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Abstract Ensemble learning trains and combines multiple base learn-
ers for a single learning task, and has been among the state-of-the-art
learning techniques. Ensemble pruning tries to select a subset of base
learners instead of combining them all, with the aim of achieving a bet-
ter generalization performance as well as a smaller ensemble size. Previ-
ous methods often use the validation error to estimate the generalization
performance during optimization, while recent theoretical studies have
disclosed that margin distribution is also crucial for better generalization.
Inspired by this finding, we propose to formulate ensemble pruning as a
three-objective optimization problem that optimizes the validation error,
margin distribution, and ensemble size simultaneously, and then employ
multi-objective evolutionary algorithms to solve it. Experimental results
on 20 binary classification data sets show that our proposed method out-
performs the state-of-the-art ensemble pruning methods significantly in
both generalization performance and ensemble size.

Keywords: Machine learning · Ensemble pruning · Multi-objective opti-
mization · Margin distribution · Multi-objective evolutionary algorithm.

1 Introduction

For one machine learning task, ensemble methods [31] train and combine multi-
ple base learners, which can achieve a better generalization performance than a
single base learner, and has been one of the most successful learning algorithms.
Based on the way how the base learners are generated, ensemble methods can be
generally classified into two categories: sequential methods such as Boosting [26],
and parallel methods such as Bagging [4]. After generating a set of trained base
learners, ensemble pruning [31] selects and combines a subset of base learners
instead of combining them all, which can not only save the storage space and
accelerate the prediction speed, but also lead to a better generalization perfor-
mance than the whole ensemble [7,20,24,34].

In the past twenty-five years, a number of effective ensemble pruning methods
have been proposed, which can be roughly classified into two groups, ordering-
based pruning and optimization-based pruning. Ordering-based methods are
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usually based on greedy strategies. Given a set of trained base learners, this
kind of method iteratively selects the base learner with the largest marginal
gain on some specially designed evaluation criterion. Representative criteria in-
clude minimizing the error on the validation set (i.e., validation error) [10,21],
maximizing the diversity [2], maximizing the complementarity [20], or combining
different evaluation criteria [17]. It has been shown that compared with combin-
ing all base learners, ordering-based methods can often achieve a smaller error
on the test set (i.e., test error) by selecting only a subset of base learners [20].

Different from ordering-based methods, optimization-based pruning meth-
ods formulate ensemble pruning as an optimization problem explicitly, and then
apply optimization techniques to search for the optimal subset of base learners
that constitutes the final pruned ensemble. As evolutionary algorithms (EAs) [1]
inspired by natural evolution are a kind of general-purpose optimization algo-
rithms, they have been naturally used for ensemble pruning. Indeed, the first
work which opened the direction of optimization-based pruning [34] used a stan-
dard genetic algorithm to select a subset of base learners minimizing the vali-
dation error. Compared with the ordering-based methods, the generated pruned
ensemble has a competitive test error, but also has a much larger ensemble size.

In order to obtain not only a good generalization performance but also a
small ensemble size, Qian et al. [24] formulated ensemble pruning as an explicit
bi-objective optimization problem that minimizes the validation error and en-
semble size simultaneously, and proposed the Pareto Ensemble Pruning (PEP)
method, which employs a simple MOEA [16,23] combined with a local search op-
erator to solve the bi-objective problem. It has been shown [24] that PEP can be
significantly better on both test error and ensemble size than various ordering-
based methods [2,10,17,20,21] as well as the single-objective optimization-based
method that minimizes the validation error only [34].

Ensemble pruning naturally has two goals: maximizing the generalization
performance and minimizing the ensemble size. The above-mentioned works
(e.g., [20,24,34]) mainly measured the generalization performance by the vali-
dation error during the optimization process. However, it has been revealed that
the generalization performance depends on not only the error on a sampled data
set, but also the margin, i.e., the distance from a sampled data to the decision
boundary. Margin theory for Boosting was first presented by Schapire et al. [3] to
explain the success of AdaBoost. Soon after, Breiman [5] proved that the mini-
mum margin is crucial to the margin theory, but optimizing the minimum margin
led to poor empirical generalization performance; this sentenced margin theory
to death. Later, Reyzin and Schapire conjectured that it is margin distribution
rather than minimum margin concerns [25]. Gao and Zhou [14] finally proved
that it is crucial to optimize margin distribution, characterized by maximizing
margin mean and minimizing margin variance simultaneously. Later, Grønlund
et al. [15] proved that one cannot hope for much stronger upper bounds than Gao
and Zhou’s result. Gao and Zhou’s result has inspired many advanced machine
learning algorithms to maximize margin mean and minimize margin variance
simultaneously [29,30], generally by taking one of them as an objective whereas
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the other as a constraint. Lyu et al. [19] tried to take margin ratio, defined by
the standard deviation of margin over margin mean, and applied it to improve
deep forest. But to the best of our knowledge, the margin distribution has not
been exploited for ensemble pruning.

