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Deep forest is a non-diferentiable deep model that has achieved impressive empirical success across a wide variety of

applications, especially on categorical/symbolic or mixed modeling tasks. Many of the application ields prefer explainable

models, such as random forests with feature contributions that can provide a local explanation for each prediction, and

Mean Decrease Impurity (MDI) that can provide global feature importance. However, deep forest, as a cascade of random

forests, possesses interpretability only at the irst layer. From the second layer on, many of the tree splits occur on the new

features generated by the previous layer, which makes existing explaining tools for random forests inapplicable. To disclose

the impact of the original features in the deep layers, we design a calculation method with an estimation step followed by a

calibration step for each layer, and propose our feature contribution and MDI feature importance calculation tools for deep

forest. Experimental results on both simulated data and real-world data verify the efectiveness of our methods.

CCS Concepts: ·Computingmethodologies→ Supervised learning;Ensemblemethods;Classiication and regression

trees.

Additional Key Words and Phrases: deep forest, feature importance, interpretability

1 INTRODUCTION

By suggesting that the key to deep learning may lie in the layer-by-layer processing, in-model feature transformation

and suicient model complexity, Zhou and Feng [42] propose the irst deep forest model and the gcForest algorithm,
which are realized by non-diferentiable modules without backward-propagation in training. It consists of a
cascade forest structure, each layer contains multiple random forests. The predictive probability vectors output by
the forests are concatenated with the original features, then serve as the input to the next layer [43]. Beneiting
from the feature transformation in the cascade structure, deep forests (DFs) outperform various classical tree-
based algorithms, e.g., classiication and regression tree [7, CART], AdaBoost [28], random forest [6, RF], gradient
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(a) The cascade forest structure of deep forests. The colors black and blue

indicate diferent types of random forests. The vectors in gray color are the

new features generated by individual forests, being input to the next layer.
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(b) A typical MDI feature importance result of the second and

above layers. �new is the sum of MDI of new features. The

new features tend to have dominating importance.

Fig. 1. The new features play an important role in deep forests but are hard to interpret.

boost decision tree [12, GBDT], extremely random forest [13, ERF] and XGBoost [8] in empirical study. In recent
years, deep forests have been widely extended to various real-world applications [5, 33, 39] and learning tasks
[34ś37]. There are also variants aiming at improving performance and reducing computational and memory cost
[9, 21, 26, 40].
Deep forest [42] is a non-diferentiable deep model built with decision tree ensembles. Its main structure is

a cascade forest. As illustrated in Figure 1(a), the model is built of multiple layers of random forests, where
diferent colors indicate diferent types of forests. For a �-class classiication problem, a forest outputs a �-dim
probability vector. For regression problems, each forest outputs a scalar prediction. The outputs of all the forests
in the same layer are concatenated to serve as the augment features (in gray), which are further concatenated
together with the original features (in red) to be input to the next layer. We refer to this operation as feature
concatenation. Feature concatenation is an important component of deep forest model, and has been proven to lead
to a faster convergence rate than random forest [19]. The total number of layers is automatically determined by
the validation accuracy. With layer-by-layer processing, the predictive performance can be improved accordingly.

In many applications of prediction models, such as fraud detection [3], disease classiication [2, 38], we not only
need a high-accuracymodel, but also hope to understand how does themodel make predictions. For random forests,
there already exists explaining tools, such as Mean Decrease Impurity [10, MDI] and feature contribution [16, 24].
However, when it comes to deep forest, the feature concatenation operation causes diiculties in interpreting
deep forest. While the new features are used together with the original features, empirical results and theoretical
analyses [1, 18, 19] show that the new features dominate the splits in random forests in the second and following
layers. Figure 1(b) provides an example. We can observe that �new plays a dominating role according to the MDI
feature importance, but we don’t know how it is related to the original features.
To tackle this issue, we exploit the fact that the new features are the predictions from the preceding layer,

which is the key to our analysis and method design. We develop a two-step estimation-then-calibration process to
enable feature contribution and feature importance calculation for deep forests. The estimation step associates the
contributions of the new features with the contributions of the original features at the preceding layer through
the prediction of speciic training samples in the splitting nodes. The calibration step ensures that our proposed
method yields proper feature contribution and feature importance. Our main contributions are summarized as
follows.
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• We propose a feature contribution calculation method for deep forest, enabling us to explain its predictions
for each instance, i.e., whether the considered feature enlarges or reduces the predicted value for the
considered class, and by how much.
• We propose an MDI feature importance calculation method for deep forest, enabling us to tell the overall
impact of each feature in building the whole model.
• We analyze the properties that feature contribution and feature importance should have to ensure that our
designed methods are proper feature contribution and feature importance.
• Experimental results show that our proposed tools faithfully relect the inluence of each feature on deep
forest prediction for both regression and classiication problems. Furthermore, since deep forest is more
powerful than random forest, our MDI feature importance also exhibits better estimation quality.

The rest of this paper is organized as follows. Section 2 introduces related work. Section 3 briely describes
feature contribution and MDI feature importance for random forests, and discusses the properties they should
have. Section 4 and Section 5 present our proposed explaining tools. Section 6 reports the experimental results
and Section 7 concludes the paper.

2 RELATED WORK

Since Zhou and Feng [42] proposed the irst deep forest model, there are mainly three lines of work to study
it. A line of work establishes a screening framework to reduce computational cost and memory requirement
for deep forest, including conidence screening [25], feature screening [26], hash-based method [21, 40] and
stability-based method [9]. The second line of work extends deep forest algorithms to diferent learning tasks
and real applications, such as multi-label problems [37], weak-label learning [36], metric learning tasks [34, 35],
and inancial anti-fraud system [39]. The third line of work is the theoretical analysis of deep forests. Both its
generalization performance [18, 20] and consistency [1, 19] have been analyzed. Recently, explainable Artiicial
Intelligence has attracted attention [2]. However, very little work has been done to help users understand the
predictions made by deep forest models.

