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Abstract

Ensemble methods that train and combine multiple learners have always been
among the state-of-the-art learning methods, and ensemble pruning aims at gen-
erating a smaller-sized ensemble with even better generalization performance.
Abundant ensemble pruning methods that use evaluation criteria such as diver-
sity or margin together with validation error have been proposed. However, as
these evaluation criteria are used together with the validation error, their effect
on generalization performance is less clear. In this paper, we propose a margin
distribution and structural diversity guided ensemble pruning framework, called
Decoupled Ensemble Pruning (DEP). It decouples the optimization of margin
distribution and structural diversity and the optimization of validation error into
two stages. Our information-theoretic analysis reveals that the expected gen-
eralization gap is related to the combination distribution, i.e., validation error
distribution of all the combinations of base learners. And show that optimizing
margin mean and structural diversity benefits combination distribution. Con-
cretely, we provide an instantiation of DEP framework in the classic tree-based
ensemble pruning setting. Experimental results not only verify the effectiveness in
optimizing the distribution, but also show that DEP enjoys better test accuracy
than existing ensemble pruning methods.

Keywords: Ensemble learning, Ensemble pruning, Decision trees, Information theory
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1 Introduction

Ensemble learning is a powerful machine learning method that combines multiple
good and diverse learners to create a stronger learner (Dietterich, 2000; Zhou, 2012).
Ensemble methods have wild applications, such as disease diagnosis (Lu et al, 2020;
Schaefer et al, 2014), remote sensing (Zhang et al, 2022), anomaly detection (Liu et al,
2008), and model reuse (Wu et al, 2019). Besides, ensemble learning has also been
extended to deep learning (Ganaie et al, 2022; Zhou and Feng, 2019; Lyu et al, 2022).
Moreover, open-environment machine learning (Zhou, 2022) received much attention
recently, where the machine learning process has to handle unknown changes that have
never occurred in training data. It is evident that the sensitivity and robustness to new
changes are fundamentally important, where ensemble learning has been found well
helpful. In particular, online ensemble has been established as a sound and practical
way to handle unknown changes in online data (Zhou, 2022).

Believing that using some instead of all the individual learners of the ensemble
might be better (Zhou et al, 2002), ensemble pruning aims at combing only a subset of
individual learners to achieve even better performance. Since the number of individual
learners is reduced, ensemble pruning also helps reduce the storage and prediction
overhead. Usually, after a collection of individual learners are produced using the
training set, ensemble pruning chooses a combination of them to form the pruned
ensemble with the help of the validation set.

Ensemble pruning methods can be roughly categorized into ordering-based meth-
ods (Margineantu and Dietterich, 1997; Mart́ınez-Muñoz and Suárez, 2004; Mart́ınez-
Muñoz et al, 2008; Partalas et al, 2010), optimization-based methods (Zhang et al,
2006; Zhou et al, 2002; Qian et al, 2015) and clustering-based methods (Giacinto et al,
2000; Lazarevic and Obradovic, 2001). Most ensemble pruning methods use certain
evaluation criteria together with the validation error. As diversity has been thought
of as the key to ensemble performance, many diversity measures have been designed
and incorporated into ensemble pruning, such as kappa (Margineantu and Dietterich,
1997; Mart́ınez-Muñoz et al, 2008), disagreement (Li et al, 2012), complementari-
ness (Mart́ınez-Muñoz and Suárez, 2004), tree edit distance (Sun and Zhou, 2018),
individual contribution (Lu et al, 2010), and objection (Bian et al, 2020). Another
concept frequently encountered in ensemble pruning literature is margin (Tang et al,
2006; Guo and Boukir, 2013). Relevant notions include margin distance (Mart́ınez-
Muñoz and Suárez, 2004), orientation (Mart́ınez-Muñoz and Suárez, 2006), and margin
distribution (Wu et al, 2022).

The benefits of diversity and margin to the ensemble’s generalization performance
have been analyzed respectively. Li et al (2012) used voting diversity to bound the
hypothesis space complexity, thus regarding diversity as regularization. Durrant and
Lim (2020) modeled the relationship between diversity and generalization performance
using a Polya-Eggenberger distribution. Tang et al (2006); Bian and Chen (2021) used
margin to link ensemble diversity and its generalization performance. Gao and Zhou
(2013); Lyu et al (2019) showed that the generalization performance of an ensemble
is closely related to margin distribution.
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However, in ensemble pruning literature, the use of evaluation criteria is often
nested with validation error. So the benefits of diversity and margin are not as straight-
forward as the above analyses. Take ordering-based pruning as an example. The
evaluation criterion, say diversity, determines the order in which the individual learn-
ers are added to the sub-ensemble, and the validation error determines when to stop
the aggregation process. During the nested process, too much focus on ensemble diver-
sity may result in poor validation error, while too much focus on validation error may
lead to over-fitting on validation error.

In this paper, we decouple the optimization of diversity and margin from the
optimization of the validation error. We propose a margin distribution and structural
diversity guided ensemble pruning framework, called Decoupled Ensemble Pruning
(DEP). Specifically, we first select a subset of base learners according to the margin
mean and structural diversity on the training set, then conduct validation-error-based
ensemble pruning on this subset.

Theoretical results confirm the rationality behind our method. With an
information-theoretic analysis for validation-error-based ensemble pruning, we show
that the generalization performance of ensemble pruning not only depends on the val-
idation error of the selected combination of base learners, but also depends on the
combination distribution, i.e., the validation error distribution of all the combinations
of base learners. The analysis leverages mutual information, which is a useful tool
that has been widely used recently (Russo and Zou, 2019; Zhang et al, 2023a). We
then demonstrate that our optimization of the margin mean and structural diversity
on the training set will benefit the combination distribution, thus enabling the fol-
lowing validation-error-based ensemble pruning stage to find a solution with better
generalization performance.

We provide an application of our framework in the classic tree-based ensemble
pruning setting. We design a new kind of structural diversity, the feature contribution
diversity, which can distinguish trees well only using the training set information, and
may be of independent interest for ensemble diversity. Experimental results verify the
effectiveness of DEP compared to other state-of-the-art ensemble pruning methods.