In this paper, we propose a Margin Distribution guided multi-objective evolu-
tionary Ensemble Pruning (MDEP) method, which formulates ensemble pruning
as a three-objective optimization problem that minimizes the validation error,
margin ratio [19] and ensemble size simultaneously, and then applies advanced
multi-objective EAs (MOEAs) to solve it. Experiments have been conducted on
20 binary classification data sets. We first examine the performance of MDEP
equipped with three typical MOEAs, i.e. NSGA-II [9], MOEA/D [28] and NSGA-
III [8], suggesting that NSGA-III leads to the best performance. Then, we com-
pare MDEP using NSGA-III against all the state-of-the-art pruning methods
introduced before, showing that MDEP can achieve a better test error with a
significantly smaller ensemble size. Finally, we also perform an ablation study
to show that introducing the objective of minimizing the margin ratio (i.e., op-
timizing the margin distribution) really contributes to the advantage of MDEP.

2 MDEP Method

In this section, we first introduce the three-objective formulation (i.e., validation
error, margin distribution and ensemble size) of the ensemble pruning problem,
and then show how to solve this three-objective problem by MOEAs.

2.1 Three-objective Formulation with Margin Distribution

Given a set of n trained base learners H = {ht}nt=1, where ht : X → Y maps the
instance space X to the label space Y. Let Hs denote a pruned ensemble with
the selector vector s ∈ {0, 1}n, where ∀t ∈ {1, 2, . . . , n}, st = 1 and st = 0 mean
that the base learner ht is selected and unselected, respectively. Considering
using voting to combine the base learners, the output of Hs on an instance
x ∈ X is calculated by taking an average of the selected base learners, i.e.,

Hs(x) =
1

|s|

n∑
t=1

stht(x), (1)

where |s| =
∑n

t=1 st represents the ensemble size. The goal of ensemble pruning
is to select a pruned ensemble Hs that optimizes the generalization performance
(i.e., the expected prediction error under the unknown data distribution D over
X × Y) while containing as few base learners as possible.

Ensemble pruning can be naturally formulated as a bi-objective optimization
problem that optimizes the generalization performance of Hs and minimizes the
ensemble size |s|, simultaneously. Previous work [24,34] measured the general-
ization performance by the validation error only. However, it has been proved
by Gao and Zhou [14] that the generalization performance depends on not only
the error on a sampled data set, but also the margin distribution.
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Figure 1: A simple illustration of two linear classifiers h1, h2 with the same
validation error but different margin distributions. Dotted ellipses are two un-
derlying distributions, from which blue triangles and green squares are validation
instances sampled for two classes. This illustration takes the idea from [32].

To intuitively show that the generalization performance of a learner is re-
lated to the margin distribution, we consider an example of binary classification
in Figure 1. The margin of an instance with respect to a learner is the distance
from the instance to the learner’s decision boundary, which can also be viewed as
a measure of confidence in classification. The larger the margin, the better it is.
Figure 1 illustrates the importance of margin distribution. h1 and h2 are differ-
ent linear classifiers with equal validation errors which cannot be distinguished if
we only consider the validation error. But when we also consider the margin dis-
tribution, h1 has larger margins on most sampled instances and will be selected,
which is the true better classifier that separates the two classes perfectly.

For achieving a better generalization performance, it is thus required to op-
timize both the error and the margin distribution on the validation set. Let
D = {(xi, yi)}mi=1 denote the given validation set. Considering binary classifica-
tion, i.e., Y = {+1,−1}, the validation error of a pruned ensemble Hs can be
represented as

errorD(Hs) =
1

m

m∑
i=1

(
I(yiHs(xi) < 0) +

I(yiHs(xi) = 0)

2

)
, (2)

where I(·) is the indicator function that is 1 if the inner expression is true and 0
otherwise. Note that yiHs(xi) < 0 implies that the pruned ensemble Hs makes
the wrong prediction; yiHs(xi) = 0 implies that Hs(xi) in Eq. (1) is equal to 0,
and the pruned ensemble will make a random guess, resulting in an error with
probability 1/2. The margin of the labeled instance (xi, yi) with respect to a
pruned ensemble Hs is

ρHs(xi, yi) = yiHs(xi) =
1

|s|

 ∑
t:yi=ht(xi)

st −
∑

t:yi ̸=ht(xi)

st

 . (3)

Gao and Zhou [14] have revealed that a smaller margin variance and a larger
margin mean will lead to a better margin distribution, and Lyu et al. [19] have
further proved that margin distribution can be characterized by margin ratio
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related to the margin standard deviation against the margin mean. For a pruned
ensemble Hs, its margin ratio on the validation set D can be calculated as

ρratioD (Hs) =

√
VarD(ρHs)

Mean2D(ρHs)
=

√
m

∑
i̸=j (ρHs(xi, yi)− ρHs(xj , yj))

2

2(m− 1)(
∑m

i=1 ρHs(xi, yi))2
, (4)

where VarD(ρHs) and MeanD(ρHs) denote the margin variance and mean, re-
spectively, of the instances inD with respect toHs, and ρHs(xi, yi) is the margin
of (xi, yi) with respect toHs, as calculated in Eq. (3). The smaller the margin ra-
tio, the better the margin distribution and thus the generalization performance.

Based on the above analysis, we formulate ensemble pruning as a three-
objective minimization problem

argmins∈{0,1}n

(
errorD(Hs), ρ

ratio
D (Hs), |s|

)
. (5)

That is, the validation error, the margin ratio and the ensemble size are mini-
mized simultaneously. Note that minimizing the first two objectives corresponds
to optimizing the generalization performance. To the best of our knowledge, this
is the first time that margin distribution is utilized for ensemble pruning.

