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Abstract—In many practical tasks, there are usually two kinds
of common information: cheap unlabeled data and domain
knowledge in the form of symbols. There are some attempts
using one single information source, such as semi-supervised
learning and abductive learning. However, there is little work
to use these two kinds of information sources at the same
time, because it is very difficult to combine symbolic logical
representation and numerical model optimization effectively.
The learning becomes even more challenging when the domain
knowledge is insufficient. In this paper, we present an attempt—
Semi-Supervised ABductive Learning (SS-ABL) framework. In
this framework, semi-supervised learning is trained via pseudo
labels of unlabeled data generated by abductive learning, and
the background knowledge is refined via the label distribution
predicted by semi-supervised learning. The above framework can
be optimized iteratively and can be naturally interpretable. The
effectiveness of our framework has been fully verified in the theft
judicial sentencing of real legal documents. In the case of missing
sentencing elements and mixed legal rules, our framework is
apparently superior to many existing baseline practices, and
provides explanatory assistance to judicial sentencing.

Index Terms—Abductive Learning; Semi-Supervised Learning;
Theft Judicial Sentencing

I. INTRODUCTION

Machine learning has achieved great success in a wide
variety of tasks. The most commonly used supervised learning
paradigm aims at learning a mapping function based on labeled
training data. However, labeled data are often hard to obtain
due to multiple reasons [1]: 1) Tagging labels for data involves
human annotation, which may be very expensive. 2) Popular
machine learning algorithms such as deep learning require a
huge amount of labeled data, while obtaining them is time-
consuming. 3) It usually needs expert knowledge to perform
labeling. The concept of Semi-supervised learning (SSL) [1]
was introduced to counter these disadvantages, considering
that unlabeled data are often cheap and easy to collect. The
dataset for SSL contains a small proportion of labeled data
and a large amount of unlabeled data. The goal is to use the
information from unlabeled data to improve the performance.

Apart from the unlabeled data, in many situations, there
exists a great deal of domain knowledge in the form of
symbolic rules (e.g., first-order logic formulae). Some efforts

have been devoted to utilizing symbolic background know-
ledge when learning from symbolized data, e.g., Inductive
Logic Programming [2], Statistical Relational Learning [3],
and Probabilistic Logic Programming [4]. Recently, the latest
Abductive Learning (ABL) framework is proposed [5], [6] to
bridge supervised learning and symbolic reasoning in the tasks
with raw input space and symbolic domain knowledge.

In practice, it is often demanded to leverage both unlabeled
data and symbolic background knowledge together. Theft
Judicial Sentencing (cf. Section V) is a typical task. The task
aims to learn an accurate model to extract sentencing elements
from criminal judgment documents, and predict the judicial
sentence based on those elements. However, the labeling work
needs legal professionals and costs much money and time,
resulting in a lack of labeled data. On the other hand, there
exist a lot of laws as domain knowledge that can only be
expressed in the form of symbolic rules.

The major difficulty for exploiting both unlabeled data and
symbolic domain knowledge in machine learning lies in the
fact that it is difficult for symbolic knowledge to inject into
the learning process of common SSL methods. To make use of
symbolic rules, the ability of reasoning is needed to conduct
logical inference, while SSL algorithms usually involve opti-
mization of numerical values. In addition, popular optimization
techniques such as gradient descent cannot directly solve
the optimization involving symbolic relations. It is worth
mentioning that domain knowledge is usually incomplete, and
the learning process also needs to consider this issue.

This paper tackles this challenge by proposing a framework
named Semi-Supervised ABductive Learning (SS-ABL), in
which an SSL model and a symbolic knowledge base can
mutually benefit by using logical abduction. It first uses the
labeled data to train a model for generating pseudo-labels of
the unlabeled data, which may contain many mistakes. Then,
SS-ABL explores logical abduction to revise the pseudo-labels
based on the symbolic domain knowledge. It tries to abduce
pseudo-labels consistent with knowledge base, targeting at
correcting the most likely inaccurate pseudo-labels. Then the
revised pseudo-labels are used to update the SSL model. The
same circulation repeats until it reaches the turn limit.
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We verify the SS-ABL framework in a real-world task of
Theft Judicial Sentencing. The dataset consists of criminal
judgment texts of theft, and only a small proportion are
labeled. At the same time, the knowledge base contains a large
number of symbolic rules extracted from laws. Experimental
results show that SS-ABL can make full use of the domain
knowledge and unlabeled data, leading to an improvement of
classifier as well as interpretable sentence prediction rules,
even when there is only a handful of labeled data and
insufficient domain knowledge.