The main contributions of this paper are summarized as follows.
• We propose a novel ensemble pruning method guided by margin distribution and
structural diversity, named Decoupled Ensemble Pruning (DEP).

• Our theoretical analysis reveals that optimizing margin mean and structural
diversity in the first stage of DEP is beneficial to the combination distribution,
thus improving the generalization performance.

• We provide an instantiation of DEP framework in the classic tree-based ensemble
pruning setting with a novel feature contribution diversity measure. Experiments
show that DEP achieves better test accuracy than other state-of-the-art ensemble
pruning methods.
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2 Setting and notations

Throughout the ensemble pruning literature, the data is usually split into three parts.
The base learners are generated on the training set, then the validation set is used for
pruning the ensemble, and the test set is for reporting generalization performance.

Base learners. Denote the training set as Tr = {(xi, yi)}m1
i=1, where each instance

is sampled i.i.d. from data distribution D. n base learners are trained using the training
set, where each base learner ht : X 7→ {1, . . . , |Y|} is a classifier mapping from feature
space X to label space Y. Let H = {ht}nt=1 denote the set of trained base learners.

Ensemble pruning. It mostly takes place on the validation set V = {(xi, yi)}m2
i=1,

which may also be called the pruning set (Partalas et al, 2010; Guo and Boukir, 2013)
or selection set (Mart́ınez-Muñoz et al, 2008), where each instance is sampled i.i.d.
from data distribution D. Using the validation set, we aim at selecting a small subset
from H to form a pruned ensemble with better performance. Let Hs denote a sub-
ensemble corresponding to selector vector s ∈ {0, 1}n, where st = 1 means that the
base learner ht is incorporated in Hs.

Suppose majority voting is used when combining the selected base learners, the
prediction on sample x made by a sub-ensemble Hs is

Hs(x) = argmax
j

n∑
t=1

st · 1[ht(x)=j] ,

where 1[·] is the indicator function, which returns 1 if · is true and 0 otherwise.
The goal of ensemble pruning is to achieve better generalization error

E(x,y)∼D g(Hs(x), y), where g(f(x), y) = 1[f(x)̸=y] denotes the loss function of a classi-
fier f on instance (x, y). Meanwhile, the number of base learners selected, i.e., ensemble
size |s|, should also be small. Note that usually, the generalization error is a more
important goal, as we do not want to sacrifice generalization error much for a smaller
ensemble size.

3 DEP method

In this section, we propose a novel ensemble pruning framework called Decoupled
Ensemble Pruning (DEP). As illustrated in Figure 1, it is a two-stage selection process.
In the first stage, it selects a subset of learners according to the margin distribution
and structural diversity of the training set. Then in the second stage, it conducts
pruning on this subset solely based on validation error.

Stage 1: Optimizing margin mean and structural diversity. In the first
stage, we optimize the margin distribution and structural diversity. We formulate the
bi-objective subset selection problem to be

argmax
z∈{0,1}n

(ETr (ρHz) , Div(Tr,Hz)) , (1)

s.t. |z| = n/2 .
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Fig. 1: An illustration of our proposed DEP framework.

The first objective is the margin mean on the training set, where ETr (ρHz) is short
for E(xi,yi)∈Tr (ρHz (xi, yi)), and

ρHz (xi, yi) =
1

|z|

 ∑
t:ht(xi)=yi

zt − argmax
j ̸=yi

∑
t:ht(xi)=j

zt


is the margin of Hz on instance (xi, yi). The second objective Div(Tr,Hz) is a measure
of structural diversity of all the base learners selected by z. It should be related to the
structure of how the model makes predictions, and should be able to tell the difference
between two base learners even if their predictions on the training set are the same.
Considering it is a two-stage algorithm, we restricted the size |z| to n/2 so that half
of the base learners are removed in the first stage, and the remaining half is left for
further pruning in the second stage. The most suitable size for the first stage pruning
may vary slightly depending on the task, but we currently fix it as the default setting.
The rationale behind the design of the bi-objective optimization problem, including
why these objectives are calculated on the training set, will be explained in Section 4.

As we have adopted multi-objective modeling in Eq. (1), the optimization problem
may result in multiple optimal trade-off solutions, i.e., Pareto optimal solutions (Deb,
2014; Prajapati et al, 2023; Zhang et al, 2023b). And we choose one of the Pareto
optimal solutions according to our needs.

Stage 2: Validation-error-based pruning. As we have already obtained a
subset of base learners with good combination error distribution denoted by z, in this
stage, we conduct ensemble pruning on this subset solely based on validation error.
We start with defining the ≼ relation between two selector vectors.
Definition 1. Let z and s be two selector vectors. We say that s ≼ z if and only if
Hs ⊆ Hz, where Hz = {ht : zt = 1}.

With Definition 1, the single-objective optimization problem of validation-error-
based pruning is represented as

argmax
s≼z

E(x,y)∈V g(Hs(x), y) , (2)

5



Algorithm 1 DEP

Input: Original ensemble H = {ht}nt=1, training set Tr, validation set V
Output: Pruned ensemble Hs

1: Randomly select solutions from {0, 1}n to form the initial population P1

2: for t = 1 : maximum #generations / 2 do
3: Select solutions from Pt by binary tournament selection to compose the mating

pool
4: Generate offspring population P ′ by uniform crossover and bit-wise mutation
5: Evaluate the objective vector(ETr (ρHz) , Div(Tr,Hz))−λ∗(|z|−n/2) of z ∈ P ′

6: Select next population Pt+1 from Pt ∪P ′ based on non-dominated sorting and
crowding distance

7: end for
8: Prune H by selecting a Pareto optimal solution z from the final population to

obtain Hz

9: Randomly select solutions from {0, 1}
n
2 to form the initial population P1

10: for t = 1 : maximum #generations / 2 do
11: Select solutions from Pt by binary tournament selection to compose the mating

pool
12: Generate offspring population P ′ by two-point crossover and bit-wise mutation
13: Evaluate the objective validation error of s ∈ P ′

14: Select next population Pt+1 from Pt ∪P ′ based on fitness-based rank selection
15: end for
16: Prune Hz by selecting the best solution from the final population to obtain Hs

where s ≼ z means pruning on the n/2 base learners selected by z.
The bi-objective optimization problem with equality constraint in Eq. (1) and

the single-objective optimization problem in Eq. (2) can be solved using evolutionary
algorithms (Deb et al, 2002; Zhou et al, 2019; Pan et al, 2023). The detailed algorithm
design is illustrated in Algorithm 1.