By solving the three-objective problem formulated in Eq. (5) by MOEAs, we
propose the Margin Distribution guided multi-objective evolutionary Ensemble
Pruning method, briefly called MDEP. Though the margin in Eq. (3) is defined
for binary classification, it can be adapted to multi-class classification and re-
gression accordingly [11,22], and thus MDEP can also be applied to these tasks.

2.2 Multi-objective Evolutionary Algorithms

Next, we will show how MDEP applies MOEAs to solve the three-objective
problem in Eq. (5). The input of MDEP is a set of trained base learners H =
{ht}nt=1 and a validation data set D. As introduced before, a pruned ensemble
can be naturally represented by a Boolean vector s ∈ {0, 1}n, where the t-th bit
st = 1 if and only if the base learner ht is selected. Note that the solution with
all 0s is excluded during optimization. The procedure of MDEP is presented in
Algorithm 1. In fact, MDEP can be equipped with any existing MOEA, e.g.,
NSGA-II [9], MOEA/D [28] and NSGA-III [8]. Here, we mainly introduce the
special initialization, crossover and mutation operations that MDEP adopts.

Initialization. With the goal of improving the search efficiency of MDEP in
the solution space with a small ensemble size, we evaluate all the solutions with
size 1 in line 1 of Algorithm 1, and select the non-dominated solutions among
them as initial solutions in line 2. Note that these solutions must be Pareto
optimal, because solutions with size larger than 1 cannot dominate them. To
fill in the initial population P1, the remaining initial solutions are randomly
selected from the whole solution space {0, 1}n in line 3. Note that this setting
implicitly requires that the population size is at least the number of Pareto
optimal solutions with size 1. In our experiments, the population size will be set
to n, which obviously satisfies this requirement.
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Algorithm 1 MDEP Method

Input: Original ensemble H = {ht}nt=1, validation data set D = {(xi, yi)}mi=1

Output: Pruned ensemble Hs

1: Evaluate all the solutions
{
si
}n

i=1
with size 1, where si has value 1 on the i-th bit,

and 0 otherwise;
2: Select the non-dominated solutions among

{
si
}n

i=1
, and add them into the initial

population P1;
3: For the remaining required initial solutions, randomly select them from {0, 1}n;
4: for t = 1 : maximum #generations do
5: Select solutions from Pt to compose the mating pool;
6: Generate offspring population P ′ by uniform crossover and bit-wise mutation;
7: for each offspring solution s′ ∈ P ′ do
8: if |s′| ≤ 1 then
9: repeat
10: Apply the bit-wise mutation operator to update s′

11: until |s′| > 1
12: end if
13: Evaluate s′

14: end for
15: Select next population Pt+1 from Pt ∪ P ′

16: end for
17: Select a non-dominated solution s from the final population

Reproduction. To reproduce offspring solutions from the selected parent
solutions, we employ the common operators over Boolean vector representation:
uniform crossover and bit-wise mutation [13], as shown in line 6 of Algorithm 1.
The uniform crossover operator generates the first offspring solution by inherit-
ing each bit from the first parent solution independently with probability 1/2,
and otherwise from the second parent. The second offspring is created using
inverse mapping. The bit-wise mutation operator flips each bit of a solution in-
dependently with probability 1/n. Since we have explored all the solutions with
size 1 in the initialization procedure, when an offspring solution s′ with |s′| ≤ 1
is generated, the bit-wise mutation operator is applied repeatedly to update s′

until |s′| > 1 (i.e., lines 8–12).
Though the above settings are simple, they have been sufficient to lead to

a good performance of MDEP, which will be shown in our experiments. More
careful designs may further improve the performance. Note that the uniform
crossover and bit-wise mutation operators are usually applied with some prob-
abilities, denoted as Pc and Pm, respectively. They are treated as two hyperpa-
rameters. The parent selection strategy for reproduction in line 5 as well as the
survival selection strategy for updating the population in line 15 depends on the
concrete MOEA employed by MDEP. For example, if NSGA-II [9] is employed,
binary tournament selection is used to select parent solutions and the survival
selection strategy is based on non-dominated sorting and crowding distance.

MDEP will continue to run until a predefined number of generations (i.e.,
maximum #generations in line 4 of Algorithm 1) is reached. After MDEP termi-
nates, we will get a set of solutions, and the final output solution can be selected
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according to the user’s preference. Here we propose to select the solution with
the smallest validation error from the final population. If such a solution is not
unique, we select the solution with the smallest ensemble size among them. This
strategy of selecting the final solution will be used in our experiments.

3 Experiments

In this section, we empirically examine the performance of MDEP. Section 3.1
introduces the general experimental settings. As MDEP can be equipped with
any MOEA, we compare the performance of MDEP using three typical MOEAs,
i.e., NSGA-II [9], MOEA/D [28] and NSGA-III [8], in Section 3.2, showing that
NSGA-III is the best choice. Next, we compare MDEP equipped with NSGA-III
against state-of-the-art pruning methods in Section 3.3. Finally, Section 3.4 per-
forms an ablation study to examine whether considering the margin distribution
in problem formulation, i.e., introducing the objective of minimizing the margin
ratio in Eq. (5), really contributes to the advantage of MDEP.