II. RELATED WORK

A wide range of powerful approaches have emerged to deal
with SSL, such as generative modeling [7], graph-based meth-
ods [8], disagreement-based methods [9], [10], low-density
methods [11]–[13], regularization-based methods [14]–[16].
Recently, there are also some studies considering the SSL
methods in noisy environments [17], [18]. In the following, we
focus on low-density and regularization-based methods that are
mostly related to our work. For more comprehensive overviews
on SSL, refer to [1].

Low-density methods [1], [11]–[13] are proposed based
on a basic assumption that “the decision boundary should
lie in low-density regions” [1]. TSVM [11] is a classical
SSL method for SVM, which seeks a separating hyperplane
maximizing margin for all samples. Entropy Minimization [12]
adds a loss term that encourages the classifier to make high
confident predictions for unlabeled examples. In this case,
“confident” prediction is equivalent to low entropy, meaning
that samples should be away from the decision boundary.
Pseudo-Label [13], a kind of self-training [19] algorithm that
imputes the labels of high confident examples, has shown it
fantastic ability. In fact, as mentioned in [13], it can be re-
garded as an implicit entropy regularization, which encourages
the predicted probabilities of the unlabeled data to be near 1-
of-K code, so that the entropy is minimized.

Regularization-based methods [14]–[16] are successful
methods mainly based on the assumption that “examples with
perturbations share the same labeling”. In the neural network
community, a number of SSL methods based on consistency
regularization try to make perturbation in various ways. Π-
Model and Temporal Ensembling [14] maintain an exponential
moving average of label predictions, and encourages the dis-
tance between this target and current output to be small. Mean
Teacher [15] tries to obtain a more stable output by averaging
model weights instead of label predictions. Virtual Adversarial
Training (VAT) [16] tries to directly find the adversarial direc-
tion which can most significantly affect the output. From the
Bayesian standpoint, a regularization term can be interpreted
as a prior distribution that reflects a priori knowledge [20].
The methods such as Π-Model, Mean Teacher, VAT hold the
apriori belief that the outputs should be smooth in regard to
spatial or temporal inputs.

Some approaches to utilize symbolic rules in machine
learning have been put forward. Methods involving neural
networks [21], [22] try to focus on relations or differentiable

knowledge representations, but their behaviors are hard to
interpret. Probabilistic Logic Program (PLP) [4] and Statistical
Relational Learning (SRL) [3] aim at integrating machine
learning and logical reasoning by preserving the symbolic
representation. However, they usually require direct semantic-
level input. Abductive learning [5], [6] is able to preserve
the interpretability of symbolic rules while processing sub-
symbolic data at the same time.

Our proposed SS-ABL framework can be regarded as
a combination of Pseudo-Label and implicit regularization
methods. Pseudo-Label enforces unlabeled samples to be
away from the decision boundary. The revision of pseudo-
labels based on abductive reasoning serves as an implicit
regularization term to utilize domain knowledge. The revision
process incorporates a priori knowledge expressed as rules and
tries to make pseudo-labels consistent with knowledge base. If
unlabeled samples fall in low-density regions and get incorrect
pseudo-labels, then a priori knowledge expressed as rules helps
to decide the correct labels. Therefore, its purpose is exactly
the same as the aim of other common regularization methods.

III. ABDUCTIVE LEARNING

ABductive Learning (ABL) [5], [6] is a novel framework
that unifies two AI paradigms—machine learning and logical
reasoning—in a mutually beneficial way. In ABL, the machine
learning model learns to perceive primitive logic facts from
raw data, while logical abduction exploits symbolic domain
knowledge and corrects the wrongly perceived facts for im-
proving the machine learning models.

Abduction (i.e., abductive reasoning) is one of the three
basic forms of logic inference, while the others are deduc-
tion and induction [23]. Deduction refers to reasoning from
general rules to special cases, and induction denotes inferring
general rules from special cases. Different from deduction and
induction, abduction means forming a ground hypothesis that
explains observed phenomena.