4 Analysis for DEP

In this section, we first analyze the second stage of our DEP framework, the
validation-error-based ensemble pruning. Theoretical results reveal that the key to
good generalization performance of the second stage ensemble pruning is to obtain a
subset of base learners with a good combination distribution in the first stage. Then we
demonstrate that optimizing margin mean and structural diversity in the first stage
benefits the combination distribution.

4.1 Combination distribution matters

A sub-ensemble can also be referred to as a combination of base learners. As the
selector vector s can take 2n possible values, we can sort it in order (s(1), . . . , s(2

n)). Let
ϕ = (ϕ1, . . . , ϕ2n) : Dm2 7→ R2n denote the validation errors of the 2n combinations,
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where ϕi = E(x,y)∈V g(Hs(i)(x), y). Naturally, µ = EV∼Dm2 [ϕ] is the corresponding
generalization error vector, where µi = E(x,y)∼D g(Hs(i)(x), y).

Then ensemble pruning can be viewed as a selection process T : Dm2 7→ {1, . . . , 2n}
that picks one out of the 2n combinations. For the conciseness of notion, we may use
T as short for T (V ). During the validation-error-based ensemble pruning process, the
selection rule T only has to do with validation error ϕ. Therefore, the validation error
of the selected combination is mathematically of the form ϕT (V )(V ). As ϕ is only a
noisy estimate of µ due to the finite samples in V , and T (V ) is also a function of V ,
ϕT (V )(V ) will be biased because of the selection procedure. It is called the selection
bias (Russo and Zou, 2019). We analyze this selection bias in Theorem 2 and obtain
the relationship between the expected generalization error µT and validation error ϕT

of the pruned ensemble Hs(T ) .
Theorem 2 (Combination error distribution is critical to generalization). Let V
denote the validation set, ϕ = (ϕ1, . . . , ϕ2n) denote the validation error of the 2n

combinations, µ = (µ1, . . . , µ2n) denote the corresponding generalization error. Let T
denote the selection rule, and P(T | V ) is the distribution of the selection rule output.
Let E denote the validation error of a random combination. Then we have

E
V ∼Dm2 ,
T∼P(T |V )

µT ≤ E
V ∼Dm2 ,
T∼P(T |V )

ϕT +

√√√√− E
V ∼Dm2 ,
T∼P (T |V )

log2 P(E = ϕT | V )

2m2
. (3)

where P(E = ϕT | V ) =
∑2n

i=1 1[ϕi=ϕT ]

2n .

Proof sketch. Firstly, we bound this selection bias in expectation using the mutual
information I(T,ϕ). Then we notice that, for those ϕis that take the same value, the
selection rule T is equivalent to picking one of them randomly. When n is not too small
(n ≫ log2 m2), the randomness in the selection process is considerable. Therefore
we can bound the mutual information I(T,ϕ) utilizing this randomness and obtain
Theorem 2. The detailed proof is in the Appendix.

Remark 1. Theorem 2 shows that the generalization performance not only depends
on the validation error of the selected combination, but also depends on the
combination distribution

P(E = e | V ) =

∑2n

i=1 1[ϕi=e]

2n
. (4)

The value P(E = ϕT | V ) decides the expected generalization gap. A larger P(E = ϕT |
V ) implies that the selection rule T picks a combination from a larger set randomly,
hence the selection bias will be lower. For example, suppose all the combinations
have the same validation error, i.e., P(E = ϕT | V ) = 1, then the selection process
is equivalent to completely random choice. In such cases, since we do not have a
selection process on the validation set, the validation error is an unbiased estimate of
the generalization error.
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4.2 What is a better combination distribution

Consider selection rules T s that can be modeled as one of the following:
(a) argmin

T
ϕT , s.t.P(E = ϕT | V ) > p0, where p0 is a small probability mass. It

models a search process that runs into the lower tail of the combination error
distribution until the probability mass is too small.

(b) T ∈ {U : ϕU = φ}, where φ is a small constant and can be related to the prob-
lem’s difficulty. It models a search process that outputs a random combination
that has fixed validation error φ.

For the above selection rules, we then discuss what kind of combination distribution
is favorable for generalization. Notice that earlier we considered a fixed set of base
learners H, and here we aim at manipulating the set of base learners to change the
distribution, so we explicitly write the combination distribution as P(E = e | H,V ).
Corollary 3 (Distribution that is heavier on the low error region leads to better gen-
eralization). Suppose the combination error distribution P(E = e | H,V ) is unimodal
for any base learner set H and V ∼ Dm2 . For two base learner sets H and H ′, if there
exists a small constant e0 such that e0 ≥ φ and P(E = e0 | H ′, V ) ≥ p0, and for all
e ≤ e0 and P(E = e | H ′, V ) > 0, P(E = e | H,V ) > P(E = e | H ′, V ) holds, then the
generalization error upper bound is lower for H than that for H ′.

4.3 Margin mean and structural diversity make better
combination distribution

Generally speaking, finding a subset of learners with a lower mean of combination
distribution and the same variance will satisfy the condition in Corollary 3. However,
in finding such a favorable subset, there are two challenges. 1) For a combination
distribution, the mean and variance affect each other. If the mean is lower, the variance
tends to decrease because good base learners are more similar. Therefore, we should
maximize the variance while minimizing the mean. 2) Once the validation information
is utilized, the selection bias is introduced, and the combination distribution of the
selected subset will be unchanged. Therefore, in the distribution optimization stage,
we can only use the training set information.

