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Abstract
Recently there are great efforts on leveraging machine learn-
ing and logical reasoning. Many approaches start from a
given knowledge base, and then try to utilize the knowl-
edge to help machine learning. In real practice, however, the
given knowledge base can often be incomplete or even noisy,
and thus, it is crucial to develop the ability of knowledge
refinement or enhancement. This paper proposes to enable
the Abductive learning (ABL) paradigm to have the ability
of knowledge refinement/enhancement. In particular, we fo-
cus on the problem that, in contrast to closed-environment
tasks where a fixed set of symbols are enough to represent
the concepts in the domain, in open-environment tasks new
concepts may emerge. Ignoring those new concepts can lead
to significant performance decay, whereas it is challenging to
identify new concepts and add them to the existing knowl-
edge base with potential conflicts resolved. We propose the
ABLnc approach which exploits machine learning in ABL to
identify new concepts from data, exploits knowledge graph
to match them with entities, and refines existing knowledge
base to resolve conflicts. The refined/enhanced knowledge
base can then be used in the next loop of ABL and help im-
prove the performance of machine learning. Experiments on
three neuro-symbolic learning tasks verified the effectiveness
of the proposed approach.

1 Introduction
Integrating data-driven machine learning and knowledge-
driven reasoning in a unified framework is considered to
be one of the keys to the next generation of Artificial In-
telligence (AI). Recent years have witnessed representative
progress in this direction such as Neuro-Symbolic (NeSy)
Learning (Garcez et al. 2019; Raedt et al. 2020) and Sta-
tistical Relational AI (StarAI) (Raedt et al. 2016). Most of
them try to build a neural network structure or a proba-
bilistic graphical model based on domain knowledge ex-
pressed in first-order logic. Probabilistic Logic Program
(PLP) (De Raedt and Kimmig 2015) extends first-order logic
to accommodate a probability distribution in Herbrand Uni-
verse to conduct probabilistic inference.

Recently, some researchers propose to build a hybrid
model, which usually consists of a perception model for ma-
chine learning and a reasoning model for logical reasoning.
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Representative frameworks include DeepProbLog (Man-
haeve et al. 2018) and ABductive Learning (ABL) (Zhou
2019; Zhou and Huang 2022), in which the perception
model learns to convert raw data into primitive logic facts,
serving as input to symbolic reasoning; while the reason-
ing model tries to infer the truth-value of the perceived logic
facts based on a given knowledge base, for updating the per-
ception model. The integration of the two systems is realized
by abduction, also known as abductive reasoning.

Most of the above methods focus on closed-environment
tasks, where a fixed and complete set of symbols represent-
ing the primitive concepts in domain are predefined in the
knowledge base. In other words, they assume that the knowl-
edge base has contained all possible primitive concepts in
the task, and the logic facts to be perceived from incoming
data must be an instance of these predefined concepts. For
example, when trying to learn whether a handwritten arith-
metic equation is correct, the system is already provided
with all the symbols of the numbers and operator symbols
that could appear in the data.

In real-world applications, the environment we encounter
is usually open and dynamic, a major challenge of which is
the emerging new concepts (Zhou 2022). Hence, it is crucial
for machine learning to enquire the ability to identify and
internalize the emerging new concepts, otherwise the model
would treat all the instances of new concepts as known ones
and degrades the performance.

The first difficulty lies in how to detect new concepts
while preserving the model performance on known con-
cepts (Zhou 2022). The old background knowledge needs
to be enhanced and refined to incorporate the discovered
new concepts, whose semantics will be expressed by a set
of newly induced/abduced logic clauses that may conflict
with the current background knowledge base. Furthermore,
researchers have pointed out that adding arbitrary new rules
to an existing knowledge base might harm the interpretabil-
ity of the model (Ai et al. 2021). Therefore, the semantics
of the new concepts should be reflected in their names with
meaningful words instead of meaningless symbols for better
human understanding.

This paper proposes to tackle the above challenges with
ABLnc (ABductive Learning with New Concept). It first
leverages machine learning to monitor the distribution
change in raw feature space and identify the instances of
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new concepts. Then it conducts a rule induction process to
figure out the relations between the detected new concepts
and the known concepts. A conflict resolution process is
taken when there is a conflict between the induced rules
and knowledge base, after which the rules involving the new
concepts are merged into the knowledge base. Then ABLnc

continues abductive learning to improve the performance of
machine learning by exploiting the refined knowledge base.
The above routine repeats iteratively. As a post-learning pro-
cess, ABLnc tries to match the new concepts to correspond-
ing entities in a large-scale commonsense knowledge graph.