To illustrate the idea more clearly, this paper denotes logical
symbols as follows: “¬” is negation (not); “∧” is conjunction
(and); “∨” is disjunction (or); “←” is implication, which
means that if the condition on the right of “←” holds, then
the consequent on the left holds. For example, consider the
following logical rules:

wet grass← rain last night ∨ sprinkler was on, (1)
wet shoes← wet grass, (2)

false← rain last night ∧ sprinkler was on, (3)

where the first two formulas state the causes for grass
and shoes being wet, and the last formula specifies that
rain last night and sprinkler was on cannot be true
at the same time. When we observe wet shoes, rule (2)
indicates that wet grass should also be true. Continuing
this process, based on rule (1), both rain last night and
sprinkler was on are two possible explanations. If we also
observe that no rain occurred last night, according to (3),
sprinkler was on would be the only explanation.
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IV. THE SEMI-SUPERVISED ABDUCTIVE LEARNING
FRAMEWORK

In this section, we introduce the SS-ABL framework. We
first present the problem setting and then provide an overview
of the framework, followed by optimization details.

A. Problem Setting

In supervised learning, we are given labeled data X =
{x1, x2, ..., xl}, and their corresponding ground-truth labels
Y = {y1, y2, ..., yl}. The task is to learn a function f :
X 7→ Y , which would give correct output over unseen data.
In SSL, we are provided additionally with unlabeled data
Xu = {xl+1, xl+2, ..., xl+u} , usually l << u . The unlabeled
data are utilized to improve performance of function f .

When it comes to the setting of SS-ABL, the input data
still contain labeled data Xl and their ground-truth label Yl.
But additionally, we have unlabeled data Xu and a knowledge
base KBθ. The incomplete KBθ consists of a number of first-
order symbolic rules, as well as unknown parameters θ (e.g.,
weights of the rules). The goal of learning is to utilize all
labeled and unlabeled data to train a classifier with the help
of KBθ and optimize parameters θ. Fig. 1 compares settings
of supervised learning, SSL and SS-ABL.

Labeled Data X

Unlabeled Data Xu

Labeled Data Xl

𝐾𝐵𝜃

Unlabeled Data Xu

Labeled Data Xl

(a) Supervised Learning

(b) Semi-Supervised Learning (c) Semi-Supervised Abductive Learning

Fig. 1. The setting of SS-ABL.

B. Framework

We propose the Semi-Supervised ABductive Learning (SS-
ABL) framework, which combines logical abduction with SSL
to exploit both domain knowledge and unlabeled data.

SS-ABL involves the Pseudo-Labeling technique [13],
which uses unlabeled data to improve performance by regard-
ing their high-confident pseudo-labels as ground-truth labels.
However, when labeled data are limited or low-quality, the
model may produce incorrect pseudo-labels, because it is
difficult for the model to learn the latent cluster structure
in this situation [24]–[26]. Therefore, pseudo-labels may be
unreliable in many tasks that cannot obtain enough high-
quality labels.

Intuitively, SS-ABL first obtains pseudo-labels from a clas-
sifier trained by labeled data. The pseudo-labels may be
incorrect and inconsistent with knowledge base. SS-ABL
tries to revise the pseudo-labels by abductive reasoning. The
abductive reasoning module abduces the most likely correct
label according to knowledge base. Then the revised pseudo-
labels will be used as ground-truth labels in the following
training process. At the same time, parameters in knowledge

Classifier

1. input

Symbolic

KB
Unlabeled Data

2. predict

Pseudo-

Labels

3. abduce labels     

and update KB

4. update

Revised 

Pseudo-

Labels

Fig. 2. The framework of SS-ABL.

base are updated based on pseudo-labels. After updating the
classifier and parameters, the above routine repeats iteratively.
Finally, we obtain a classifier and a knowledge base. Fig. 2
illustrates the framework of SS-ABL.

Formally, we define SS-ABL as follows. Given labeled data
Xl, Yl, unlabeled data Xu and knowledge base KBθ, seek
function f and parameters θ that minimize the objective:

1

Nl

Nl∑
i=1

L(yi, fi) + α(t)
1

Nu

Nu∑
i=1

L(∆(y′i), f
′
i)

− β 1

Nu

Nu∑
i=1

Con(∆(y′i),KBθ), (4)

where Nl is the number of labeled data, Nu for unlabeled data,
fi is the function’s output of labeled data, yi is the ground-
truth label, f ′i for unlabeled data, y′i is the pseudo-label, ∆(y′i)
is the revised pseudo-label by logical abduction process ∆,
which will be explained later. L is the loss function, α(t) and
β are balancing coefficients. Con stands for a function that
outputs how consistent is ∆(y′i) with KBθ.