In the bi-objective optimization problem as Eq. (1), the margin mean objective
is for minimizing the distribution mean, and the structural diversity objective is for
maximizing distribution variance. We will then explain in detail.

4.3.1 Margin mean for distribution mean

We first prove that optimizing ETr (ρHz), i.e., the margin mean of a single combination,
is to optimize the average margin mean of all the combinations.
Proposition 4 (Optimizing ensemble margin mean is optimizing all the combina-
tions). Suppose |z| is a constant. Then for binary classification,

argmax
z

ETr (ρHz) = argmax
z

∑
s≼z

ETr (ρHs) .
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According to the margin theory (Gao and Zhou, 2013), a voting classifier will gen-
eralize well if it has a better training margin mean. Therefore, maximizing ETr (ρHz)
will lead to a lower mean of combination distribution. Note that although Proposi-
tion 4 proves only in the case of binary classification, we will show in experiments that
optimizing margin mean is also effective in multi-class classification.

4.3.2 Structural diversity for distribution variance

Intuitively, if the base learners are diverse, there will be a certain number of very
good combinations and very bad combinations. Even though for decades there has
been no clear evidence that one combination with a large diversity must perform
well (Kuncheva and Whitaker, 2003; Didaci et al, 2013), given that we are con-
cerned with the distribution of all the combinations, existing a certain number of good
combinations will suffice.

Most diversity measures only consider behavioral diversity, i.e., how the learners
behave when making predictions (Sun and Zhou, 2018). However, as the learners are
trained on the training data, we expect them to be quite similar in the perspective
of behavioral diversity. On the other hand, the very limited differences in the label-
ing behavior have already been utilized in the margin mean objective. Therefore, we
advocate using structural diversity as the diversity measure Div(Tr,Hz). Note that a
specific design of structural diversity is required for the specific type of base learners.

5 Application to tree-based ensemble pruning

The general DEP framework in Section 3 is applicable to ensembles consisting of any
kind of base learners. In this section, we provide a specific instantiation for tree-based
ensemble pruning. The main consideration is on the design of diversity measure, and
we design a new type of structural diversity for decision tree ensemble called feature
contribution diversity.

5.1 Feature contribution diversity

Table 1 compares the discrimination ability of existing diversity measures and our
feature contribution diversity. In the interpolation regime, each tree can classify all
the training samples perfectly. In this regime, behavioral diversity cannot work. In the
non-interpolation regime, behavioral diversity measures are applicable, but much less
effective than those calculated on an independent validation set. Therefore, structural
diversity is needed. However, existing structural diversity based on tree matching
distance can only differentiate trees with different splitting features (Sun and Zhou,
2018). In contrast, our proposed feature contribution diversity is able to differentiate
two trees in all the regimes.

Feature contribution has been proposed as an explaining tool of trees and
forests (Palczewska et al, 2013; Saabas, 2014). It also has its application in debiased
MDI feature importance (Li et al, 2019). Before introducing our definition of feature
contribution diversity, we briefly show that the prediction of a tree h on x can be
represented using the changes in label mean through each node on the decision path.
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Table 1: Comparison between our feature contribution diversity and existing diversity
measures. ‘

√
’ indicates the corresponding diversity measure is able to distinguish two

trees under the given regime, while ‘×’ indicates unable.

Interpolation regime Non-interpolation regime

Different tree
structure

Same tree
structure

Same splitting features
Different splitting points

Different tree
structures

Behavior
diversity

Kappa (Margineantu and Diet-
terich, 1997; Mart́ınez-Muñoz
et al, 2008)

×
√ √ √

Disagreement (Li et al, 2012) ×
√ √ √

Complementarity (Mart́ınez-
Muñoz and Suárez, 2004)

×
√ √ √

Structural
diversity

Tree matching distance (Sun
and Zhou, 2018)

√
× ×

√

Feature contribution (ours)
√ √ √ √

Suppose x goes through nodes t0, t1, . . . , tl, where t0 is the root node and tl is the leaf
node. Then

h(x) = u(t0) +
∑

0<i≤l

∆u(ti) , (5)

where ∆u(ti) = u(ti)− u(ti−1), u(ti) is the label mean of training samples in node ti.
In the root node, u(t0) is the label mean of the whole tree’s training data.

The feature contribution vector defined below is able to characterize the prediction
of a sample with the tree structure information encoded.
Definition 5 (Feature contribution vector). Let s(t) denote the splitting feature of
node t. LetK denote the number of features. Then ∀(x, y), the prediction made by tree
h can be represented using a feature contribution vector [fh,0(x), fh,1(x), . . . , fh,K(x)],
where

fh,0(x) = u(t0)[y] ; fh,k(x) =
∑

0<i≤l:s(ti−1)=k

∆u(ti)[y] , 1 ≤ k ≤ K . (6)

Note that fh,·(x), u(t0) and ∆u(ti) are originally |Y|-dimensional vectors, and we
use the ground truth label y to turn them into scalers. fh,0(x) is introduced because
different trees may use different training samples according to the data manipulation
scheme. Figure 2 shows an example of the decision path and the feature contribution
vector. We can see that so long as there is a difference in the label mean of any node,
the feature contribution vector will exhibit the difference. We use the variation of the
feature contribution vectors to characterize the diversity of a set of trees.
Definition 6 (Feature contribution diversity). The feature contribution diversity with
respect to a set of trees H on data set S is

Div(S,H) ≜
1

(K + 1)|S|

K∑
k=0

∑
x∈S

√∑
h∈H(fh,k(x)− f̄k(x))2

|H| − 1
, (7)

where f̄k(x) =
1

|H|
∑

h∈H fh,k(x).
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Fig. 2: An example of the feature contribution vector. It is a binary classification
problem (Y = {0, 1}), hence the label mean vector u(ti) has two dimensions. For each
tree, the decision path of a sample with label y = 1 is marked in red. Even though
the splitting features of each node and the predictions in leaf nodes are the same, the
feature contribution vectors reveal the differences.