We verify the effectiveness of ABLnc on three neuro-
symbolic tasks. Experimental results show that ABLnc can
learn correct definitions of the new concepts from data and
resolve the conflicts in knowledge base. The performance
of perception model also improves during abductive learn-
ing with the refined knowledge base. Moreover, the new
concepts could be matched to proper entities in knowledge
graphs, which assign human-understandable names instead
of denoting them with meaningless symbols.

2 Related Work
Probabilistic Logic Program (PLP) (De Raedt and Kim-
mig 2015) and Statistical Relational Learning (SRL) (Koller
et al. 2007; Raedt et al. 2016) are two representative
paradigms for unifying machine learning and logical rea-
soning. PLP tries to extend first-order logic to accommo-
date probabilistic groundings such that probabilistic infer-
ence can be conducted; SRL attempts to use domain knowl-
edge expressed in first-order logic to construct a probabilis-
tic graphical model structure for statistical inference. Neuro-
Symbolic (NeSy) Learning (Garcez et al. 2019; Raedt et al.
2020) shares the same motivation with SRL, where the ex-
ternal domain knowledge is used for building an explain-
able neural structure. Recently, some novel approaches that
try to build a hybrid model have been proposed, including
DeepProbLog (Manhaeve et al. 2018), Abductive Learning
(ABL) (Dai et al. 2019; Zhou 2019) and Neural-Grammar-
Symbolic model (Li et al. 2020).

Recent progress on ABL (Dai and Muggleton 2021) has
shown its capability of rule induction with incomplete back-
ground knowledge, in which the set of primitive logic facts
is fixed and manually predefined. In contrast, ABLnc tries
to solve a totally different type of problem in which: 1) the
new concepts to be discovered are undefined in the knowl-
edge base; 2) the new concepts could appear in the percep-
tion level and have to be discovered by the perception model;
3) the incorporation of the newly induced rules into the old
knowledge base involves conflict resolution.

Inductive Logic Programming (ILP) (Muggleton and
De Raedt 1994) is a subfield of symbolic artificial intelli-
gence, where the goal is to learn a logic theory that general-
izes given training examples. ILP can learn human-readable
hypotheses from small amounts of data in the form of logic
program. Representative ILP systems include ILASP (Law,
Russo, and Broda 2015), Metagol (Muggleton, Lin, and
Tamaddoni-Nezhad 2015), ALEPH (Srinivasan 2001) and
the recently proposed Popper (Cropper and Morel 2021).

These ILP systems are designed for learning from symbol-
ized data. Otherwise, they need to use fully trained machine
learning models to extract symbols from the raw inputs.

The exploitation of incremental learning has been stud-
ied in both machine learning and ILP. In machine learn-
ing which usually involves sub-symbolic data, incremental
learning aims to update the models from data stream se-
quentially and has achieved many successes (Zhou and Chen
2002; Masana et al. 2020). Learning with emerging new
classes is a kind of incremental learning, where a lot of ap-
proaches have been developed (Ma and Perkins 2003; Mu,
Ting, and Zhou 2017; Zhang et al. 2020). In ILP which pro-
cesses symbolic inputs, this process is also known as Theory
Revision (Wrobel 1996; Esposito et al. 2000) or Bias Refor-
mulation (Lin et al. 2014), where the learner alters previ-
ously inferred knowledge to fit new observations in order
to exploit previous computations. Our approach handles raw
input in sub-symbolic representations, and requires learning
symbolic logic programs for new concepts, which cannot be
directly solved by previous methods.

Knowledge graphs (KG) are structured representations of
human knowledge that model information in the form of
a graph. We use the RDF (Resource Description Frame-
work) KGs (Schreiber and Raimond 2014), which contain
triplets of entities (nodes) and relationships between them
(edges). Recently, representation learning has shown its abil-
ity to capture KG semantics in vector space, and uses the
acquired embeddings for downstream tasks such as link pre-
diction (Wang et al. 2017). Note that although KGs may con-
tain desired knowledge about unknown concepts, we could
not directly exploit them because most of them are irrelevant
and will result in low reasoning efficiency.

3 Abductive Learning
3.1 Inference
The ABductive Learning (ABL) (Zhou 2019; Zhou and
Huang 2022) framework consists of a perception model f
and a reasoning model. The perception model f maps the
raw input data x into discrete symbols z. The reasoning
model contains a knowledge base KB consisting of first-
order logic rules, which receives z and inferences the final
output y by logical reasoning. For example, given the rules
of even and odd numbers, the reasoning model would output
a ground fact y = odd when the input fact is z = [7, 9], and
y = even when z = [0, 2]. Figure 1(a) gives an example of
the inference process in the experiment (cf. Section 5.3).