3.1 Settings

We conduct experiments on 20 binary classification data sets from the UCI
repository [12]. Some of the binary classification data sets are generated from
multi-class data sets: letter-ah is based on the letter data and classifies ‘a’ against
‘h’, and alike letter-br and letter-oq ; optdigits classifies ‘01234’ against ‘56789’;
satimage-12v57 is based on the satimage data and classifies labels ‘1’ and ‘2’
against ‘5’ and ‘7’, and alike satimage-2v5; vehicle-bo-vs is based on the vehicle
data and classifies ‘bus’ and ‘opel’ against ‘van’ and ‘saab’, and alike vehicle-b-v.

To evaluate each method on each data set, a data set is evenly and randomly
split into three parts: training set, validation set and test set. We use Bagging [4]
to train 100 C4.5 decision trees [6] on the training set as the original ensemble
H = {ht}nt=1, and then prune the ensemble by a pruning method on the valida-
tion set. Finally, we report the performance of the pruned ensemble on the test
set. In order to reduce the influence of randomness, each data set is randomly
partitioned 30 times independently, and each method will be performed on each
partition of the data set and the average performance will be reported.

3.2 Comparison of MDEP Using Various MOEAs

Since MDEP can employ various MOEAs to solve the three-objective problem
in Eq. (5), we first compare the performance of MDEP equipped with NSGA-
II [9], MOEA/D [28] and NSGA-III [8]. Because the optimization process of an
MOEA is inherently stochastic, for each partition of each data set, the MOEA
is repeated 5 times further. That is, each MOEA on each data set is repeated
150 times (30 partitions × 5 times per partition). For fairness of comparison,
we use the same hyperparameter setting for each MOEA. The population size is
100, the number of generations is 500. The probabilities Pc and Pm of applying
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Table 1: The test errors and ensemble sizes (mean+std.) of the compared meth-
ods on 20 binary data sets. The smallest error and size on each data set are
bolded. In the row of “count of the best”, the largest values are bolded. The
“w/t/l to Bagging” denotes the number of data sets where the test error of
MDEP using a specific MOEA is smaller, same, or larger, compared to Bagging.

Test Error Ensemble Size
Data Set NSGA-III NSGA-II MOEA/D Bagging BI NSGA-III NSGA-II MOEA/D
australian .143±.020 .144±.021 .143±.020 .143±.017 .152±.023 8.2±3.4 7.5±3.3 7.5±3.1
breast-cancer .273±.035 .279±.038 .278±.035 .279±.037 .298±.044 7.4±2.7 6.9±1.6 6.8±2.2
liver-disorders .312±.033 .313±.033 .310±.035 .327±.047 .365±.047 11.2±3.8 10.6±3.7 10.9±3.3
heart-statlog .192±.037 .197±.040 .195±.040 .195±.038 .235±.049 7.7±2.4 7.9±.2.7 7.7±2.1
house-votes-84 .044±.018 .045±.019 .043±.020 .041±.013 .047±.016 3.0±1.4 3.1±1.8 3.0±1.9
ionosphere .083±.022 .085±.025 .083±.023 .092±.025 .117±.022 5.0±1.6 4.9±1.7 5.1±1.7
kr-vs-kp .009±.003 .010±.003 .009±.003 .015±.007 .011±.004 3.8±1.4 4.0±1.2 4.4±1.8
letter-AH .012±.006 .014±.006 .012±.006 .021±.006 .023±.008 5.1±2.0 4.9±1.9 5.1±1.7
letter-BR .045±.011 .047±.012 .048±.010 .059±.013 .078±.012 9.8±2.2 9.4±2.5 10.7±2.9
letter-OQ .041±.009 .042±.010 .043±.009 .049±.012 .078±.017 9.9±2.5 9.8±2.7 10.7±2.9
optdigits-b .035±.005 .034±.005 .037±.005 .038±.007 .095±.008 21.1±4.1 21.7±4.5 21.5±5.3
satimage-12v57 .028±.004 .028±.004 .028±.004 .029±.004 .052±.006 13.7±3.1 14.3±4.6 14.7±4.2
satimage-25 .022±.006 .021±.007 .021±.006 .023±.009 .033±.010 5.4±1.3 5.6±1.9 5.7±1.9
sick .015±.003 .015±.003 .016±.003 .018±.004 .018±.004 5.8±2.2 5.6±2.7 6.2±1.8
sonar .244±.052 .257±.057 .257±.040 .266±.052 .310±.051 10.9±3.5 9.9±2.7 10.9±3.5
spambase .065±.006 .066±.007 .066±.006 .068±.007 .093±.008 14.0±4.9 13.7±3.7 14.0±3.4
tic-tac-toe .128±.024 .131±.021 .128±.022 .164±.028 .212±.028 12.4±3.2 11.2±3.2 12.0±3.1
vehicle-bo-vs .226±.022 .223±.021 .229±.021 .228±.026 .257±.025 13.1±4.6 11.9±4.1 12.6±3.6
vehicle-b-v .019±.011 .020±.012 .019±.013 .027±.014 .024±.013 2.8±1.0 2.8±1.1 2.9±1.5
vote .044±.018 .046±.019 .046±.020 .047±.018 .046±.016 2.9±1.5 2.7±1.1 2.8±1.3
count of the best 15 5 9 2 0 7 13 4
w/t/l to Bagging 18/1/1 16/1/3 16/2/2 - - - - -

crossover and mutation are set arbitrarily to 0.7 and 1, respectively. The more
careful setting may achieve better results.