To speed up the calculation, we can calculate the feature contribution diversity on
a subset of Tr instead of the whole training set.

6 Experiments

6.1 Experimental setup

Compared methods. We compare DEP to seven state-of-the-art ensemble pruning
methods, including four ordering-based methods and three evolutionary optimization-
based methods:

• Kappa (Margineantu and Dietterich, 1997; Mart́ınez-Muñoz et al, 2008): An
ordering-based method that considers κ statistic and validation error.

• CP (Mart́ınez-Muñoz and Suárez, 2004): An ordering-based method that consid-
ers complementariness and validation error.

• DREP (Li et al, 2012): An ordering-based method that considers disagreement
and validation error.

• MD (Mart́ınez-Muñoz and Suárez, 2004): An ordering-based method that con-
siders margin distance.

• EA (Zhou and Tang, 2003): A single-objective evolutionary algorithm that
minimizes the validation error only.

• PEP (Qian et al, 2015): A bi-objective evolutionary algorithm that minimizes the
validation error and ensemble size simultaneously.

• MDEP (Wu et al, 2022): A three-objective evolutionary algorithm that optimizes
the validation error, margin distribution, and ensemble size.

The compared methods also include a baseline “All” that uses all the base learners.
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Configurations. Each dataset is evenly and randomly partitioned into training,
validation, and test sets, and this partitioning process is repeated 30 times indepen-
dently. For each partition, 100 base learners (decision trees) are trained on the training
set, and the hyperparameters of each base learner are randomly chosen from the
predefined hyperparameter set: sampling rate in {1.0, 0.8, 0.6, 0.4}, number of candi-
date features in each node in {all, sqrt, 1}, leaf size in {1, 5, 20, 50}, splitting rule in
{best, random}. Each pruning method is performed on each partition and the average
and standard deviation of performance are reported. The hyperparameter ρ of DREP
is selected from {0.2, 0.25, . . . , 1.0} on the validation set, and the hyperparameter p
of MD is set to 0.075. The total number of fitness evaluations used by EA, PEP, and
MDEP is set to 50, 000, with a population size of 100 and 500 generations. For DEP
(and variants), the distribution optimization and the validation-error-based pruning
each take 25, 000 evaluations, which means the total number of evaluations is the same
as EA, PEP, and MDEP.

Datasets. We conduct experiments on 20 binary and 10 multi-class classification
data sets from the UCI repository (Dua and Graff, 2017). Several binary classification
datasets are derived from multi-class datasets as in previous works (Qian et al, 2015;
Wu et al, 2022): letter-ah is based on letter data set and classifies ‘a’ against ‘h’, as do
letter-br and letter-oq ; optdigits classifies ‘01234’ against ‘56789’; satimage-12v57 is
based on satimage and classifies labels ‘1’ and ‘2’ against ‘5’ and ‘7’, as does satimage-
2v5 ; vehicle-bo-vs is based on the vehicle data set and classifies ‘bus’ and ‘opel’ against
‘van’ and ‘saab’, as does vehicle-b-v.

6.2 Effectiveness of optimizing combination distribution
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Fig. 3: Validation error distribution of
10000 random combinations from four
sets of base learners chosen by different
strategies.

We first show that optimizing margin
mean and structural diversity brings
about better combination distribution.
We compare the validation error distribu-
tion of 10000 random combinations from
four sets of base learners. The four sets
are generated by choosing 50 with dif-
ferent strategies out of 100 decision trees
trained on the 6-dim 2-class Gaussian
quantile dataset (Hastie et al, 2009). The
four strategies are 1) Random: randomly
chosen 50 base learners. 2) Margin: single-
objective evolutionary optimization of
ETr (ρHz). 3) Diversity: single-objective
evolutionary optimization of Div(V,Hz).
4) 2-obj: bi-objective optimization of margin and feature contribution diversity, respec-
tively. As we can see in Figure 3, 2-obj achieves the best combination error distribution,
with the largest probability density in the low error region compared to the other
three strategies. Margin and Diversity that optimize MeanTr (ρHz) and Div(V,Hz)
respectively are only slightly better than random choice.
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(a) Ablation studies.

1 2 3 4 5 6

DEP
MDEP

PEP DREP
Kappa
CP

CD

(b) DEP compared to SOTA methods.

Fig. 4: Friedman-Nemenyi test at significance level 0.1. If two algorithms are con-
nected by a CD (critical difference) line, then there is no significant difference between
them. (a) Friedman-Nemenyi test for DEP and variants that use other strategies in
the distribution optimization stage, and All. (b) Friedman-Nemenyi test for the six
top-ranked methods in Tabel 2.

We then show that better combination distribution leads to better ensemble prun-
ing performance. We compare DEP with the aforementioned variants that use other
strategies in the distribution optimization stage as the ablation study. The variants
are named DEPrandom, DEPmargin and DEPdiv, respectively. Figure 4a shows the
Friedman-Nemenyi test (Demšar, 2006) of the ablation study on 20 binary data sets.
It can be observed that DEP achieves the best average rank while DEPrandom gets
the worst. This experimental result confirms our theoretical analysis that optimizing
combination distribution through margin mean and structural diversity will benefit
the generalization performance.

6.3 DEP vs. state-of-the-art pruning methods

Table 2 compares DEP to other state-of-the-art methods. We can see that DEP has
the best average rank among all the eight methods. And it is significantly better
than Kappa, CP, DREP, MD, EA, and All on most data sets by the Wilcoxon rank-
sum test (Wilcoxon, 1945) with confidence level 0.1. We then conduct the Friedman-
Nemenyi test for the six top-ranked methods as shown in Figure 4b. We can observe
that DEP has a significant advantage in generalization performance over the others.