3.2 Learning
Formally, given unlabeled data X = {x⟨1⟩,x⟨2⟩, . . .},
knowledge base KB and the final desired output Y =
{y⟨1⟩, y⟨2⟩, . . .}, we are required to learn f that predicts
the labels z of the x that together with KB entail y. ABL
first obtains the symbolic predictions z = f(x) as pseudo-
labels. Then the reasoning model with KB tries to revise
the pseudo-labels z by abduction (i.e., abductive reasoning),
a basic form of logical inference that seeks an explanation
for observed phenomena. Finally, ABL uses the abduced la-
bels z̄ to update f , and the above routine repeats iteratively.
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Figure 1: An example of the inference and learning process of ABL. In the inference stage, the input data is a list of digit
images, and the final output is the reasoning result of predicted symbols. In the learning stage, the reasoning model abduces
revised pseudo-labels, which are then used to update the perception model.

For example, consider the knowledge base in Figure 1(b)
containing the following logic rule:

even([X1, X2])← divisible(X1, 2) ∧ divisible(X2, 2),
(1)

where “∧” denotes conjunction (and); “←” is implication,
which means that if condition (body) on the right of “←”
holds, then consequent (head) on the left holds. Rule (1)
means [X1, X2] is a list of (single-digit) even numbers if
both X1 and X2 are divisible by 2. The pseudo-labels z =
[1, 2] in Figure 1(b) are inconsistent with KB, since they
do not entail even. Then the reasoning model revises z to
z̄ = [0, 2] by abduction, which are used to update f .

4 The ABLnc Approach
In this section, we introduce our ABLnc (ABductive Learn-
ing with New Concept) method, which tackles the emerging
new concepts in data under the ABL framework.

4.1 Problem Setting
We are given a knowledge base KB containing domain
knowledge about known concepts, an initial perception
model f that has been trained with some labeled data of the
known concepts, and a large-scale knowledge graph KG.
Each pseudo-label concept z ⊆ Z of the perception model
f can be represented by a constant (e.g., 9) or a ground
atom (e.g., nine(image)) in KB, while each target concept
y ∈ Y of the reasoning model is represented by a predi-
cate defined by first-order logic rules in KB, e.g., even(X).
Each example x ∈ X comes with the corresponding target
output y ∈ Y , with no supervision on pseudo-labels z.

The new concepts come in the learning stage, after which
the model f and knowledge base KB could be refined to
adapt to the new environment. Since new concepts might
emerge while performing perception or reasoning, we split
the problem into two cases: 1) new concepts emerge at per-
ception level and 2) new concepts emerge at reasoning level.
Figure 2 shows the setting of ABLnc.

New Concepts at Perception Level. When a new con-
cept emerges at perception level, it leads to an augmented
pseudo-label space Z = Znew ∪ Z of the perception model
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Figure 2: The setting of ABLnc, where new concepts could
emerge at perception or reasoning level.

f , which classifies instances either to one of the known or
the new concepts. In this setting, the ABLnc is required to:
• Update f to accurately predict known and new concepts
• Learn rules about the new concepts and refine KB

• Match new concepts to corresponding entities in KG

For example, encountering a new concept 9 in Figure 2, we
have to update perception model f to accurately recognize
it, and refine logic rules in knowledge base KB so that it
could conduct logical reasoning correctly. The concepts of
new digits would serve as attributes in the body of corre-
sponding logic rules. The third goal is necessary for users to
better understand the new concepts, e.g., number 9 conveys
more information than a meaningless symbol (e.g., new).
Furthermore, the matched entity could bring external knowl-
edge from KG to improve KB.

New Concepts at Reasoning Level. Similarly, an emerg-
ing new concept at reasoning level requires an augmented la-
bel space Y = Ynew∪Y of the reasoning model, which con-
ducts logical reasoning with KB and entails ground facts of
a known concept or the new concept. The goals are similar to
the previous setting, where the first goal becomes updating f
using unlabeled data X . The new concepts would be target
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predicates in the head of logic rules. Note that this setting is
different from the rule induction problem in (Dai and Mug-
gleton 2021) since the new concepts Ynew may conflict with
existing Y and thus a theory revision to KB is required.