The comparative methods also include two baselines: Bagging which uses
the original ensemble (i.e., all 100 trained base learners), and Best Individual
(BI) which selects the base classifier with the smallest validation error. Table 1
gives the detailed results, i.e., the mean and standard deviation of test error and
ensemble size of each method on each data set. To save space, MDEP equipped
with a specific MOEA is denoted by the name of the MOEA in Table 1. For
example, NSGA-III actually means MDEP equipped with NSGA-III. Among all
the comparison methods, BI has the worst test error on all data sets, which is
consistent with the fact that an ensemble of multiple classifiers usually achieves
better generalization performance than a single classifier. From the row of “w/t/l
to Bagging”, we can observe that MDEP using any MOEA achieves a smaller
test error than Bagging on at least 80% (16/20) data sets. Furthermore, by the
Wilcoxon rank-sum test [27] with confidence level 0.1, MDEP using any MOEA
can be significantly better than Bagging on 60% (12/20) of the data sets.

By the row of “count of the best”, we can observe that MDEP using NSGA-III
achieves the smallest test error on 75% (15/20) data sets, which is better than
using other MOEAs. This may be because NSGA-III is proposed to improve
the performance of NSGA-II for problems with more objectives. Though using
NSGA-II most often achieves the smallest ensemble size, the average ensemble
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size of NSGA-III, NSGA-II, and MOEA/D on 20 data sets is similar, which is
8.66, 8.42 and 8.76, respectively. That is, MDEP using any MOEA will reduce
the original ensemble size greatly.

In conclusion, MDEP using any MOEA can result in better generalization
performance with significantly reduced ensemble size. Furthermore, using NSGA-
III leads to the best performance of MDEP, which achieves a smaller test error
with a similar ensemble size, compared with using other MOEAs.

3.3 MDEP vs. State-of-the-art Pruning Methods

Next, we compare MDEP with state-of-the-art ensemble pruning methods. Note
that MDEP uses NSGA-III here, which has been shown to be the best choice in
Section 3.2. We implement seven state-of-the-art pruning methods, including five
ordering-based methods: Reduce-Error (RE) [7], Kappa [2], ComPlementarity
(CP) [20], Margin Distance (MD) [21] and DREP [17]; two optimization-based
methods: EA [33,34] that employs a standard genetic algorithm to minimize
the validation error only, and PEP [24] that employs a simple MOEA [16] com-
bined with a local search operator to minimize the validation error and ensemble
size simultaneously. Note that EA and PEP output the pruned ensemble with
the smallest validation error from the final population [24,33,34]. The hyperpa-
rameter p of MD is set to 0.075 [21], and the hyperparameter ρ of DREP is
selected from {0.2, 0.25, . . . , 0.5} [17]. As suggested by [24], the total number of
fitness evaluations used by EA and PEP is set to n4 log n, which is much greater
than that (i.e., population size 100 × 500 #generations = 50, 000) of MDEP
as n = 100. Though this is unfair MDEP, better performance on test error and
ensemble size can still be achieved by MDEP, and will be shown later.

The average test error and ensemble size are shown in Table 2. In terms of test
error, MDEP performs the best on 65% (13/20) of the data sets, while the other
methods are at most 40% (8/20). Compared with any other method, MDEP is
better on at least 55% (11/20) of the data sets, and is never significantly worse
since no ‘◦’ appears in the upper half of Table 2. In terms of ensemble size,
MDEP and PEP perform the best on 85% (17/20) and 20% (4/20) of the data
sets, respectively, while the other methods never achieve the smallest size. This
may be because only MDEP and PEP minimize the ensemble size explicitly. EA
minimizes the validation error only, and generates ensembles with the largest size
on all data sets, which is consistent with previous observation [18,34]. Compared
with the runner-up PEP, MDEP achieves a smaller ensemble size on 80% (16/20)
of the data sets, and is significantly better on 45% (9/20) of the data sets. To sum
up, MDEP can achieve better generalization performance than other pruning
methods, while with a significantly smaller ensemble size.

We further make a more comprehensive comparison between MDEP and the
runner-up PEP [24]. We map all the solutions in their final population into the
space of test error and ensemble size. Figure 2(a) shows the results on the data
set spambase. It can be observed that MDEP obtains a much larger solution
set than PEP, with more solutions in the lower-left corner of the figure. Note
that PEP does not maintain a fixed-size population, and thus may obtain few
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Table 2: The test errors and ensemble sizes (mean+std.) of the compared meth-
ods on 20 binary data sets. The smallest error and size on each data set are
bolded, and ‘•/◦’ denotes that MDEP is significantly better/worse than the cor-
responding method by the Wilcoxon rank-sum test with confidence level 0.1.
In the rows of “count of the best”, the largest values are bolded. The “MDEP:
w/t/l” denotes the number of data sets where the test error (or ensemble size)
of MDEP is smaller, same or larger, compared to the corresponding method.