The first term 1
Nl

∑Nl

i=1 L(yi, fi) is the loss on the labeled
data. The second term α(t) 1

Nu

∑Nu

i=1 L(∆(y′i), f
′
i) is the loss

on revised pseudo-labels of unlabeled data. The first two terms
are similar to the semi-supervised loss function in Pseudo-
Label [13]. The last term β 1

Nu

∑Nu

i=1 Con(∆(y′i),KBθ) in-
dicates the consistency between revised pseudo-labels and
knowledge base (the more consistent, the higher its value).
Besides revising the inconsistent pseudo-labels, this objective
also helps knowledge base learn accurate parameters θ.

The coefficient β is a constant and makes no difference
since SS-ABL optimizes the last term separately (see next
subsection). α(t) slowly increases as training goes on. It is
set based on the schedule in [13].

α(t) =


0 t < T1
t−T1

T2−T1
αf T1 ≤ t < T2

αf T2 ≤ t
(5)
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Algorithm 1 Semi-Supervised Abductive Learning
Input: Labeled data and their labels Xl, Yl; Unlabeled data

Xu; Knowledge base KBθ
Output: Function f ; Parameters θ

1: f ← TrainModel(Xl, Yl)
2: θ ← TrainParameter(Yl) # Pretrain model and parameter
3: while t < turn limit do
4: Yu ← f(Xu) # Generate pseudo-labels Yu
5: ∆(Yu)← Abduce(KBθ, Yu) # Revise pseudo-labels
6: θ ← TrainParameter(Yl,∆(Yu)) # Update parameters
7: f ← ψ(f,Xu,∆(Yu), Xl, Yl) # Update function f
8: t← t+ 1
9: end while

C. Optimization

The objective (4) involves optimization on symbolic rela-
tions, rather than pure numerical optimization which can be
solved by methods such as gradient descent. The optimization
goal contains two components: function f and knowledge
base’s parameters θ, which are mutually dependent: param-
eters θ are calculated based on the output of function f ;
abductive reasoning requires knowledge base KBθ where
accurate parameters will lead to high-quality revised pseudo-
labels. Therefore, SS-ABL tries to optimize them alternatively.
Parameters θ in KBθ are first updated based on pseudo-
labels, corresponding to optimizing the last term in the loss
function (4). Then the function f is optimized using revised
pseudo-labels generated by the abduction of KBθ, involving
the first two terms in (4). An outline of the proposed opti-
mization algorithm is shown in Algorithm 1.

As for how to abduce labels, SS-ABL needs to obtain
∆(y) most consistent with knowledge base KBθ. The logical
abduction procedure is conducted by assuming that some
positions of pseudo-labels are incorrect. In other words, some
pseudo-labels are fixed, and the others are made to be “un-
known” (abducible). Then the abduction module will abduce
most compatible labels and use them to replace pseudo-labels.
According to the definition of abductive learning [5], [6],
the fixed pseudo-labels serve as observations, and knowledge
base KBθ tries to abduce consistent explanations for other
“unknown” pseudo-labels. When the search space is large,
we can solve it with derivative-free optimization [5], [27],
otherwise we can directly try all hypotheses.

V. EXPERIMENTS

In this section, we carried out the experiments of Theft
Judicial Sentencing task to demonstrate that SS-ABL is able
to leverage unlabeled data and symbolic knowledge. The code
is available for download1.

A. Task

The task aims to train a classifier that outputs sentencing
elements of criminal judgment, as well as optimize the param-
eters in knowledge base to predict the sentence of a defendant.

1https://github.com/AbductiveLearning/SS-ABL

Criminal Judgment
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………………………………………

………………………………………

………………………………………

………………………………………

………………………………………

………………………………………

………………………………………

………………………………………

………………………………………
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Surrender  P

Pickpocket  O

Burglary    P

…

Criminal Judgment

………………………………………

………………………………………

………………………………………
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………………………………………

………………………………………

………………………………………

………………………………………

………………………………………

………………………………………

………………………………………

Labeled Data Unlabeled Data

Money

Law

Rule 1

Rule 2

Rule n

…

Knowledge BaseLabels

Penalty Penalty

θ

Fig. 3. Dataset and knowledge base of the task.