These two tasks turn out to be quite challenging: on the
one hand, it is difficult for the perception model f to perform
correct classification with no labeled data of new concepts;
on the other hand, the knowledge base KB contains zero
knowledge about new concepts and hard to conduct logic in-
ference. Moreover, it usually happens that the learned rules
of new concepts may conflict with the original KB.

4.2 ABLnc Overview
We propose the ABLnc approach, which handles new con-
cepts at perception level and reasoning level in a unified way.
The learning involves three components: new concepts de-
tection, knowledge refinement and abductive learning, fol-
lowed by a post-learning process of KG concept matching.

New Concepts Detection. For the new concepts emerg-
ing at perception level, the model f would inevitably make
wrong predictions due to the absence of labeled data. In this
situation, ABLnc first exploits a new class detection model
g to roughly identify new concepts from data, which serve
as labeled data of new concepts to update f . In this step, the
pseudo-labels z of instance x are calculated as:

z =

{
new, g(x) = 1

f(x), g(x) = 0
(2)

where new is the label of new concepts, and g(x) indicates
whether x is identified as a new concept. Note that since the
new class detector g might misclassify known concepts as
new ones, it is only used in the first ABL iteration.

Knowledge Refinement. The knowledge refinement in-
volves rule learning and conflict resolution. Getting the
pseudo-labels Z and final output Y , ABLnc first tries to
learn rules R about the new concepts. Since R and KB are
both logic programs, the task could be formulated as Induc-
tive Logic Programming (ILP) (Muggleton and De Raedt
1994). If new concepts emerge at perception level, ABLnc

treats samples with the same final output y as positive ex-
amples and the rest as negative ones. For new concepts at
reasoning level, ABLnc regards samples with new concepts
y ∈ Ynew as positive examples and the rest as negative.

The learned rules R, especially the ones describing new
concepts at reasoning level, may conflict with KB’s rules of
known concepts. ABLnc employs conflict detection between
R and KB. If a conflict happens, a conflict resolution pro-
cedure is conducted, after which KB is refined by rules of
new concepts. Note that inserting the R into KB may dam-
age performance if R is low-quality. In this situation, ABLnc

could resort to human experts for manual checking.

Abductive Learning. The last step involves abductive
learning (Zhou 2019; Zhou and Huang 2022). The reason-
ing model in ABLnc tries to revise the pseudo-labels Z by
abduction based on the refined KBnew. The abduction is
conducted based on the principle of minimal inconsistency

Algorithm 1 ABLnc

Input: Perception model f ; New class detection model g;
Knowledge base KB; Knowledge graph KG; Unlabeled
data X; Desired output Y
Output: Perception model f ; Knowledge base KBnew; new
concepts name c

1: for i = 1 to turn limit do
2: if i == 1 and new concepts at perception level then
3: Z = merge g(X) and f(X) based on Eq. (2)
4: else
5: Z = f(X)
6: end if
7: R = LearnRule(Z, Y ) # Rules of new concepts
8: if ConflictDetection(KB,R) then
9: KBnew = ConflictResolution(KB,R)

10: else
11: KBnew = KB ∪R
12: end if
13: Z̄ = Abduce(KBnew,Z, Y )
14: f = Update(f,X, Z̄)
15: end for
16: c = MatchKG(KG,Z, R)
17: return f , KBnew, c

between revised pseudo-labels Z̄ and KBnew, where vari-
ous consistency measure (Dai et al. 2019; Huang et al. 2020;
Cai et al. 2021; Huang et al. 2021) could be used. Then the
revised labels are used as ground-truth to update f .

The above three steps repeat iteratively. Algorithm 1
shows an outline of ABLnc. By revising the pseudo-labels
by learned rules R, the quality of pseudo-labels is improved,
leading to a better performance of the perception model
f . The perception model f in turn produces higher quality
pseudo-labels, which benefit the learning of R. Therefore,
by model update and knowledge refinement, the perception
and reasoning model in ABLnc could benefit each other and
tackle the arrival of new concepts. The last step of ABLnc

involves matching new concepts in knowledge graph.

4.3 Conflict Resolution
Conflict Detection. Without loss of generality, we assume
that the head of each rule represents the output concept y ∈
Y , e.g., even(X).

Definition 1 (Conflict Rules) Two rules r1 and r2 are con-
flict rules, if (i) their head predicates represent different con-
cepts y, and (ii) there exists a sample z such that the head
of r1 and r2 hold at the same time.