Test Error
Data Set MDEP DREP Kappa CP MD RE EA PEP Bagging BI
australian .143±.020 .144±.019 .143±.021 .145±.022 .148±.022 .144±.020 .143±.020 .144±.020 .143±.017 .152±.023•
breast-cancer .273±.035 .275±.036 .287±.037• .282±.043 .295±.044• .277±.031 .275±.032 .275±.041 .279±.037 .298±.044•
liver-disorders .312±.033 .316±.045 .326±.042• .306±.039 .337±.035• .320±.044 .317±.046 .304±.039 .327±.047• .365±.047•
heart-statlog .192±.037 .194±.044 .201±.038 .199±.044 .226±.048• .187±.044 .196±.032 .197±.037 .195±.038 .235±.049•
house-votes-84 .044±.018 .045±.017 .044±.017 .045±.017 .048±.018 .043±.018 .041±.012 .045±.019 .041±.013 .047±.016
ionosphere .083±.022 .085±.021 .084±.020 .089±.021• .100±.026• .086±.021 .093±.026• .088±.021• .092±.025• .117±.022•
kr-vs-kp .009±.003 .011±.003 .010±.003 .011±.003 .011±.005 .010±.004 .012±.004• .010±.003 .015±.007• .011±.004
letter-AH .012±.006 .014±.005• .012±.006 .015±.006• .017±.007• .015±.006• .017±.006• .013±.005 .021±.006• .023±.008•
letter-BR .045±.011 .048±.009 .048±.014 .048±.012 .057±.014• .048±.012 .053±.011• .046±.008 .059±.013• .078±.012•
letter-OQ .041±.009 .041±.010 .042±.011 .042±.010 .046±.011• .046±.011• .044±.011 .043±.009 .049±.012• .078±.017•
optdigits-b .035±.005 .035±.006 .035±.005 .036±.005 .037±.006 .036±.006 .035±.006 .035±.006 .038±.007• .095±.008•
satimage-12v57 .028±.004 .029±.004 .028±.004 .029±.004 .029±.004 .029±.004 .029±.004 .028±.004 .029±.004 .052±.006•
satimage-25 .022±.006 .022±.008 .022±.007 .021±.008 .026±.010• .023±.007 .021±.008 .021±.007 .023±.009 .033±.010•
sick .015±.003 .016±.003 .017±.003 .016±.003 .017±.003• .016±.003 .017±.004• .015±.003 .018±.004• .018±.004•
sonar .244±.052 .257±.056 .249±.059 .250±.048 .268±.055 .267±.053• .251±.041 .248±.056 .266±.052• .310±.051•
spambase .065±.006 .065±.006 .066±.006 .066±.006 .068±.007• .066±.006 .066±.006 .065±.006 .068±.007• .093±.008•
tic-tac-toe .128±.024 .129±.026 .132±.023 .132±.026 .145±.022• .135±.026 .138±.020• .131±.027 .164±.028• .212±.028•
vehicle-bo-vs .226±.022 .234±.026 .233±.024 .234±.024 .244±.024• .226±.022 .230±.024 .224±.023 .228±.026 .257±.025•
vehicle-bus-van .019±.011 .019±.013 .019±.012 .020±.011 .021±.011 .020±.011 .026±.013• .018±.011 .027±.014• .024±.013
vote .044±.018 .043±.019 .041±.016 .043±.016 .045±.014 .044±.017 045±.015 .044±.018 .047±.018 .046±.016
count of the best 13 3 5 1 0 1 4 8 2 0
MDEP: w/t/l - 14/5/1 12/7/1 17/0/3 20/0/0 16/2/2 16/2/2 11/5/4 18/1/1 20/0/0

Ensemble Size
australian 8.2±3.4 11.7±4.7• 14.7±12.6• 11.0±9.7 8.5±14.8 12.5±6.0• 41.9±6.7• 10.6±4.2• – –
breast-cancer 7.4±2.7 9.2±3.7• 26.1±21.7• 8.8±12.3 7.8±15.2 8.7±3.6• 44.6±6.6• 8.4±3.5• – –
liver-disorders 11.2±3.8 13.9±5.9• 24.7±16.3• 15.3±10.6 17.7±20.0 13.9±4.2• 42.0±6.2• 14.7±4.2 • – –
heart-statlog 7.7±2.4 11.3±2.7• 17.9±11.1• 13.2±8.2 13.6±21.1 11.4±5.0• 44.2±5.1• 9.3±2.3 – –
house-votes-84 3.0±1.4 4.1±2.7• 5.5±3.3• 4.7±4.4 5.9±14.1 3.9±4.0 46.5±6.1 2.9±1.7 – –
ionosphere 5.0±1.6 8.4±4.3• 10.5±6.9• 8.5±6.3• 10.7±14.6 7.9±5.7• 48.8±5.1• 5.2±2.2 – –
kr-vs-kp 3.8±1.4 7.1±3.9• 10.6±9.1• 9.6±8.6• 7.2±15.2 5.8±4.5 45.9±5.8 4.2±1.8 – –
letter-AH 5.1±2.0 7.8±3.6• 7.1±3.8• 8.7±4.7• 11.0±10.9 7.3±4.4• 42.5±6.5• 5.0±1.9 – –
letter-BR 9.8±2.2 11.3±3.5• 13.8±6.7• 12.9±6.8• 23.2±17.6• 15.1±7.3• 38.3±7.8• 10.9±2.6 – –
letter-OQ 9.9±2.5 13.7±4.9• 13.9±6.0• 12.3±4.9• 23.0±15.6• 13.6±5.8• 39.3±8.2• 12.0±3.7• – –
optdigits-b 21.1±4.1 25.0±8.0• 25.2±8.1• 21.4±7.5• 46.8±23.9• 25.0±9.3• 41.4±7.6• 22.7±3.1• – –
satimage-12v57 13.7±3.1 18.1±4.9• 22.1±10.3• 21.2±10.0• 37.6±24.3• 20.8±9.2• 42.7±5.2• 17.1±5.0• – –
satimage-25 5.4±1.3 7.7±3.5• 7.6±4.2• 10.9±7.0• 26.2±28.1• 6.8±3.2• 44.1±4.8 5.7±1.7 – –
sick 5.8±2.2 11.6±6.7• 10.9±6.0• 11.5±10.0• 8.3±13.6 7.5±3.9• 44.7±8.2• 6.9±2.8 – –
sonar 10.9±3.5 14.4±5.9• 20.6±9.3• 13.9±7.1 20.6±20.7 11.0±4.1 43.1±6.4 11.4±4.2 – –
spambase 14.0±4.9 16.7±4.6• 20.0±8.1• 19.0±9.9• 28.8±17.0• 18.5±5.0• 39.7±6.4• 17.5±4.5• – –
tic-tac-toe 12.4±3.2 13.6±3.4 17.4±6.5• 15.4±6.3 28.0±22.6• 16.1±5.4• 39.8±8.2• 14.5±3.8• – –
vehicle-bo-vs 13.1±4.6 13.2±5.0 16.5±8.2• 11.2±5.7 21.6±20.4 15.7±5.7• 41.9±5.6• 16.5±4.5• – –
vehicle-bus-van 2.8±1.0 4.0±3.9 4.5±1.6• 5.3±7.4 2.8±3.8 3.4±2.1 48.0±5.6 2.8±1.1 – –
vote 2.9±1.5 3.9±2.5 5.1±2.6• 5.4±5.2 6.0±9.8 3.2±2.7 47.8±6.1 2.7±1.1 – –
count of the best 17 0 0 0 0 0 0 4 - -
MDEP: w/t/l - 20/0/0 20/0/0 20/0/0 20/0/0 20/0/0 20/0/0 16/1/3 - -