We can also observe that MDEP and PEP are two highly competitive methods.
According to Theorem 2, the generalization bound is decided by the validation error
and the generalization gap (which is determined by the combination distribution).
Although MDEP and PEP do not optimize combination distribution, they are able
to find solutions with a better validation error, therefore they can achieve good test
performance as well. DEP optimizes combination distribution, but on the other hand,
it limits the search space of the validation-error-based pruning. Note that although
DEP is not significantly better than MDEP and PEP on every data set in Table 2, it
can be seen from Figure 4b that DEP is significantly better than MDEP and PEP on
average ranking by the Friedman-Nemenyi test, which demonstrates the effectiveness
of our optimization of combination distribution.
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Table 2: Test error (mean±std.) of the compared methods on 20 binary data sets. An
entry is marked with a bullet ‘•’ (or circle ‘◦’) if DEP is significantly better (or worse)
than the corresponding method based on the Wilcoxon rank-sum test with confidence
level 0.1. For each data set, the entry with the lowest average error is bolded. The
average ensemble size of each method is summarized in the last row.

Dataset DEP Kappa CP DREP MD EA PEP MDEP All
australian .132±.016 .141±.017• .141±.017• .135±.018 .139±.020 .136±.017 .136±.015 .138±.014 .135±.015
breast .035±.010 .040±.010• .045±.011• .044±.012• .057±.020• .038±.011• .041±.010• .041±.010• .047±.010•
bupa .319±.033 .337±.041• .324±.052• .328±.042 .339±.044• .331±.037• .318±.041 .328±.040 .392±.024•

diabetes .244±.024 .252±.023• .248±.023 .246±.025 .255±.020• .246±.021 .244±.019 .250±.024 .270±.020•
german .257±.019 .260±.019 .265±.019• .258±.019 .267±.021• .270±.014• .263±.017• .263±.016• .292±.007•

haberman .266±.025 .280±.027• .279±.040 .279±.028• .288±.043• .265±.014 .268±.024 .274±.027 .265±.001
heart-statlog .176±.033 .182±.037 .184±.038 .181±.037 .222±.042• .197±.033• .187±.043 .183±.041 .290±.060•
ionosphere .088±.028 .098±.025• .093±.028 .101±.029• .119±.033• .103±.022• .090±.024 .090±.024 .201±.040•
letter-AH .009±.006 .010±.006 .012±.005• .015±.005• .024±.007• .016±.007• .012±.006• .009±.005 .031±.011•
letter-BR .040±.008 .043±.010• .041±.009 .042±.009 .062±.013• .045±.009• .042±.010 .041±.010 .062±.015•
letter-OQ .035±.009 .043±.012• .039±.010 .041±.008• .063±.017• .044±.010• .039±.010• .039±.007• .060±.016•
optdigits-b .033±.005 .041±.006• .035±.004• .033±.005 .051±.007• .037±.005• .034±.006 .033±.005 .051±.006•
phishing .040±.004 .044±.003• .044±.004• .040±.004 .048±.004• .042±.004• .040±.003 .041±.003 .052±.004•

satimage-12v57 .024±.004 .025±.005 .027±.005• .026±.004• .037±.007• .028±.004• .026±.005• .026±.005• .036±.006•
satimage-25 .024±.008 .024±.008 .024±.009 .026±.008 .034±.009• .026±.010 .025±.008 .024±.007 .035±.009•

sonar .222±.042 .243±.051• .246±.038• .232±.059 .280±.071• .253±.046• .217±.036 .228±.057 .394±.062•
spambase .058±.006 .066±.006• .061±.006• .060±.006 .091±.014• .063±.007• .059±.006 .058±.005 .089±.013•

vehicle-bo-vs .232±.023 .250±.023• .240±.024 .233±.019 .252±.019• .236±.018 .232±.020 .227±.023 .249±.023•
vehicle-b-v .015±.009 .020±.012• .023±.015• .033±.020• .030±.016• .021±.012• .022±.016• .020±.012• .047±.033•

vote .048±.012 .051±.013• .061±.016• .059±.015• .049±.012 .052±.014• .056±.015• .055±.013• .055±.014•
count of the best 13 0 1 0 0 0 3 2 1
average rank 1.50 5.20 5.25 4.60 7.95 5.60 3.80 3.45 7.65

average size 21.4 27.0 16.3 16.1 36.2 43.5 17.2 9.8 100

6.4 Multi-class extension of DEP

We also compare DEP with the state-of-the-art methods on 10 multi-class UCI data
sets. Although the analysis in Proposition 4 only involves binary classification, the
calculation of margin mean and structural diversity in DEP is directly applicable to
multi-class problems. Note that the compared methods Kappa, CP, and DREP are
initially designed for binary classification. To extend them for multi-class classification,
we generalize their “equal” and “unequal” tests to apply to multiple classes. The
detailed results are reported in Table 3. It shows that DEP has the best average rank
(1.60), while the runner-up among the compared methods has an average rank of 2.90.
By the Wilcoxon rank-sum test with confidence level 0.1, DEP is significantly better
than Kappa, CP, DREP, MD, EA, and All on most data sets, and is never significantly
worse compared with any other method, since no ‘◦’ appears in Table 3.

6.5 Further improvement of DEP

In the previous experiments, we have verified that DEP is able to achieve signifi-
cantly better generalization performance. However, it only has a medium ensemble
size. Among the compared methods, we notice that MDEP has the second-best gen-
eralization performance just after DEP while possessing a remarkably small ensemble
size. This can be attributed to its use of a unique objective, the margin ratio (Lyu
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Table 3: Test error (mean±std.) of the compared methods on 10 multi-class data
sets. An entry is marked with a bullet ‘•’ (or circle ‘◦’) if DEP is significantly better
(or worse) than the corresponding method based on the Wilcoxon rank-sum test with
confidence level 0.1. For each data set, the entry with the lowest average error is
bolded. The average ensemble size of each method is summarized in the last row.