For example, consider the rule of new concepts “multiples
of three” (all digits in the list are multiples of 3):

new([X1, X2])← divisible(X1, 3) ∧ divisible(X2, 3).
(3)

It conflicts with a known rule of even (all digits are even):

even([X1, X2])← divisible(X1, 2) ∧ divisible(X2, 2),
(4)
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Algorithm 2 Conflict Resolution
Input: Knowledge base KB; Rule set R
Output: Knowledge base KBnew

1: for rnew ∈ R with new concepts in rule do
2: for rknown ∈ KB with known concepts in rule do
3: if head(rnew) == head(rknown) then
4: continue
5: end if
6: conflict = (body(rnew) ∧ body(rknown)) # An

example has multiple facts in Y
7: if Satisfiable(KB ∪ conflict) then
8: rknown = (head(rknown) ← body(rknown) ∧

¬body(rnew))
9: end if

10: end for
11: end for
12: KBnew = KB ∪R
13: return KBnew

because if [X1, X2] = [6, 6], the new concept y = new and
the known concept y = even hold simultaneously, causing
a conflict because there are only one ground fact y of each
example. In this case, the desired output should be y = new
because the new concepts have higher priority.

For conflict detection (cf. Line 8 in Algorithm 1), we
check if there exists an input z that satisfies two different
target concepts y1, y2 ∈ Y simultaneously. Note that if we
allow an example to be satisfied by multiple target concepts
(i.e., adopting the multi-label classification setting), the con-
flict detection and resolution processes could be skipped.

Conflict Resolution Algorithm. We propose a conflict
resolution algorithm shown in Algorithm 2. Since KB con-
tains correct domain knowledge of known concepts, the con-
flict only exists between R and KB. If a new rule rnew and a
known rule rknown cause a conflict, we resolve it by adding
the negation of rnew’s body to the body of rknown, i.e., a
kind of specialization operator (Muggleton and De Raedt
1994). Note that in this step, a substitution operation is re-
quired to replace the variables of the added body. Follow-
ing the above example, after simplification, the rule of even
would be changed to:

even([X1, X2])←divisible(X1, 2) ∧ divisible(X2, 2)∧
¬divisible(X1, 3). (5)

even([X1, X2])←divisible(X1, 2) ∧ divisible(X2, 2)∧
¬divisible(X2, 3). (6)

Proposition 1 No conflict rules exist in KBnew after Algo-
rithm 2.

The conclusion is clear because the algorithm modifies
rknown’s body such that the bodies of rnew and rknown can-
not cover the same examples.

4.4 New Concept Matching in KG
Algorithm 3 shows the procedure of matching new concepts
in knowledge graph (KG). To find an entity in a large-scale

Algorithm 3 Matching Knowledge Graph
Input: Knowledge graph KG; Symbols Z; Rule set R
Output: new concept name c

1: KG′ = BFS(KG, d) # Sub-graph depth d
2: ϕ = KGEmbed(KG′)
3: T = ConvertTriplet(Z, R)
4: E = Entity(KG′)
5: c = MaxScoreEntity(E, ϕ, T )
6: return c

𝑙𝑒𝑠𝑠( , ) ¬𝑙𝑒𝑠𝑠( , )

𝑙𝑒𝑠𝑠( , ) ¬𝑙𝑒𝑠𝑠( , )

𝑠𝑢𝑐𝑐 𝑋, 𝑌 ← 𝑧𝑒𝑟𝑜 𝑋 ∧ 𝑜𝑛𝑒(𝑌).
⋯
𝑙𝑒𝑠𝑠(𝑋, 𝑌) ← 𝑠𝑢𝑐𝑐(𝑋, 𝑌).
𝑙𝑒𝑠𝑠 𝑋, 𝑍 ← 𝑙𝑒𝑠𝑠 𝑋, 𝑌 ∧ 𝑙𝑒𝑠𝑠(𝑌, 𝑍).

Figure 3: Dataset and knowledge in Less-Than with New
Digits experiment.

.

knowledge graph KG that matches the properties of the new
concepts, it is unnecessary and inefficient to use the en-
tire KG. ABLnc first extracts a sub-graph KG′ of KG by
Breadth-First Search (BFS) with depth d, starting from an
entity node that represents the task, e.g., number or chess
in our experiments.

ABLnc then trains a knowledge graph embedding model
ϕ on the KG′, which turns entities and relations into low-
dimensional vectors. The embedding model ϕ can score a
given triplet (h, r, t), where the higher score ϕ(h, r, t), the
higher probability that the triplet holds.