Its component, random forest, has been extensively studied for interpretation. In this paper, we care about two
types of model interpretation. 1) Characterizing the overall importance of each feature. There are two widely
used measures, the Mean Decrease Impurity [10, MDI] and the Mean Decrease Accuracy [6, MDA]. MDI sums
up the total reduction of splitting criterion caused by each feature. It is known to favor features with many
categories [22, 31] and may lead to systematic bias in feature selection by incorrectly assigning high importance
to irrelevant features [17, 23, 32, 41]. On the other hand, MDA measures the importance of a feature by the
reduction in the accuracy after randomly permuting the sample values of a given feature. Diferent permuting
choices have been studied by Janitza et al. [14], Strobl et al. [30]. MDA is applicable to any black-box model.
However, it relies on the model’s accuracy and has to be calculated by repeated prediction, while MDI is an
intrinsic measure for random forest and can be directly obtained once the training is inished. 2) Interpreting
every single prediction of random forest through each feature’s contribution to the prediction. Palczewska et al.
[24] and Saabas [27] proposed feature contribution, recording the change in average response from parent to
child node as the contribution of a splitting feature. Note that with the help of feature contribution, a debiased
MDI estimate can be obtained [17]. It functions well even when there are a large number of irrelevant features
and severe noise that MDA fails because of poor accuracy.

In this paper, we aim to show the impact of input features in the deep forest model through feature contribution
and MDI feature importance that are speciically designed for deep forests. Although we can directly apply
existing feature contribution and MDI calculation to the forests in each layer, the impact of the transformed
features is less helpful in interpreting deep forests. Therefore, a method that can relate the new features to the
original features needs to be designed. Recently, Kim et al. [15] simpliied a lightweight multilayered random
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forest model by selecting the most important paths in the component forests. Although this simpliication can
be applied to deep forests, this study did not provide an analysis of feature contribution when new features are
concatenated with original features.

3 FEATURE CONTRIBUTION AND MDI FEATURE IMPORTANCE

Weirst briely describe feature contribution andMDI feature importance for random forests, and their relationship.
Then we analyze the properties that feature contribution and feature importance should have, which will serve
as guidance for developing our interpretation tools for deep forests. The key symbols and notations used in this
paper are listed in Table 1.

Subject Sign Description

Setting

D The training data.
� The total number of training instances.
� The number of features.
� The number of classes.
(�, �) A sample � and its ground-truth label �.

Tree
&

Forest

� A tree node.
� The depth of a leaf node.

� (� ) All the internal nodes in tree � .
�(�) The number of training instances in node � .
� (�) The splitting feature of an internal node � .
ΔI (�) The decrease of impurity by splitting node � .
�0 The average response of training data.
� (�) The average response of the training data in node � .
Δ� (�� ) The change in average response of node �� and its parent node ��−1.
�� (�) The prediction of forest � on � .
��,� (�) The amount that feature � contributes to � ’s prediction value on � .

MDI(�, � ) The MDI feature importance of feature � in forest � .

Deep
Forest

�̂ (�) The average predictive value by the preceding layer of the training data in node � , which can
be viewed as average response estimated by the preceding layer’s prediction.

Δ�̂ (�� ) The change in average response of node �� and its parent node ��−1 estimated by the preceding
layer’s prediction.

Δ�̂ (�� , �) Estimated average response change caused by feature � .
Δ�̃ (�� , �) The calibrated average predictive response change caused by feature � .
� ′ A new feature generated by the preceding layer’s prediction.
� ′ The number of new features in the second and above layers.

� The calibration function that maps the estimated feature contribution (Δ�̂ (�� , �))
�
�=1 to the

calibrated feature contribution (Δ�̃ (�� , �))
�
�=1.

�̃� ′,� (�) The calculated contribution of the original feature � for the second layer forest � ′.
�� (�) The prediction of � from the last layer of deep forest.

�̃�,� (�) The calculated contribution of feature � in the last layer of deep forest.

M̂DI(�, �� ) The estimated MDI feature importance of feature � in DF.

Table 1. Key symbols and notations.
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Regression Classification�ଵ�ଶ �ଵ
+5

+1

-2

� � = �ሺ�ሻ + 5 − ʹ + ͳ

�ଵ�ଶ �ଵ
[0.3,-0.3]

[0.1,-0.1]

[-0.1,0.1]

� � = �ሺ�ሻ + Ͳ.͵, −Ͳ.͵+ −Ͳ.ͳ,Ͳ.ͳ + [Ͳ.ͳ, −Ͳ.ͳ]
Fig. 2. The contribution of each split to the prediction of an instance � . Color blue or green corresponds to the change of
average response by spliting on �1 or �2. Positive and negative values indicate the split enlarges or decreases the predictive
value or the probability for the corresponding class.

3.1 Feature Contribution

Feature contribution is applicable to every single prediction. It enables us to decompose the prediction into the
sum of contributions from each feature [24].

For Decision Trees. The prediction of an instance � is the average of the training instances in the leaf node
it falls in. Let � denote the depth of the leaf node that � falls in. Along the decision path to the leaf node, as �
goes through node �0, �1, . . . , �� , the average response of the training instances changes from node to node. As
demonstrated in Figure 2, the inal prediction can be represented as

�� (�) = � (�0) +
︁
0<�≤�

Δ� (�� ) , (1)

where Δ� (�� ) = � (�� ) − � (��−1). Δ� (�� ) is the change in average response caused by splitting node �� from ��−1.
Note that this calculation is applicable for both regression trees and classiication trees. For regression, �� (�),
� (�0) and Δ� (�� ) are scalars. For classiication, they are �-dimensional vectors, where � denotes the number of
classes. Let � (�) denote the splitting feature of node � . Let � denote the number of input features. If we sum up
the split contributions made by the same feature, the prediction of � can be written as

�� (�) = � (�0) +

�︁

�=1

��,� (�) , (2)

where

��,� (�) =
︁

0<�≤� :� (��−1 )=�

Δ� (�� ) (3)

is the contribution of feature � in the prediction of tree � on � .