A criminal judgment is the judicial documents written by the
judge in court. The dataset contains 687 court records of theft
happened in Guizhou, China in 2017–2018. We focus on theft
because they account for a sizeable proportion of all cases.
In real life, courts are often required to check the quality of
sentences made by magistrates (judges in the local court).

A typical theft case consists of three major parts: 1) the
amount of money involved; 2) sentencing elements; 3) the
final sentence. The amount of money and the final sentence
are numerical values written directly in criminal judgments.
Sentencing elements decide whether to give the criminal a
heavier or lesser punishment, including recidivism, burglary,
etc. They can be found in the text of criminal judgments, but
written in various ways rather than a fixed form. Because of the
variety of ways to express those elements, a machine learning
model is needed to extract them automatically.

Apart from the dataset, there is a lot of domain knowledge
that we can exploit in law, which can be written to first-order
symbolic rules. Note that part of the rules may be incomplete.
For example, we know a law rule that surrender leads to a
lesser punishment, but we do not know how much the sentence
will be lessened, i.e., parameters θ of rules are unknown.

Figure 3 illustrates the dataset and knowledge base of the
task. The dataset contains labeled data and unlabeled data,
and labeled data have labels of sentencing elements for each
criminal judgment. Each sample, whether labeled or not, has
its corresponding amount of money involved and the final
sentence, since it is easy to get them directly from criminal
judgment texts. The value of money will be used by knowledge
base KBθ, which can be regarded as part of it. The knowledge
base contains a large number of symbolic rules, as well as θ
which are the learnable numerical parameters of some rules.

The difficulties of the task lie in insufficient high-quality
labels and the uncertainty in laws. It uses obfuscated data,
which are in fact inadequate. Moreover, the labeling work
requires teaching data labelers the professional knowledge of
law. As a result, we find that there are still some errors among
the labels. Thus labeled data are limited and even inaccurate.
Furthermore, though there are a large number of symbolic
law rules, they are complex and even some rule parameters
are unknown. Therefore, the task is quite challenging for
conventional machine learning approaches.
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Domain knowledge for calculating the punishment in sentencing:

penalty(X,Y )← base penalty(X,Z1) ∧ weight(X,Z2) ∧ Y = Z1(1 + Z2).

base penalty(X,Y )← money(X,m) ∧ Y = 0.7m+ 5.7.

weight([], 0)←
weight([X|Xs], Y )← element weight(X,Z1) ∧ weight(Xs,Z2) ∧ Y = Z1 + Z2.

Punishment weights for different sentencing elements:

element weight(recidivism, 29%). element weight(confession,−11%).

element weight(pickpocket, 14%). element weight(burglary, 3%).

Fig. 4. Sample Sentence rules in the knowledge base.

B. Knowledge Base

The knowledge base KBθ mainly consists of first-order
logical rules, including law rules, matching rules and common
sense constraints. The amount of money involved in each case
and the final sentence of imprisonment are also included in the
form of logical facts. Law rules are extracted from Criminal
Law and related legal documents. Matching rules are about
relations between elements and words in text. Common sense
constraints encode the relations between sentencing elements.

Figure 4 gives an example of sentencing law rules in
knowledge base KBθ. The four rules on the top are the
law rules about how money and elements influence the final
penalty. The first formula indicates that it first calculates the
base penalty, and gives a lesser or heavier punishment based on
weights of sentencing elements. The literal “penalty(X,Y )”
means document X corresponds to sentence Y , and similar
meaning for “base penalty(X,Z1)” and “weight(X,Z2)”.
The “Y = Z1(1 +Z2)” defines how to calculate the final sen-
tence. The four rules on the bottom are punishment weights for
different criminal elements. The parameters of this knowledge
base include “0.7”, “5.7”, “29%”, “−11%”, “14%”, “3%’.

C. Experimental Setup

We employ the multi-label Bidirectional Encoder Represen-
tations from Transformers (BERT)2 [28] as the classifier, a
state-of-the-art model for Natural Language Processing (NLP).
We compare SS-ABL with three types of baselines: 1) BERT
that use only labeled data; 2) Abductie learning (ABL) [5],
[6] that exploit symbolic rules; 3) SSL methods that leverage
unlabeled data, including Pseudo-Label (PL) [13], Tri-training
(Tri) [10]. There are three training settings: 10%, 50% and
100% labeled data, denoted as suffixes such as “SS-ABL-10”.