The next step is converting labels and rules of new con-
cepts into a set of triplets T . The basic idea is converting
literals in learned rules R to KG triplets. For example, in
the experiment of Chess with New Pieces (cf. Section 5.2),
the rule attack(V 1, P, V 2) ← new(P ) ∧ diag(V 1, V 2) is
converted to triplet (new,UsedFor,moving diagonally).

As a result, ABLnc finds an entity in the sub-graph KG′

that has the maximum score. This process is formalized as:

max
e∈E

∑
(h,r,t)∈T

ϕ(e, r, t), (7)

where E is the set of entities in the KG′, and (e, r, t) is the
triplet that replaces the new concept symbol h in the original
triplet by an entity e ∈ E. An entity c with a maximum score
of replaced triplets is returned.

5 Experiments
This section presents the experimental results on three
neuro-symbolic tasks, to demonstrate that ABLnc could han-
dle new concepts with improved model performance, and
match the corresponding entities in the external knowledge
graph. All experiments are repeated ten times on a server
with Intel Xeon Gold 6242R CPU and Nvidia RTX 3090
GPU. The hyperparameters of ABLnc are determined by
cross-validation on training data. The code is available for
download1.

1https://github.com/AbductiveLearning/ABL nc
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Task Less-Than with New Digits Chess with New Pieces Multiples of Three

Perception Acc. Reasoning Acc. Perception Acc. Reasoning Acc. Perception Acc. Reasoning Acc.

CNN 0.889±0.006 0.915±0.016 0.831±0.001 0.558±0.029 0.903±0.008 0.601±0.019
CNNnew 0.946±0.014 0.876±0.013 0.924±0.014 0.910±0.006 0.903±0.008 0.323±0.012

ABL 0.959±0.015 0.904±0.009 0.930±0.015 0.937±0.009 0.938±0.005 0.639±0.011
ABLnc 0.975±0.005 0.986±0.005 0.990±0.006 0.984±0.005 0.960±0.008 0.963±0.004

Table 1: Test accuracy on perception and reasoning of different methods.

New Concept Less-Than with New Digits Chess with New Pieces Multiples of Three

zero one two . . . nine bishop king queen multiples of three

Entity 0 1 2 . . . 9 chess bishop chess king - multiple of 3

Table 2: Matched entities of new concepts in each task.

5.1 Less-Than with New Digits
Dataset. This is a novel dataset proposed in this paper
for studying new concepts at perception level, as shown in
Figure 3. An input example is a pair of handwritten digits,
along with weak supervision that indicates whether the first
digit is less than the second one. The dataset consists of 10k
pairs of images, where the digits are randomly generated and
their images are randomly sampled from the training set of
MNIST. We randomly select a digit from 0 - 9 as the emerg-
ing new concepts at perception level, and report their aver-
age performance.

Perception and Reasoning Model. Before new concepts
emerge, the initial machine learning model has been trained
by known concepts, i.e., it could recognize digits 0 − 9 ex-
cept the new concept. We employ a convolutional neural net-
work (CNN) as the perception model. Local Outlier Factor
(LOF) (Breunig et al. 2000) is used as the new class de-
tector. The knowledge base only contains domain knowl-
edge of known concepts, implemented by an answer set
program (ASP) (Lifschitz 2002). The right part of Figure 3
gives some sample rules. We use ILASP (Inductive Learn-
ing of Answer Set Programs) (Law, Russo, and Broda 2015)
as the ILP system, and use a knowledge graph embedding
model (Liu et al. 2022) based on Transformer.

Compared Methods. We compare ABLnc with three
baselines: 1) CNN: The initial model that can only recognize
known digits and contains only knowledge of known con-
cepts, serving as a baseline in our experiment. 2) CNNnew:
A model where the perception model is updated on the new
class detector’s prediction, while the knowledge base re-
mains the same. 3) ABL (Dai et al. 2019): Abductive learn-
ing where the perception model is first updated on the new
class detector’s prediction, and conducts abductive learning
based on the initial knowledge base without adding knowl-
edge of new concepts. We do not compare other hybrid
neuro-symbolic systems like DeepProbLog (Manhaeve et al.
2018) and NGS (Li et al. 2020) since they assume no new
concepts would appear in learning stage and would exhibit
similar performance as ABL.

Results. The accuracy of perception and reasoning are
shown in Table 1. The CNN baseline has the lowest accu-
racy, indicating that the emerging new concepts deteriorate
the model performance. Although CNNnew has a higher per-
ception accuracy than CNN by leveraging the prediction of
new class detector, the reasoning accuracy is even inferior
to CNN, probably due to the noise in new class detector.
The ABL method performs better than CNNnew because ab-
duction would revise the misclassified examples, but it still
suffers from lack of new concept knowledge. ABLnc signif-
icantly outperforms others by perception and reasoning abil-
ity because it could update perception and reasoning model
simultaneously to handle the new concepts.