For Random Forests. To extend feature contribution from a tree to a forest, we only need to take the average of
the trees in the forest. Assuming each tree has the same distribution of training instances, we use �0 to substitute
� (�0). Therefore,

�� (�) = �0 +

�︁

�=1

��,� (�), (4)
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where

��,� (�) =
1

|� |

︁
� ∈�

��,� (�) (5)

represents the contribution of feature � in forest � ’s prediction.

3.2 Feature Importance

Mean Decrease Impurity [10, MDI] is an intrinsic feature importance measure for random forests. It measures the
overall importance of each feature in building the whole model. For a tree � , its MDI is calculated by summing
the impurity decrease in each internal node weighted by the fraction of training data in the node. Let � denote
the number of training instances, � (� ) denote all the internal nodes in tree � , �(�) denote the number of training
instances falling in node � . The feature importance of feature � in tree � is calculated as

MDI(�,� ) =
︁

� ∈� (� ),� (� )=�

�(�)

�
ΔI (�) , (6)

where the decrease impurity of any node � is deined as

ΔI (�) ≜ Impurity(�) −
�

(
� left

)
�(�)

Impurity
(
� left

)
−
�

(
� right

)
�(�)

Impurity
(
� right

)
, (7)

and the impurity of any node � is deined as

Impurity(�) ≜
1

�(�)

︁
�:x� ∈�

(�� − � (�))
2 . (8)

Here � left and � right are two child nodes of node � , � (�) is the average response of training instances in node � . Note
that the above expressions assume using the sample variance of labels as the impurity measure for regression
problems. For classiication problems, Li et al. [17] disclose that using the one-hot encoding of the categorical
responses, i.e., substituting � and � (�) with vectors, the impurity expression in Eq. (8) is equivalent to Gini index,
a popular impurity measure for classiication.

Since the forest is an average of all the individual trees, the feature importance of feature � in forest � is also
the average

MDI(�, � ) =
1

|� |

︁
� ∈�

MDI(�,� ) . (9)

3.3 Relationship Between Feature Contribution and Feature Importance

Recently, Li et al. [17] disclosed that the original expression of MDI as Eq. (6) can be written as

MDI(�,� ) =
1

|D|

︁
�∈D

��,� (�� ) · �� = Cov
(
��,� (�� ) , ��

)
. (10)

Here D is the dataset we use for computing MDI feature importance. If D is the same as the training set, then
Eq. (10) yields the same result as the original MDI expression. Li et al. [17] claim that using out-of-bag data to
calculate Eq. (10) can achieve an unbiased result.

Equation (10) ofers a new way of computing MDI feature importance in a decision tree � , i.e., the covariance
of feature contribution ��,� (�) and label �. Before, we could only compute MDI by summing the decrease of
impurity at each node. Equation (10) enables us to compute feature importance by summing over instances,
decoupling the computation of feature contribution from the tree training process.
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For a forest � , suppose we use the same datasetD to calculate MDI for every tree in it, its MDI can be calculated
as

MDI(�, � ) =
1

|� |

︁
� ∈�

MDI(�,� ) =
1

|D|

︁
�∈D

�� ��,� (�� ) . (11)

In Section 4, we will extend the calculation of feature contribution to deep forest, then in Section 5 we derive
the calculation of MDI feature importance of deep forest using their relationships.

3.4 Properties of Feature Importance and Feature Contribution

3.4.1 Properties of Feature Contribution. The term feature contribution means decomposing the prediction on a
single instance into a sum of contributions from each feature. A proper feature contribution should satisfy the
following properties,

• Feature contribution is deined for each single prediction.
• In regression problems, feature contribution is a �-dimensional vector, whose element �� (�) denotes the
contribution of feature � in the inal prediction. In classiication problems, feature contribution is a matrix
of shape (�,�), its element ��,� (�) denoting the contribution of feature � in the predictive probability of
class � .
• The elements of feature contribution can be positive, negative, or zero.
• Given an instance � , the sum of bias and feature contribution equals the prediction. That is, for regression,

� (�) = �0 +

�︁

�=1

�� (�) . (12)

For classiication,

� (�)� = �0,� +

�︁

�=1

��,� (�), 1 ≤ � ≤ � . (13)

3.4.2 Properties of Feature Importance. The term feature importance means the overall impact of each feature in
building the whole model. A proper feature importance measure should have the following properties,

• Feature importance is deined over a whole dataset, with labels available.
• Feature importance is a �-dimensional vector, for both regression and classiication.
• The elements of feature importance are non-negative.
• The sum of feature importance is no larger than the total response variance of the dataset. For regression,
the total response variance is 1

�

∑
� (�� − �0)

2. For classiication, the total response variance is deined to be
1
�

∑
�

∑
1≤�≤� (��,� − �0,� )

2.

Note that here we use variance-based deinitions for feature importance. We can easily scale the feature
importance to sum to 1 by normalizing with the total response variance.

4 FEATURE CONTRIBUTION FOR DEEP FOREST

We propose a feature contribution calculation method for deep forests, which breaks down the predictions of
the cascade forest structure into the contributions of the original features. With the feature contribution result,
utilizing the relationship introduced in Section 3.3, we will easily acquire the MDI feature importance in Section 5.
Our proposed feature contribution for deep forest has a layer-by-layer calculation procedure. The output of the
irst layer of forest can be directly disassembled to the contributions of the original features. From the second
layer, we trace the contribution of the new feature back to the contribution of the original feature through the
output of the previous layer. This process can be repeated until the inal layer.
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For forests in the second layer of a deep forest (so do forests in the following layers), splits often occur on new
features. Let Δ� (�� ) denote the change in average response from node ��−1 to �� ,

Δ� (�� ) =� (�� ) − � (��−1) =
1

�(�� )

︁
� :� � ∈��

� � −
1

�(��−1)

︁
� :� � ∈��−1

� � . (14)

If node ��−1 splits on a new feature, then Δ� (�� ) represents the contribution of the new feature. But what we
want to know is the contribution of the original features. To uncover their connection, we propose a feature
contribution calculation method for deep forests with an estimation step followed by a calibration step.