final solutions, as observed. Figure 2(b) shows the non-dominated solutions in
Figure 2(a). It can be more clearly observed that for each solution obtained by
PEP, MDEP has at least one solution that can dominate it.

Since MDEP optimizes the margin distribution explicitly, we also visualize
the margin distribution of the final pruned ensemble by plotting the histogram of
the frequency on each margin. Figure 3 shows the results of MDEP and PEP on
the data set heart-statlog. It can be seen that MDEP obtains larger margins (e.g.,
margins greater than 0.7). Although MDEP also gets more very negative mar-
gins (e.g., margins no greater than −0.7), the overall frequency of non-positive
margins is less than that of PEP, implying that fewer samples are misclassified by
MDEP. Thus, MDEP achieves an overall better margin distribution, suggesting
a better generalization performance as observed before.
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Figure 2: The final solution sets of MDEP (blue stars) and PEP (red dots) in the
space of test error and ensemble size on the data set spambase. (a) All solutions.
(b) Non-dominated solutions in (a).
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Figure 3: The histogram of the margin distributions (i.e., the frequency on each
margin) obtained by MDEP and PEP on the data set heart-statlog.

3.4 Ablation Study

The above experiments have shown the clear advantage of MDEP, which employs
NSGA-III to minimize the three-objective problem in Eq. (5). Then, a natural
question is whether explicitly minimizing the margin ratio really contributes to
the advantage of MDEP. Though PEP [24] is to minimize the validation error
and ensemble size simultaneously, it employs a simple MOEA [16] combined
with local search for optimization, and thus the superiority of MDEP over PEP
cannot answer the question due to the difference of the employed optimizer.

To answer the question, we next compare the performance of the same MOEA
(i.e., NSGA-III, NSGA-II or MOEA/D) optimizing the three objectives and two
objectives (i.e., only the validation error and ensemble size), respectively. The
hyper-parameters of all MOEAs are the same as in the previous experiments.
The results are shown in Table 3. We can observe that for the same MOEA, min-
imizing the margin ratio additionally (corresponding to the columns of ‘3-obj’)
usually results in a smaller test error, which also supports the margin distri-
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Table 3: The test errors and ensemble sizes (mean+std.) of each MOEA optimiz-
ing three or two objectives on 20 binary data sets. For each MOEA on each data
set, the smaller error and size are bolded. The “3-obj vs. 2-obj: w/t/l” denotes
the number of data sets where the test error (or ensemble size) of an MOEA
optimizing three objectives is smaller, same or larger, compared to that of the
MOEA optimizing two objectives.

Test Error Ensemble Size

Data Set NSGA-III NSGA-II MOEA/D NSGA-III NSGA-II MOEA/D
3-obj 2-obj 3-obj 2-obj 3-obj 2-obj 3-obj 2-obj 3-obj 2-obj 3-obj 2-obj