The learned rules after convergence are:

succ(X,Y )←seven(X) ∧ new(Y ). (8)
succ(X,Y )←new(X) ∧ nine(Y ). (9)

It is obvious that ABLnc has successfully learned correct
rules, where Rule (8) means the new concept (digit 8) is a
succeeding number of seven, and Rule (9) means nine is a
succeeding number of the new digit. There is no conflict be-
tween learned rules and knowledge base, and therefore the
learned rules could directly be merged into KB.

We try to discover what the new concepts represent from
ConceptNet (Speer, Chin, and Havasi 2017), a common-
sense KG containing 34 million edges, and results are shown
in Table 2. Learned rules such as (8) are converted into
triplets like (new,IsA, higher number than 7). ABLnc

successfully matches all the new concepts with correspond-
ing entities, which provides the end-user with semantic
meanings and helps the rules become more interpretable.

5.2 Chess with New Pieces
Dataset and Setting. The Chess dataset is a more chal-
lenging one, which comes from the extended n-queens task
in ABL (Dai et al. 2019) and contains 10k input examples, as
shown in Figure 4. The inputs are images of randomly gen-
erated chessboards that contain several chess pieces (queen,
king, bishop, knight, pawn, rook) and the associated labels
are the validity of each board, where pieces are represented
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Positive Example
(no attack)

Negative Example
(attack)

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ← 𝑎𝑡𝑡𝑎𝑐𝑘 𝑉1, 𝑃𝑖𝑒𝑐𝑒1, 𝑉2 ∧
𝑎𝑡 𝑉1, 𝑃𝑖𝑒𝑐𝑒1 ∧ 𝑎𝑡 𝑉2, 𝑃𝑖𝑒𝑐𝑒2 .

𝑎𝑡𝑡𝑎𝑐𝑘 𝑉1, 𝑃𝑖𝑒𝑐𝑒, 𝑉2 ←
𝑘𝑖𝑛𝑔 𝑃𝑖𝑒𝑐𝑒 ∧ 𝑜𝑛𝑒_𝑚𝑜𝑣𝑒 𝑉1, 𝑉2 .

𝑎𝑡𝑡𝑎𝑐𝑘 𝑉1, 𝑃𝑖𝑒𝑐𝑒, 𝑉2 ←
𝑏𝑖𝑠ℎ𝑜𝑝 𝑃𝑖𝑒𝑐𝑒 ∧ 𝑑𝑖𝑎𝑔(𝑉1, 𝑉2).

⋯

Figure 4: Dataset and knowledge in Chess with New Pieces
experiment.

𝑎𝑡𝑡𝑎𝑐𝑘 𝑉1, 𝑃, 𝑉2 ← 𝑛𝑒𝑤 𝑃 , 𝑟𝑖𝑔ℎ𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑉1, 𝑉3 , 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑉3, 𝑉2 .
𝑎𝑡𝑡𝑎𝑐𝑘 𝑉1, 𝑃, 𝑉2 ← 𝑛𝑒𝑤(𝑃), 𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑉2, 𝑉3), 𝑙𝑒𝑓𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑉3, 𝑉1).
𝑎𝑡𝑡𝑎𝑐𝑘 𝑉1, 𝑃, 𝑉2 ← 𝑛𝑒𝑤(𝑃), 𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑉3, 𝑉2), 𝑙𝑒𝑓𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑉1, 𝑉3).
𝑎𝑡𝑡𝑎𝑐𝑘 𝑉1, 𝑃, 𝑉2 ← 𝑛𝑒𝑤(𝑃), 𝑙𝑒𝑓𝑡(𝑉3, 𝑉1), 𝑟𝑖𝑔ℎ𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑉3, 𝑉2).

(6 rules)
…

(8 rules)
𝑎𝑡𝑡𝑎𝑐𝑘 𝑉1, 𝑃, 𝑉2 ← 𝑛𝑒𝑤(𝑃), 𝑙𝑒𝑓𝑡(𝑉2, 𝑉3), 𝑟𝑖𝑔ℎ𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑉1, 𝑉3).
…
𝑎𝑡𝑡𝑎𝑐𝑘 𝑉1, 𝑃, 𝑉2 ← 𝑛𝑒𝑤(𝑃), 𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑉2, 𝑉3), 𝑟𝑖𝑔ℎ𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑉3, 𝑉1).