4.1 The Estimation Step

The key to analyzing the contribution of a new feature is the fact that the new feature happens to be the predicted
value output by a forest in the preceding layer. We propose to use the predicted value to estimate the average
response. This estimation is applicable because generally, we observe that as � increases, the predicted value
of a forest approximates the ground truth label, as consistency of random forests [29] and completely random
forests [4] have been proved under diferent mild assumptions.

Since the predicted value by a irst-layer forest can be represented as the contribution of the original features
(Section 3.1), once the average response is replaced by the predicted value, we can build the connection between
the contributions of the new feature and the original features.
Suppose the node �� in a second-layer tree � ′ uses a new feature � ′ to split, where � ′ is the output by the

irst-layer forest � . Then

�̂ (�� ) =
1

�(�� )

︁
� :� � ∈��

�� (� � )

=

1

�(�� )

︁
� :� � ∈��

(
�0 +

�︁

�=1

��,� (� � )

)

= �0 +
1

�(�� )

︁
� :� � ∈��

(
�︁

�=1

��,� (� � )

)
. (15)

According to Eq. (15), the estimation of average response using �� (�) is decomposed to the contribution of
original features ��,� (�), � = 1, . . . , � . Then the estimated response change from splitting cell ��−1 into �� is

Δ�̂ (�� ) =
1

�(�� )

︁
� :� � ∈��

(
�︁

�=1

��,� (� � )

)
−

1

�(��−1)

︁
� :� � ∈��−1

(
�︁

�=1

��,� (� � )

)
. (16)

Let

Δ�̂ (�� , �) =
1

�(�� )

︁
� :� � ∈��

��,� (� � ) −
1

�(��−1)

︁
� :� � ∈��−1

��,� (� � ) (17)

denote the contribution of feature � in the estimated change of average response, then

Δ�̂ (�� ) =

�︁

�=1

Δ�̂ (�� , �) . (18)

In this way, we attribute the estimated response change caused by splitting node �� using feature � ′ to the
contribution of original features.
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4.2 The Calibration Step

Although the prediction on � by a irst-layer forest �� (�) is close to its label �, there are inevitably errors,
otherwise there is no need for a multi-layer cascade forest structure to improve performance. Therefore, the
estimated response change Δ�̂ (�� ) and the true response change Δ� (�� ) are usually unequal. To avoid the error
propagating layer by layer, we propose a calibration step after the estimation step to ensure the computed feature
contribution satisies the property that the sum of bias and feature contribution equals the prediction as stated in
Section 3.4.

The calibration operation can be expressed as a function

� : (Δ�̂ (�� , 1),Δ�̂ (�� , 2), . . . ,Δ�̂ (�� , �)) → (Δ�̃ (�� , 1),Δ�̃ (�� , 2), . . . ,Δ�̃ (�� , �)) , (19)

such that
�︁

�=1

Δ�̃ (�� , �) = Δ� (�� ) . (20)

Thus the prediction of �� ′ (�) can be interpreted as the following decomposition,

�� ′ (�) = �0 +

�︁

�=1

�̃� ′,� (�) , (21)

where

�̃� ′,� (�) =
︁

� (��−1 )=�

Δ� (�� ) +
︁

� (��−1 )=� ′

Δ�̃ (�� , �) (22)

is the calibrated contribution of the �-th original feature.

Naive multiplicative calibration. A naive instantiation of Eq. (19) is to re-scale the decomposition using a
common scale factor,

Δ�̃ (�� , �) = Δ�̂ (�� , �)
Δ� (�� )

Δ�̂ (�� )
. (23)

Obviously, Eq. (20) holds. However, since the feature contributions can be both positive and negative, the naive
re-scaling might lead to numerical problems.

Naive additive calibration. Using additive calibration can better avoid numerical problems than multiplicative
scaling. The naive modiication is proportional to the absolute value of its estimated contribution,

Δ�̃ (�� , �) = Δ�̂ (�� , �) +
|Δ�̂ (�� , �)) |∑
� |Δ�̂ (�� , �)) |

(Δ� (�� ) − Δ�̂ (�� )) . (24)

However, if the value of Δ� (�� ) − Δ�̂ (�� ) is large, the features whose estimated contribution was negative will be
modiied to be positive, and the more negative it was, the more positive it will be, which is obviously not sensible.

Partial additive calibration. Here we advocate a partial calibration method. We choose a subset of features
according to their signs

� (�� ) = {� : sign(Δ�̂ (�� , �)) = sign(Δ� (�� ))} , (25)

and we only calibrate this subset of features

Δ�̃ (�� , �) = Δ�̂ (�� , �)

(
1 +

Δ� (�� ) − Δ�̂ (�� )∑
�∈� (�� ) Δ�̂ (�� , �))

)
, � ∈ � (�� ) . (26)

It is easy to check that Eq. (20) holds. Therefore, the response change brought by splitting on � ′ has been
decomposed into contributions of the original � features.
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4.3 The Calculation Procedure

Algorithm 1 illustrates the procedure of calculating feature contribution for a tree in deep forest. When traversing
the tree, if the node chooses an original feature to split, we simply add the contribution to this feature. If the
node uses a new feature to split, we trace back the contribution to each of the corresponding original features as
in Eq. (17) and calibrate as in Eq. (19). The calculation is done by recursively calling CalculateContribution and
getting the contributions at all the leaf nodes. To compute feature contribution on a given instance, we simply

ind the leaf node � that � falls in and get �̃� ′,� (�) = ��,� .

