagation
along graph edges. To support the visualization of large
graphs, hierarchical presentation and filtering of graph nodes
and edges are provided. The visualization is integrated with
an interactive graph construction method and provides a
coarse-to-fine strategy to progressively construct high-quality
graphs. Two case studies were conducted to demonstrate the
effectiveness of DataLinker.
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