Dataset DEP Kappa CP DREP MD EA PEP MDEP All
glass .305±.046 .352±.040• .308±.052 .354±.054• .448±.077• .330±.046• .317±.050 .302±.051 .567±.089•
heart .424±.030 .429±.034 .436±.031• .437±.027• .460±.035• .451±.020• .431±.026• .426±.038 .469±.004•
iris .051±.030 .056±.024 .058±.026 .077±.060• .093±.090• .057±.030 .061±.036 .061±.027 .222±.210•

libras .349±.050 .461±.082• .358±.045 .441±.060• .445±.067• .358±.045 .347±.045 .360±.046 .457±.081•
segment .039±.006 .043±.008• .040±.007• .054±.011• .054±.011• .042±.008• .039±.006 .038±.006 .056±.011•
soybean .092±.018 .143±.025• .100±.020• .143±.087• .209±.066• .101±.017• .095±.018 .096±.017 .284±.058•
vehicle .274±.019 .307±.027• .281±.026• .312±.030• .311±.022• .283±.019• .279±.021 .272±.024 .318±.019•
vowel .171±.028 .260±.035• .169±.027 .261±.034• .261±.041• .181±.027• .176±.029 .167±.022 .274±.040•
wine .038±.025 .058±.028• .066±.032• .129±.051• .165±.129• .060±.034• .058±.027• .068±.029• .389±.157•
zoo .062±.041 .064±.044 .069±.033 .084±.044• .302±.183• .125±.108• .072±.039 .068±.037 .559±.060•

count of the best 5 0 0 0 0 0 1 4 0
average rank 1.60 4.90 3.80 6.90 7.70 5.00 3.30 2.90 8.90

average size 21.4 34.3 13.3 23.1 35.8 39.6 17.4 9.7 100

et al, 2019; Wu et al, 2022)

ρratioV (Hs) =

√
VarV (ρHs)

Mean2V (ρHs)
=

√√√√m2

∑
i ̸=j (ρHs (xi, yi)− ρHs (xj , yj))

2

2(m2 − 1)
(∑m2

i=1 ρHs (xi, yi)
)2 .

To further improve DEP, we may add the margin ratio as another objective aside
from the validation error in the second stage of the DEP algorithm, and name this
variant DEPρ. In Table 4, we compare DEPρ to the original version of DEP, which
has the best test error, and MDEP, which has the second-best test error and the best
ensemble size. We can observe that DEPρ has an even slightly better average rank
in test error than DEP, and there is also a remarkable improvement in ensemble size
than DEP. Compared with the other methods in Table 2, we can conclude that DEPρ

enjoys significantly better test error than other state-of-the-art methods, while having
an ensemble size that is better than all the state-of-the-art methods except for MDEP.

7 Conclusion

In this paper, we propose a margin distribution and structural diversity guided ensem-
ble pruning framework called Decoupled Ensemble Pruning (DEP). It has two stages.
In the first stage, it selects a subset of learners with good margin mean and structural
diversity on the training set. In the second stage, it conducts validation-error-based
ensemble pruning on this subset. Theoretical analysis shows that optimizing margin
mean and structural diversity on the training set benefits the combination distribu-
tion, thus benefiting the validation-error-based ensemble pruning in the second stage.
Experimental results verify the effectiveness of our DEP method. In addition, we
propose feature contribution diversity, a new measure of structural diversity that is
specifically applicable to decision trees, which may be of independent interest for
tree-based ensemble literature.
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Table 4: Test error (mean±std.) of the compared methods on 20 binary data sets. An
entry is marked with a bullet ‘•’ (or circle ‘◦’) if DEPρ is significantly better (or worse)
than the corresponding method based on the Wilcoxon rank-sum test with confidence
level 0.1. For each data set, the entry with the lowest average error is bolded. The
average ensemble size of each method is summarized in the last row.

Dataset DEPρ DEP MDEP
australian 0.134±0.017 0.132±0.016 0.138±0.014
breast 0.036±0.009 0.035±0.010 0.041±0.010•
bupa 0.315±0.040 0.319±0.033 0.328±0.040

diabetes 0.254±0.018 0.244±0.024◦ 0.250±0.024
german 0.261±0.016 0.257±0.019 0.263±0.016

haberman 0.279±0.024 0.266±0.025◦ 0.274±0.027
heart-statlog 0.175±0.038 0.176±0.033 0.183±0.041
ionosphere 0.080±0.024 0.088±0.028 0.090±0.024•
letter-AH 0.008±0.003 0.009±0.006 0.009±0.005
letter-BR 0.036±0.008 0.040±0.008• 0.041±0.010•
letter-OQ 0.035±0.007 0.035±0.009 0.039±0.007•
optdigits-b 0.031±0.005 0.033±0.005 0.033±0.005
phishing 0.040±0.003 0.040±0.004 0.041±0.003

satimage-12v57 0.025±0.004 0.024±0.004 0.026±0.005
satimage-25 0.023±0.007 0.024±0.008 0.024±0.007

sonar 0.220±0.038 0.222±0.042 0.228±0.057
spambase 0.058±0.006 0.058±0.006 0.058±0.005

vehicle-bo-vs 0.226±0.019 0.232±0.023 0.227±0.023
vehicle-b-v 0.014±0.011 0.015±0.009 0.020±0.012•

vote 0.049±0.014 0.048±0.012 0.055±0.013•
count of the best 11 8 1
average rank 1.55 1.70 2.75

average size 13.3 21.4 9.8

Recently there is a proposal called “Learnware” which advocates exploiting all
kinds of trained machine learning models, submitted by developers all over the world
to a learnware market, to enable future users not to build their own machine learning
application from scratch, without disclosing the data of developers and users (Zhou,
2016). The key is a carefully designed Learnware specification which enables the
identification and reassembly of helpful models without data disclosure. Ensemble
mechanisms are very useful in reassembling the identified models to tackle users’ tasks,
even for tasks never considered by developers of the original models (Zhou and Tan,
2023). It can be expected that better ensemble pruning methods can help build better
learnwares consisting of fewer models.

Acknowledgments. This research was supported by the National Science Founda-
tion of China (62250069, 62022039).

Declarations

• Funding: This work is funded by the National Science Foundation of China
(62250069, 62022039).

16



• Conflict of interest/Competing interests: The authors declare that they have no
conflict of interest.