Algorithm 1 Calculate feature contribution for a tree

Require: Tree node �
Ensure: CalculateContribution(� )
1: if � is a root node then
2: ��,� ← 0, � = 1, . . . , �
3: end if

4: for each child node �∗ of � do
5: if � (�) ∈ {1, . . . , �} then
6: Calculate Δ� (�∗, � (�)) as in Eq. (14)
7: ��∗,� (� ) ← ��,� (� ) + Δ� (�

∗, � (�))

8: else

9: Calculate (Δ�̃ (�∗, �))��=1 using Eq. (17) and Eq. (19)
10: ��∗,� ← ��,� + Δ�̃ (�

∗, �), � = 1, . . . , �
11: end if

12: if node �∗ is a leaf node then
13: return

(
��∗,�

)�
�=1

14: else

15: CalculateContribution(�∗)
16: end if

17: end for

Based on the analysis of a tree, it is easy to interpret the prediction of a second-layer forest

�� ′ (�) = �0 +

�︁

�=1

�̃� ′,� (�) , (27)

where

�̃� ′,� (�) =
1

|� ′ |

︁
� ′∈� ′

�̃� ′,� (�) . (28)

For the above analysis, we assume � ′ is the individual tree in the second-layer forest � ′. But it is easy to see
that, after the above calculation, we will get the contributions of the � original features �� ′,� (�). Therefore, from
the third layer and beyond, this calculation process can be repeated layer by layer, all the way down to the inal
layer, so that we obtain feature contribution for deep forest predictions.

Usually, each layer in a deep forest contains several forests. The inal prediction is made by taking the average
of all the outputs of the last layer of forests. Let � denote the set containing forests in the last layer, the inal
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prediction � (�) made by deep forest can be interpreted as

�� (�) = �0 +

�︁

�=1

�̃�,� (�), (29)

where

�̃�,� (�) =
1

|� |

︁
� ∈�

�̃�,� (�) (30)

is the contribution of feature � in the last layer of forests, which is also the feature contribution for the whole
deep forest.
Time complexity. As shown in Algorithm 1, we only need to traverse each tree once and do simple computation
concerning the feature contributions of the training instances falling in each node. The depth of a tree is
approximately � (log�). For nodes that have the same depth, all the training instances are processed once.
Therefore, the time complexity of the computation for a tree is � (� log�). Let�1 denote the number of trees in
each layer,�2 denote the maximum number of layers, and the time complexity for computing feature contribution
for deep forests is � (�1�2� log�).

Space complexity. When computing feature contribution for a tree, we need to maintain
[
��,�

]�
�=1

through the

traversal of a tree and store
[
��,�

]�
�=1

for every leaf node. ��,� is a�-dimensional vector for classiication problems
(set � = 1 for regression problems), and the number of leaf nodes is at most �. Therefore, the space complexity is
� (���).

While computing feature contribution for a forest, we only need to keep the average of tree contributions on
the training instances instead of the nodes of all the trees. Therefore the space complexity is still � (���).
While computing feature contribution layer by layer through the cascade forest structure, we only need to

keep the feature contribution of the previous layer. Let |� | denote the number of forests in each layer, the space
complexity is � (��� |� |).

5 FEATURE IMPORTANCE FOR DEEP FORESTS

After obtaining the feature contribution for a deep forest, according to Eq. (11), we can compute the MDI feature
importance for the deep forest (denoted by �� ) as

M̂DI(�, �� ) =
1

|D|

︁
�∈D

�̃�,� (�� ) · �� , (31)

where �̃�,� is deined in Eq. (30). We then demonstrate that it is a proper feature importance measure by showing
that the sum of our feature importance measure remains unchanged as the classic single-layer forest MDI
calculated for the last layer.

Proposition 5.1. The sum of the estimated MDI feature importance (as in Eq. (31)) over all the original features
equals the sum of the inal-layer MDI directly over the � +� ′ features (� ′ denoting the number of new features), i.e.,

�︁

�=1

M̂DI(�, �� ) =
1

|� |

︁
� ∈�

�+� ′︁
�=1

MDI(�, � ). (32)

Proof. For a forest � in the inal layer,

�︁

�=1

M̂DI(�, � ) =

�︁

�=1

1

|D|

︁
�∈D

�̃�,� (�� ) · ��
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=

�︁

�=1

1

|D|

︁
�∈D

(
1

|� |

︁
� ∈�

�̃�,� (�� )

)
· ��

=

�︁

�=1

1

|D|

︁
�∈D

©
«
1

|� |

︁
� ∈�

©
«

︁
�∈� :� (� �−1 )=�

Δ� (� � ) +

�+� ′︁
� ′=�+1

︁
�∈� :� (� �−1 )=� ′

Δ�̃ (� � , �)
ª®¬
ª®¬
· ��

=

�︁

�=1

1

|D|

︁
�∈D

©«
1

|� |

︁
� ∈�

︁
�∈� :� (� �−1 )=�

Δ� (� � )
ª®¬
· �� +

1

|D|

︁
�∈D

©«
1

|� |

︁
� ∈�

�+� ′︁
� ′=�+1

︁
�∈� :� (� �−1 )=� ′

Δ� (� � )
ª®¬
· ��

=

�︁

�=1

1

|D|

︁
�∈D

(
1

|� |

︁
� ∈�

��,� (�� )

)
· �� +

�+� ′︁
� ′=�+1

1

|D|

︁
�∈D

(
1

|� |

︁
� ∈�

��,� ′ (�� )

)
· ��

=

�︁

�=1

MDI(�, � ) +

�+� ′︁
� ′=�+1

MDI(� ′, � )

=

�+� ′︁
�=1

MDI(�, � ) . (33)

Taking the averaging over all forests in the last layer,

�︁

�=1

M̂DI(�, �� ) =
1

|� |

︁
� ∈�

�︁

�=1

M̂DI(�, � ) =
1

|� |

︁
� ∈�

�+� ′︁
�=1

MDI(�, � ) .

□

Proposition 5.1 shows that the proposed method is a way of disassembling the importance of the new feature to
the original features, thus meeting the properties suggested in Section 3.4 that a proper MDI feature importance
should have.