The dataset consists of 90% training and 10% test data. In
the experiments, all methods share the same structured BERT
model and the same rules. We use the default hyperparameters
of BERT model in the source code. The hyperparameter M
(maximum number of revised label) of SS-ABL is set to 2, and
αf = 3, T1 = 100, T2 = 800, which is determined by cross-
validation on training data. Experiments are repeated five times

2We use the official implementation and pre-trained model at
https://github.com/google-research/bert

TABLE I
F1-SCORE OF BERT, AND MAE & MSE OF PREDICTED SENTENCE.

Method F1 MAE MSE

BERT-10 0.811±0.010 0.867±0.032 1.204±0.123
PL-10 0.814±0.006 0.862±0.035 1.155±0.107
Tri-10 0.812±0.016 0.840±0.066 1.155±0.107

ABL-10 0.824±0.014 0.873±0.102 1.376±0.217
SS-ABL-10 0.862±0.005 0.824±0.017 1.146±0.049

BERT-50 0.857±0.006 0.830±0.020 1.065±0.044
PL-50 0.858±0.010 0.832±0.035 1.045±0.154
Tri-50 0.861±0.007 0.810±0.021 0.994±0.046

ABL-50 0.860±0.003 0.842±0.029 1.082±0.110
SS-ABL-50 0.865±0.007 0.788±0.027 0.959±0.091

BERT-100 0.863±0.003 0.821±0.014 1.011±0.031
ABL-100 0.867±0.008 0.822±0.030 1.007±0.093

on a workstation with an Intel Xeon CPU @ 2.60GHz, 32 GB
memory and an Nvidia GeForce RTX 2080 Ti GPU. For more
details on dataset and experiment, please refer to our code.

D. Results

a) Sentencing Elements Prediction: The first target is to
predict the sentencing elements in criminal judgments. Table I
shows the F1-score (Micro-averaging) of the multi-label BERT
on the test set. The performance of SS-ABL-10 and SS-ABL-
50 is superior to other methods. When the label rate is low, the
gain from utilizing both unlabeled data and symbolic domain
knowledge is much higher. Note that the performance of SS-
ABL-10 is even superior to BERT-50 method that uses more
labeled data but no unlabeled data. Likewise, the F1-score of
SS-ABL-50 has nearly the same level as BERT-100.

b) Judicial Sentence Prediction: The second target in-
volves predicting the sentence of theft cases using the learned
model and knowledge base. Table I shows the Mean Absolute
Error (MAE) and Mean Square Error (MSE) between the
actual and predicted value. According to the results, the SS-
ABL-based approaches significantly outperform other com-
pared methods. SS-ABL-based methods make more significant
improvements because they can jointly optimize the parame-
ters in the domain knowledge base and the BERT model.
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TABLE II
SENTENCE RULES LEARNED BY SS-ABL.

Base sentence=0.64m+6 (m: money involved in thousands)
burglary → base +6% confession → base -14%

forgiveness → base -15% juvenile → base -15%
no loss → base -7% pickpocket → base +15%

surrender → base -10% recidivism → base +27%

Although BERT-100 has a similar F1-score as SS-ABL-50,
its MAE and MSE are worse. This is probably due to the
noise in labeled data. SS-ABL can correct the label noise that
mostly influences sentence prediction by considering the legal
knowledge, so that the sentence prediction is more accurate.

The learned sentence rules and their parameters are listed
in Table II. The rules explain how knowledge base reasons
to produce the final sentence prediction. These highly in-
terpretable rules can be easily understood and examined by
human, providing explanatory assistance to judge sentencing.

VI. CONCLUSION

In this paper, we propose Semi-Supervised Abductive Learn-
ing, a framework aiming at combining the symbolic knowledge
and semi-supervised learning. In this framework, an SSL
model is used for generating pseudo-labels on the unlabeled
data, and logical abduction revises those noisy pseudo-labels
according to domain knowledge. There are many tasks in-
volving both logical rules and unlabeled data. Theft Judicial
Sentencing is a typical challenging task, which needs to tackle
the scarcity of labels and the uncertainty in laws. As shown
by the experimental results, SS-ABL demonstrates its excellent
capability in exploiting the symbolic knowledge and unlabeled
data. It achieves significant performance improvement com-
pared with previous approaches that only leverage single
information. Besides, SS-ABL is a general-purpose framework
with sufficient flexibility. The BERT classifiers can be replaced
by other classifiers such as deep forest [29], and rules in the
knowledge base are not limited to law rules.
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