• Ethics approval: Not applicable.
• Consent to participate: Not applicable.
• Consent for publication: Not applicable.
• Availability of data and materials: The data used in our experiments are all public.
• Code availability: The code will be provided after the paper is accepted.
• Authors’ contributions: Yi-Xiao He conceived and developed the procedure and
wrote the manuscript. Yu-Chang Wu performed the experiments. Zhi-Hua Zhou
and Chao Qian conceived the study and were in charge of overall direction
and planning. All authors discussed the results and contributed to the final
manuscript. All authors approved the final version of the manuscript.

Appendix A Omitted proofs

A.1 Proof of Theorem 2

Proof. Since g(f(x), y) = 1[f(x)̸=y], then ∀s ∈ {0, 1}n, g(hs(x), y)−E(x,y)∼Dg(hs(x), y)
is 1/2-sub-Gaussian with respect to (x, y) ∈ D. Then, ϕi−µi is 1/2

√
m2-sub-Gaussian

for each i ∈ {1, . . . , 2n}. Then according to Russo and Zou (2019), we have∣∣∣∣∣ E
V ∼D,

T∼P (T |V )

[ϕT − µT ]

∣∣∣∣∣ ≤
√

I(T ;ϕ)
2m2

.

We have assumed s(T ) is selected based on the validation performance ϕ. However,
there might be more than one solution that has the same validation error as ϕT . In fact,
these solutions have an equal probability to be chosen, since they are indistinguishable
in terms of the validation error. The exact number of these indistinguishable solutions

is
∑2n

i=1 1[ϕi=ϕT ]. Therefore, the conditional entropy

H(T | ϕ) = log2

2n∑
i=1

1[ϕi=ϕT ] .

It follows that

I(T ;ϕ) = H(T )−H(T | ϕ)

= log2 2
n − E

V ∼Dm2 ,
T∼P(T |V )

log2

2n∑
i=1

1[ϕi=ϕT ]

= − E
V ∼Dm2 ,
T∼P(T |V )

log2

∑2n

i=1 1[ϕi=ϕT ]

2n
.

Consequently, we have Eq. (3).

17



A.2 Proof of Corollary 3

Proof. For selection rule (a), we have that for any H, V and the corresponding ϕ and
µ,

E
V ∼Dm2 ,
T∼P(T |V )

µT ≤ E
V ∼Dm2 ,
T∼P(T |V )

ϕT +

√
− E

V∼Dm2
log2 p0

2m2
.

As P(E = e | H,V ) is unimodal, e0 is a small constant that it must be on the left
side of the modal, therefore for e < e0, P(E = e) is monotonically increasing. As
P(E = e0 | H ′, V ) ≥ p0, the solution found by selection rule (a) is no larger than e0.
Since P(E = e | H,V ) > P(E = e | H ′, V ), according to selection rule (a), we have
ϕT < ϕ′

T . Therefore, the upper bound for H is lower than that for H ′.
For selection rule (b), ϕT = ϕ′

T = φ. As φ ≤ e0, then P(E = φ|H,V ) > P(E =
φ|H ′, V ). Therefore, according to Eq. (3), the upper bound for H is lower.

A.3 Proof of Proposition 4

Proof. For binary classification,

ρHs (xi, yi) =
1

|s|

 ∑
t:ht(xi)=yi

st − argmax
j ̸=yi

∑
t:ht(xi)=j

st

 .

Therefore,

ETr (ρHz) =
1

m1

m1∑
i=1

ρHz (xi, yi)

=
1

m1

m1∑
i=1

1

|z|

 ∑
t:yi=ht(xi)

zt −
∑

t:yi ̸=ht(xi)

zt


=

1

m1|z|

m1∑
i=1

n∑
t=1

zt ·
(
1[yi=ht] − 1[yi ̸=ht]

)
.

Meanwhile, according to Definition 1,

∑
s≼z

ETr (ρHs) =
∑
s≼z

1

m1

m1∑
i=1

ρHs (xi, yi)

=
∑
s≼z

1

m1

m1∑
i=1

1

|s|

 ∑
t:yi=ht(xi)

st −
∑

t:yi ̸=ht(xi)

st


=

1

m1

m1∑
i=1

∑
s≼z

1

|s|

 ∑
t:yi=ht(xi)

st −
∑

t:yi ̸=ht(xi)

st


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=
1

m1

m1∑
i=1

∑
s≼z

1

|s|

n∑
t=1

st ·
(
1[yi=ht] − 1[yi ̸=ht]

)

=
1

m1

m1∑
i=1

 ∑
s:s≼z,|s|=1

n∑
t=1

(
1[yi=ht] − 1[yi ̸=ht]

)
+

∑
s:s≼z,|s|=2

1

2

n∑
t=1

C1
|z|−1

(
1[yi=ht] − 1[yi ̸=ht]

)
+

∑
s:s≼z,|s|=3

1

3

n∑
t=1

C2
|z|−1

(
1[yi=ht] − 1[yi ̸=ht]

)
+ . . .

+
∑

s:s≼z,|s|=|z|−1

1

|z| − 1

n∑
t=1

C
|z|−2
|z|−1

(
1[yi=ht] − 1[yi ̸=ht]

)

+
∑

s:s≼z,|s|=|z|

1

|z|

n∑
t=1

C
|z|−1
|z|−1

(
1[yi=ht] − 1[yi ̸=ht]

)
=

1

m1

1 · C0
|z|−1 +

C1
|z|−1

2
+

C2
|z|−1

3
+ · · ·+

C
|z|−2
|z|−1

|z| − 1
+

C
|z|−1
|z|−1

|z|

 m1∑
i=1

n∑
t=1

(
1[yi=ht] − 1[yi ̸=ht]

)
.

As |z| is fixed to be a constant, then

c = |z|

1 · C0
|z|−1 +

C1
|z|−1

2
+

C2
|z|−1

3
+ · · ·+

C
|z|−2
|z|−1

|z| − 1
+

C
|z|−1
|z|−1

|z|


is a constant. Therefore we have

ETr (ρHz) =
1

c

∑
s≼z

ETr (ρHs) .

Then it follows

argmax
z

ETr (ρHz) = argmax
z

∑
s≼z

ETr (ρHs) .
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