6 EXPERIMENTS

We irst show that our computation methods yield reasonable results for feature contribution and feature
importance of deep forest in Section 6.1 and Section 6.2. We generate simulated datasets with clear mechanisms
behind them, and we conduct experiments on both regression and classiication cases. Then in Section 6.3, we
compare the quality of our deep forest MDI to other feature importance measures based on its ability to identify
relevant features, showing that as deep forest is more powerful than random forest, it also has better estimation of
feature importance. In Section 6.4, we further compare the quality of our deep forest MDI method equipped with
diferent calibration methods, showing that partial additive calibration is the most suitable choice. In order to
facilitate the understanding of possible applications in real-world tasks, in Section 6.5, a real-world bike-sharing
dataset is taken as an example to show the calculation results of feature contribution and feature importance.

6.1 Illustration of Feature Contribution for deep forest

In this subsection, we illustrate our computation of feature contribution for deep forest. With the synthetic
datasets, we are able to check whether the calculated feature contributions match the underlying data-generating
process. We provide examples for regression and classiication respectively. Although technically classiication
and regression difer only in terms of output, in terms of visualization, the regression example can show richer
textures on the feature space while the classiication example shows more output dimensions. We irst report the

ACM Trans. Knowl. Discov. Data.



Interpreting Deep Forest through Feature Contribution and MDI Feature Importance • 13

0 1
X1

0

1
X 2

2

1

0

1

2

(a) Data generating function.

1 2 3 4 5 6 7 8
Layer

0.10

0.15

0.20

0.25

0.30

RM
SE

Val err

(b) Decreasing validation error in the training process.
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(d) Prediction and feature contributions in the last layer.

Fig. 3. Feature contributions for the regression problem. As shown in (b) and the prediction figures in (c) (d), the predictive
performance improves from the first layer to the last layer. The feature contributions show that the model captures more
details in both input features.

changes in the deep forest’s test error layer by layer. Then visualize the feature contributions in the irst layer
and last layer respectively.

In this experiment, each layer of deep forest has 4 forests, and each forest contains 50 trees, with their maximum
depth ixed to 5. The number of cascade layers of deep forest is determined automatically by the performance on
the validation set.

Regression. 2000 training samples and 2500 test samples are generated according to the function

� (�) = sin 2��1 + cos 2��2 (34)

and Figure 3(a) is a heatmap visualization of it. The decreasing validation error in Figure 3(b) shows an improve-
ment in performance layer by layer. Figure 3(c) and Figure 3(d) decompose the predictions in the irst layer and
the last layer to the contribution plots of two input features respectively. It is easy to observe that the irst layer’s
prediction lacks details in the peaks and valleys while the inal layer’s prediction is much closer to the data
generating function. We can also observe corresponding reinements of feature contributions. Note that we can
see feature interaction in deep layers. In Figure 3(c) the changes in feature contribution occur only along the
considered feature. But in Figure 3(d), we can observe the inluence of the other feature. Though this may not
honestly recover the data-generating process, it helps deep forest boost performance.

Classiication. We generate a 3-class classiication problem. Figure 4(a) shows the training data in the irst
two dimensions. We add another 100 dimensions of irrelevant features uniformly valued between 0 and 1 to
simulate background noise. There are 200 training samples and 2500 test samples. With Figure 4(b) conirming
that the cascade forest structure improves performance layer by layer, Figure 4(c) and Figure 4(d) visualize the
feature contribution in the irst layer and the last layer to unveil what extra information the model has learned in
the cascade layers. We plot for the three classes separately, using shades of the corresponding colors to indicate
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(c) Prediction and feature contributions in the irst layer.
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(d) Prediction and feature contributions in the last layer.

Fig. 4. Feature contributions for the 3-class classification problem. As shown in (b) and the prediction figures in (c) (d),
the predictive performance improves from the first layer to the last layer. The learned feature contributions are coarse
and ambiguous in (c), while clear and precise in (d). The colored areas in the contribution plots indicate an increase in the
probabilities of data in these areas belonging to the corresponding class in the areas, and the gray areas indicate a decrease
in probability.

the predictive probabilities. Then there are two contribution plots for �1 and �2 respectively. The colored areas
indicate the corresponding feature enlarges the probabilities of data in these areas belonging to the corresponding
class, and the gray areas versa.
We can see that the irst layer’s feature contribution is vague and of light color, while the last layer’s feature

contribution is of darker color, leading to clearer peak probabilities in the prediction. The reinement of feature
contribution matches the improvement of performance, and also better captures the underlying data generating
scheme.We can also observe that deep forest learns feature interaction in deep layers. Diferent from the simulated
regression data, there actually is feature interaction in generating the classiication data. However, in the irst
layer, the change of feature contribution is mainly along the considered feature. But in the last layer, the inluence
of the other feature emerges in the plots, showing that the cascade structure enables deep forest to learn details
on the two relevant features.
Given the last layer’s feature contribution, we can easily tell how the deep forest makes predictions. For

example, the point (0, 1) has the highest predicted probability of belonging to Class 1, and the contribution to
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� �0 �̃�,1 (�) �̃�,2 (�) �� (�)

(0, 1) [0.46, 0.24, 0.30] [0.37,−0.14,−0.16] [0.00, 0.00,−0.06] [0.88, 0.08, 0.04]

(1, 1) [0.46, 0.24, 0.30] [−0.36, 0.24, 0.03] [0.00, 0.28,−0.21] [0.05, 0.88, 0.07]

Table 2. Example of feature contributions of two sample points for the 3-class classification problem. Only values related to
the two relevant dimensions are presented. The values associated with the predicted class are shown in bold.

Class 1’s probability is mainly due to �1. The point (1, 1) has the highest predicted probability of belonging to
Class 2, and the contribution comes both from �1 and �2. Table 2 shows the detailed values of decomposing the
predicted probabilities of these two points into feature contributions. Only the contributions of the irst two
features are reported, and the other 100 irrelevant features also contribute to the prediction, but their contributions
are small.

6.2 Illustration of Feature Importance for deep forest

In this section, we illustrate the computation of feature importance for deep forests. We use synthetic regression
and classiication datasets so that we can tell the true relative importance of each feature. The hyper-parameter
settings remain the same as in the previous subsection.