Training 
epochs

Figure 5: Learned rules during training in Chess with New
Pieces experiment.

by randomly sampled MNIST images. The knowledge base
includes rules about chess piece moves of known concepts.
We choose knight as the new concept at perception level
since its moves are the most complicated. Other experimen-
tal setups are the same as the first task.

Results. The results are shown in the middle of Table 1.
With the emerging of new concepts, the performance of rea-
soning model drops to nearly 0.5, indicating the difficulty
of this task. ABL is superior to CNNnew because although
the given knowledge base lacks knowledge of new concepts,
the perception model still benefits from it by abduction of
known concepts. After updating machine learning model
and reasoning model simultaneously, the proposed ABLnc

converges and achieves higher accuracy than other methods.
Figure 5 illustrates the learned rules of new concept

knight as training goes on. At first, ABLnc only learns four
rules about which position the knight can move to, because
of the low perception accuracy of new concept when it
first appears. However, by abducing based on an incomplete
knowledge base, the perception accuracy of new concepts
is gradually improving during training, which in turn helps
the reasoning model learn more complete rules. When the
training converges, ABLnc successfully learns all possible
moves of the new concepts knight.

As shown in Table 2, ABLnc successfully matches
the corresponding “chess king” and “chess bishop” in
KG for new concepts, and fails to match the remaining
new concepts such as queen. We find that the conver-
sion of new concepts to triplets plays an important role.
ABLnc would fail to match if the entities of converted
triplets do not exist in KG. For example, if the converted
triplet is (new,UsedFor,moving in a straight line),
ABLnc would fail, while if the triplet becomes
(new,UsedFor,moving in direction), ABLnc would
succeed. It remains an open problem on how to effectively
convert rules to triplets, we regard it as future work.

5.3 Multiples of Three
Dataset and Setting. The Multiples of Three dataset is
proposed to test the ability to handle conflicts of new con-
cepts rules in neuro-symbolic systems, where the new con-
cepts emerge at reasoning level. It contains 10k examples,
as shown in Figure 1 and case 1 of Figure 2, where the in-
puts include a list of single-digit MNIST numbers and the
associated labels z. The labels z include odd, even and the
new concept “multiples of three”, as described in Sec-
tion 4.3. As usual, labels of each digit are unknown. The ini-
tial knowledge base contains definitions of odd, even, and
the initial perception model has been trained by 5% labeled
MNIST images. We are required to learn the definition of
new concepts and improve perception model. Different from
previous experiments, since new concepts emerge at reason-
ing level, CNNnew means using pseudo-labels of digits for
learning rules of new concepts, and adding them directly to
knowledge base. Other experimental setups remain the same
as the previous experiments.

Results. The accuracy of all models is shown in Table 1.
Both the perception accuracy of ABL and ABLnc improve
compared with CNN, showing the benefit of abduction.
However, the lack of knowledge of new concepts results in
inferior perception and reasoning accuracy in ABL. CNNnew
could learn part of the definition of new concepts, but the
learned rules conflict with knowledge base and therefore
dramatically degrade the reasoning performance. ABLnc

not only achieves the best perception and reasoning perfor-
mance, but also refines the knowledge base by conflict res-
olution. Besides, we investigate the learned rule of ABLnc,
and find that it has learned the correct rules as Eq. (3). Af-
ter conflict resolution, the rules of known concepts even and
odd are indeed refined as Eq. (5) - (6), leading to a knowl-
edge base without conflict rules.

Table 2 shows the matched entity in an augmented Con-
ceptNet (details provided in appendix). The new concepts is
successfully matched to “multiple of 3” in KG, providing
a comprehensive understanding for human.

6 Conclusion
In this paper, we propose an approach to enable the Abduc-
tive learning paradigm to have the ability of knowledge re-
finement/enhancement. In detail, we propose ABLnc (AB-
ductive Learning with New Concept), in which the knowl-
edge base is refined by conflict resolution of the learned
rules of new concepts, while perception model is updated by
abductive learning based on the augmented knowledge base.
Moreover, the new concepts are matched with proper enti-
ties in knowledge graph. Experimental results on three tasks
demonstrate that ABLnc could adapt to emerging new con-
cepts, leading to higher model performance and better hu-
man understanding. ABLnc is a general-purposed approach
with sufficient flexibility in implementation, e.g., the ma-
chine learning and rule learning ingredient can be replaced
by other techniques. In this work, we assume that the new
concepts and known concepts belong to the same category,
and how to handle new concepts from different categories is
an interesting future issue.
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