australian .143±.020 .143±.019 .144±.021 .147±.022 .143±.020 .144±.022 8.2±3.4 7.0±3.1 7.5±3.3 6.7±2.6 7.5±3.1 7.9±3.2
breast-cancer .273±.035 .283±.037 .279±.038 .275±.038 .278±.035 .280±.039 7.4±2.7 5.5±2.2 6.9±1.6 5.9±1.6 6.8±2.2 5.6±2.3
liver-disorders .312±.033 .325±.043 .313±.033 .325±.040 .310±.035 .313±.040 11.2±3.8 11.5±4.2 10.6±3.7 10.2±4.1 10.9±3.3 11.6±3.9
heart-statlog .192±.037 .193±.042 .197±.040 .209±.039 .195±.040 .202±.033 7.7±2.4 6.6±2.4 7.9±.2.7 6.9±2.2 7.7±2.1 7.2±2.3
house-votes-84 .044±.018 .045±.019 .045±.019 .046±.018 .043±.020 .044±.018 3.0±1.4 2.9±1.4 3.1±1.8 2.9±1.3 3.0±1.9 2.7±1.3
ionosphere .083±.022 .092±.021 .085±.025 .095±.025 .083±.023 .090±.023 5.0±1.6 4.5±1.5 4.9±1.7 4.0±1.2 5.1±1.7 5.1±2.2
kr-vs-kp .009±.003 .010±.004 .010±.003 .010±.003 .009±.003 .010±.003 3.8±1.4 3.7±1.4 4.0±1.2 3.6±1.2 4.4±1.8 3.7±1.4
letter-AH .012±.006 .013±.006 .014±.006 .012±.006 .012±.006 .013±.005 5.1±2.0 4.7±1.7 4.9±1.9 4.9±1.8 5.1±1.7 5.1±1.5
letter-BR .045±.011 .049±.010 .047±.012 .048±.010 .048±.010 .047±.011 9.8±2.2 9.2±3.5 9.4±2.5 8.3±3.1 10.7±2.9 8.9±3.5
letter-OQ .041±.009 .046±.010 .042±.010 .044±.011 .043±.009 .045±.011 9.9±2.5 8.9±2.2 9.8±2.7 9.0±3.0 10.7±2.9 11.1±2.6
optdigits-b .035±.005 .036±.006 .034±.005 .036±.006 .037±.005 .037±.006 21.1±4.1 20.2±4.9 21.7±4.5 20.3±5.6 21.5±5.3 18.9±5.0
satimage-12v57 .028±.004 .029±.004 .028±.004 .029±.004 .028±.004 .030±.004 13.7±3.1 13.2±4.3 14.3±4.6 12.5±3.7 14.7±4.2 13.7±3.3
satimage-25 .022±.006 .022±.008 .021±.007 .022±.006 .021±.006 .022±.007 5.4±1.3 5.7±2.4 5.6±1.9 4.7±1.2 5.7±1.9 5.1±1.9
sick .015±.003 .016±.003 .015±.003 .016±.003 .016±.003 .017±.003 5.8±2.2 5.7±2.2 5.6±2.7 5.1±2.0 6.2±1.8 5.3±2.3
sonar .244±.052 .267±.071 .257±.057 .263±.064 .257±.040 .255±.048 10.9±3.5 8.5±3.5 9.9±2.7 8.6±3.4 10.9±3.5 8.8±3.3
spambase .065±.006 .067±.006 .066±.007 .066±.005 .066±.006 .067±.007 14.0±4.9 15.1±4.8 13.7±3.7 12.2±3.7 14.0±3.4 14.2±3.9
tic-tac-toe .128±.024 .133±.024 .131±.021 .135±.024 .128±.022 .137±.020 12.4±3.2 11.0±3.5 11.2±3.2 10.7±3.6 12.0±3.1 12.4±3.2
vehicle-bo-vs .226±.022 .228±.023 .223±.021 .225±.019 .229±.021 .233±.024 13.1±4.6 13.7±5.0 11.9±4.1 11.1±4.1 12.6±3.6 12.1±5.1
vehicle-b-v .019±.011 .021±.013 .020±.012 .018±.012 .019±.013 .019±.013 2.8±1.0 2.7±1.1 2.8±1.1 2.8±1.1 2.9±1.5 2.8±1.2
vote .044±.018 .045±.020 .046±.019 .045±.019 .046±.020 .045±.017 2.9±1.5 2.7±1.2 2.7±1.1 2.7±1.1 2.8±1.3 2.5±1.1
3-obj vs. 2-obj: w/t/l 18/2/0 14/2/4 15/2/3 4/0/16 0/3/17 5/2/13

bution theory [14,19]. We note that the ensemble size obtained by optimizing
the three objectives is relatively larger, which may be because a solution with a
larger ensemble size is easier to be dominated under the bi-objective formulation.
In fact, the difference in the ensemble size is very small. For the three-objective
formulation, the average ensemble size of NSGA-III, NSGA-II and MOEA/D on
the 20 data sets is 8.66, 8.42 and 8.76, respectively; while for the bi-objective
formulation, the average size is 8.15, 7.66 and 8.20, respectively. Furthermore,
as shown in Section 3.3, the ensemble size achieved by NSGA-III under the
three-objective formulation is still significantly smaller than other state-of-the-
art pruning methods. Thus, these results give a positive answer, i.e., confirm
that optimizing the margin distribution explicitly brings advantages.

4 Conclusion

In this paper, we introduce the three-objective (i.e., validation error, margin
ratio and ensemble size) formulation of ensemble pruning, and propose a new
optimization-based ensemble pruning method MDEP, which employs MOEAs to
solve the three-objective problem. Experimental results show that MDEP using
NSGA-III is better than using NSGA-II and MOEA/D, and more importantly,
it can outperform state-of-the-art pruning methods significantly in both gener-
alization performance and ensemble size. In the future, it would be interesting to
perform theoretical analysis [35], as well as to design the components of MDEP
more carefully or apply more advanced MOEAs, which may bring further per-
formance improvement.
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