Regression. Because MDI feature importance is a summary of the impact of each feature on the entire dataset,
in order to demonstrate the efect of MDI, we need a dataset with more features and diferent overall importance.
Therefore, we generate a regression problem with diferent coeicients for each feature and no interaction
between features so that we can easily check whether the feature importance result is reasonable. We generate
1000 training and test samples each according to the data generation function

� (�) =

�︁

�=1

��� . (35)

We measure the MDI quality using the percentage of correctly ranked pairs by the estimated importance.
Figure 5(a) shows that as the test error decreases layer by layer, the ranking quality of relative MDI feature
importance increases. As we would expect, deep forest learns more and improves performance through the
cascade structure, so MDI would be more accurate in the deep layers. Figure 5(b) directly compares the estimated
MDI in the irst layer and the last layer. We can see a clear reinement of the estimated MDI towards the underlying
data-generating mechanism.

Classiication. We use the same 3-class classiication problem as in Figure 4. Figure 6(a) shows the change of
global MDI with respect to layers. We can see that

• The global MDI of �1 and �2 both increase layer by layer, indicating deep forest gradually mines more
information from the relevant features.
• �1 has a higher MDI than �2, which matches the data generating process, since using �1 alone can separate
all the instances from Class 1 which amounts to half of the data distribution.
• The average MDI of the 100 irrelevant features is always close to zero, indicating that the model has a good
ability to distinguish relevant features from irrelevant features.
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Fig. 5. With the growing of layers in deep forest, the estimated MDI captures the underlying importance of features more
accurately.
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Fig. 6. Global MDI and local MDI for the 3-class problem.

Figure 6(b) shows the localMDI calculated for each class. Since Eq. (10) enables us to compute feature importance
by summing over instances, we can calculate the local feature importance for each class in this problem,

M̂DI� (�, �� ) =
1

|{� : �� = �}|

︁
�:��=�

�̃�,� (�� ) · [I (�� = 1) , I (�� = 2) , I (�� = 3)] , � = 1, 2, 3.

From Figure 6(b) we can observe that, for Class 1, only feature �1 matters, and feature �2 has very low feature
importance, while for Class 2 and Class 3, both �1 and �2 play very important roles. The above observation
clearly matches the data-generating mechanism.

6.3 Comparison of Feature Importance Rankinguality

In this subsection, we aim to show the competitiveness of our methods. We use a commonly used quantitative
measure of feature importance, the ranking quality of relevant features over irrelevant features. Note that there
is currently no quantitative performance measure for feature contribution. The efectiveness of our feature
contribution is revealed by the superiority of our MDI measure, since our MDI is calculated based on the feature
contribution result. Besides, we will show an example of feature contribution in a real-world application task in
Section 6.5 to further demonstrate its efectiveness.
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Table 3. Dataset Information. We also include the test error (mean±std.) of random forest and deep forest. An entry is
marked with a bullet ‘•’ if deep forest is significantly beter than random forest based on the Wilcoxon rank-sum test with
confidence level 0.1. For each dataset, the entry with the lowest average error is bolded.

Dataset
Number of
classes

Number of features
(relevant)

Number of
training instances

Test error of
random forest

Test error of
deep forest

abalone regression 8 417 2.432±0.026 2.425±0.041

cpusmall regression 12 819 3.578±0.046• 3.420±0.039

phishing 2 68 829 0.069±0.006 0.067±0.009

satimage 6 36 310 0.155±0.005 0.152±0.007

pendigits 10 16 749 0.029±0.003• 0.026±0.001

usps 10 256 729 0.087±0.006• 0.074±0.003

Datasets.We use six benchmark datasets processed to contain irrelevant features. We choose two regression
datasets and four classiication datasets with the number of classes ranging from 2 to 10. The number of features
ranges from 8 to 256. The dataset information is listed in Table 3. The benchmark datasets are processed in two
steps. First, we copy a dataset’s feature matrix and randomly permute the values in the copied columns, then
concatenate the processed copy to the original feature matrix. In this way, the whole feature set becomes half
relevant and half irrelevant. Second, since identifying irrelevant features is a relatively easier task compared with
prediction, we reduce the number of training samples to avoid a situation where all the methods are equally
perfect. We use only 10% of the data as training samples for all the datasets. We also hold a separate validation
set for MDA-based methods, whose number of samples is the same as the training set.
Compared methods.We design the irst feature contribution and MDI feature importance measure for deep

forest. The only quantitative feature importance measure comparable is MDA, since MDA is applicable to any
black-box models. We also train a random forest and compare our method with several random forest importance
measures. Our aim is to show that as deep forest is more powerful than RF, its feature importance result is
also better than RF. If so, this comparison result will also contribute to the validity of our method. In detail, we
compare our MDI feature importance for deep forest, namedMDI(DF), to the following methods, where ‘DF’
and ‘RF’ in parentheses indicate whether this is for a trained deep forest or random forest.

ś MDI(RF): the mean decrease of impurity by splitting on the given feature during the training process of
random forest [7]. But it tends to overestimate the feature importance of irrelevant features [17].

ś MDI-oob(RF): a debiased version of MDI using out-of-bag samples for random forest [17].
ś MDA(RF): the mean decrease in accuracy of a trained random forest caused by randomly permuting the
values of the given feature.

ś MDA(DF): the mean decrease in accuracy of a trained deep forest caused by randomly permuting the
values of the given feature.

In each layer of deep forest, there are still 4 forests, each with 50 trees in it. Accordingly, we grow 200 trees in
random forest. Since we are dealing with more complicated datasets, the maximum depth of trees in deep forest
is ixed to 8, and so are the trees in random forests.
Table 4 reports the performance of the compared methods for identifying relevant features. We can see that

MDI(DF) achieves the best average performance on all the datasets, and it is signiicantly better than MDA(DF)
on ive out of six datasets. Among the random forest feature importance methods, MDI-oob(RF) achieves the
best performance, which coincides with previous studies [17]. However, it still has a lower average AUC than
MDI(DF) on ive datasets and signiicantly worse performance on two datasets.
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MDI(RF) MDI-oob(RF) MDA(RF) MDA(DF) MDI(DF)

abalone 0.911±0.047• 0.984±0.031 0.991±0.013• 1.000±0.000 1.000±0.000

cpusmall 0.932±0.009• 0.999±0.003 0.971±0.016• 0.961±0.020• 1.000±0.000

phishing 0.650±0.026• 0.908±0.027• 0.598±0.090• 0.611±0.071• 0.926±0.025

satimage 0.998±0.003• 1.000±0.001 0.689±0.134• 0.593±0.144• 1.000±0.000

pendigits 1.000±0.000 1.000±0.000 0.985±0.028• 0.989±0.019• 1.000±0.000

usps 0.998±0.001• 0.995±0.003• 0.586±0.103• 0.581±0.158• 1.000±0.000

Table 4. AUC scores for relevant feature identification (mean±std.) of the compared methods of 10 runs. An entry is marked
with a bullet ‘•’ if MDI(DF) is significantly beter than the corresponding method based on the Wilcoxon rank-sum test with
confidence level 0.1. For each dataset, the entry with the highest average AUC is bolded.
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Fig. 7. Running time comparison of our MDI method to that of MDA for deep forest. Each experiment is repeated 10 times
and the average running time is reported.

We also report the running time of MDI(DF). In Figure 7, we show that MDI(DF) requires less running time than
MDA(DF). The reported running time includes model training and feature importance computation. MDI(DF)
can compute feature contribution and feature importance during the training process, which leads to only a
mild increase in training time. In contrast, MDA(DF) requires the test process to be executed for each feature
separately, and usually multiple times to obtain a reliable estimation of the accuracy decrease.

6.4 Comparison of Diferent Calibration Methods

To evaluate the efectiveness of using partial additive calibration as Eq. (26) in the step of calculating feature
contribution, we compare MDI(DF) to that using naive multiplicative calibration as Eq. (23), denoted byMDI(DF)∗,
and that using naive multiplicative calibration as Eq. (24), denoted by MDI(DF)+. The datasets and other settings
remain the same as in the previous section. And we still use feature importance ranking quality as the evaluation
criterion.

Table 5 shows that MDI(DF), which uses partial additive calibration, achieves the best average AUC on all the
datasets. The performance of MDI(DF)+, which uses naive additive calibration, follows closely behind. It achieves
the best average AUC on all but one dataset. MDI(DF)∗, which uses naive multiplicative calibration, achieves
the best average AUC on two datasets, while is signiicantly worse than MDI(DF) on three datasts. This shows
that the multiplicative calibration is indeed unstable. The comparison results justify our design of the calibration
method.
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MDI(DF)∗ MDI(DF)+ MDI(DF)

abalone 0.853±0.181• 1.000±0.000 1.000±0.000

cpusmall 1.000±0.000 1.000±0.000 1.000±0.000

phishing 0.926±0.026 0.917±0.015 0.926±0.025

satimage 0.948±0.107• 1.000±0.000 1.000±0.000

pendigits 0.987±0.029 1.000±0.000 1.000±0.000

usps 0.977±0.047• 1.000±0.000 1.000±0.000

Table 5. AUC scores for relevant feature identification (mean±std.) of diferent calibration methods of 10 runs. An entry is
marked with a bullet ‘•’ if MDI(DF) is significantly beter than the corresponding method based on the Wilcoxon rank-sum
test with confidence level 0.1. For each dataset, the entry with the highest average AUC is bolded.

6.5 Application on Bike Sharing Task

This section does not aim to compare, instead, it provides an example with a real-world bike-sharing task [11],
showing how our deep forest interpretation tools can be used in an application.
The bike-sharing dataset contains the records of daily bike rental count and the environmental and seasonal

information. For illustration purposes, we process the dataset and only keep six features. The data are randomly
partitioned into training and test sets, with 487 days of records used as the training set, and 244 days of records
used as the test set.

Table 6 shows the feature contribution of a trained deep forest on two days in the test set. This is a regression
task, so the feature contributions are scalars. We can see that the platform was probably doing better in 2012

record Year isWorkingDay isClearDay Temperature Humidity WindSpeed

2011/12/7
feature value 2011 1 0 17◦C 97% 18 km/h

feature contribution -714 24 -104 -1479 -244 -136

2012/9/21
feature value 2012 1 1 25◦C 67% 10 km/h

feature contribution 1031 44 252 1117 145 74

Table 6. Example of feature contribution of deep forest in the bike sharing task. Positive and negative contributions are
based on the training label mean.

Year isWorkingDay isSunnyDay Temperature Humidity WindSpeed
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Fig. 8. MDI feature importance of deep forest in the bike sharing task. The sum of feature importance is normalized to 1.
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than it did in 2011, at least in terms of the year’s impact on these two records. In addition, the low temperature
and the rainy and windy weather on 2011/12/7 both contributed to a decrease in the bike rental count. The mild
temperature and nice weather have led to an increase in bike rental count on 2012/9/21. Figure 8 shows the
MDI feature importance of deep forest. We can see that temperature is the most important feature. In addition,
the year is also an important feature, which shows that the platform has improved a lot in two years. Other
weather conditions also play a role, but whether it is a working day has little impact on the bike rental count.
The explanatory results help the user understand how the deep forest model works, enabling more reliable
deployment of the model and helping to ind out why a prediction is unexpected.

7 CONCLUSION

In this paper, we propose two interpretation tools for deep forests, namely feature contribution and MDI feature
importance. The former decomposes every single prediction of deep forest into the contribution of each original
feature. The latter characterizes the overall impact of a feature in the whole model. Our proposed methods yield
proper feature contribution and MDI feature importance measures. Experiments also validate the efectiveness
of our methods. We believe that the interpreting tools we provide can further promote the application of deep
forests, as well as deepen our understanding of the data and model.
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