

Efficient Rectification of Neuro-Symbolic Reasoning Inconsistencies by Abductive Reflection

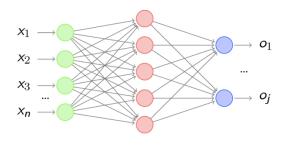
Wen-Chao Hu, Wang-Zhou Dai, Yuan Jiang and Zhi-Hua Zhou

LAMDA Group, Nanjing University

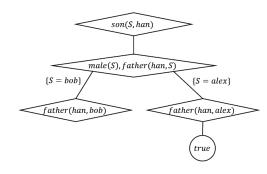
This paper has won the **Outstanding Paper Award** of AAAI 2025

Neural Network + Logical Reasoning

Effectively combining neural network and logical reasoning is the "holy grail" of AI.

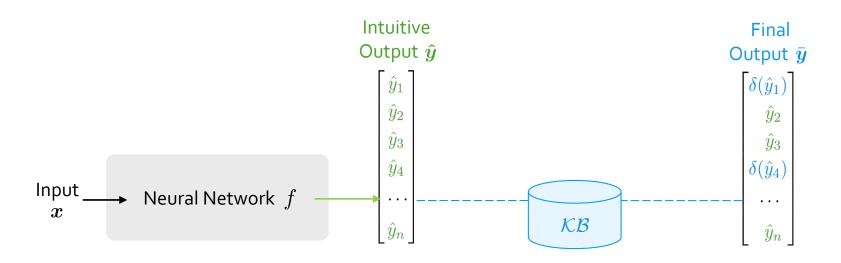


Neural network is adept at using data



Logical reasoning is adept at using knowledge

Abductive Learning

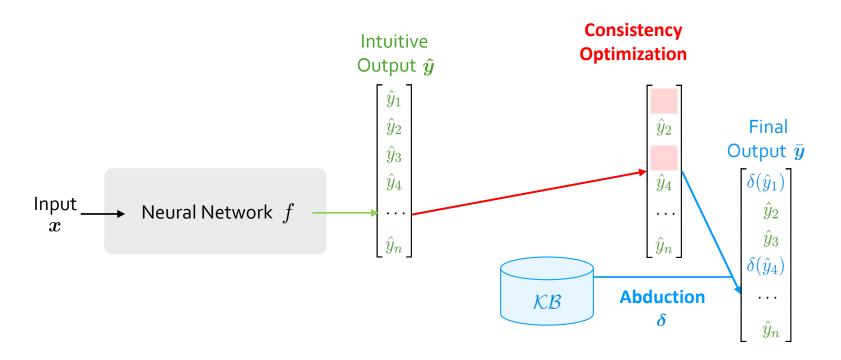


Neural network f maps input \boldsymbol{x} into $\hat{\boldsymbol{y}} = [\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n]$.

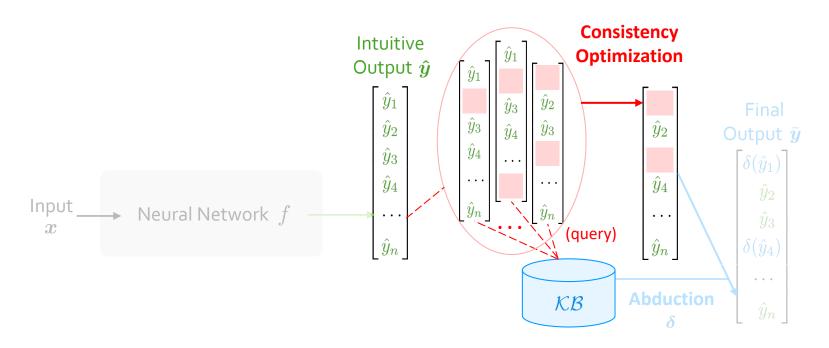
Knowledge base \mathcal{KB} holds constraints on y, and can perform reasoning.

Zhou, Z.-H. 2019. Abductive learning: towards bridging machine learning and logical reasoning. Science China Information Sciences, 62: 1–3.

Abductive Learning (cont.)

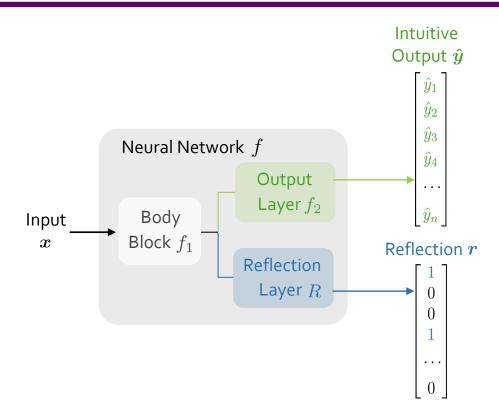


Consistency Optimization an Efficiency Bottleneck of ABL

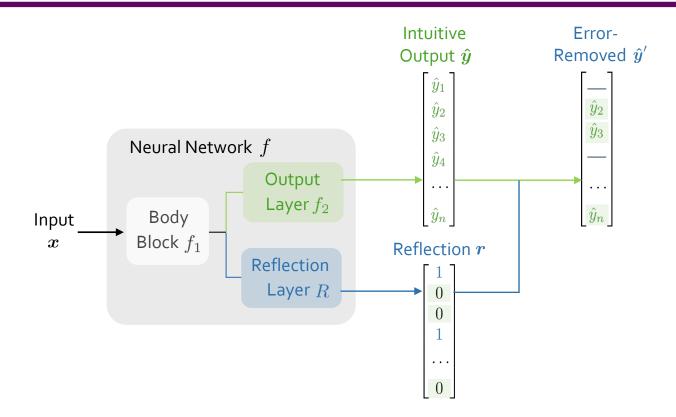


Too many possible solutions to query, too much time spent on consistency evaluation

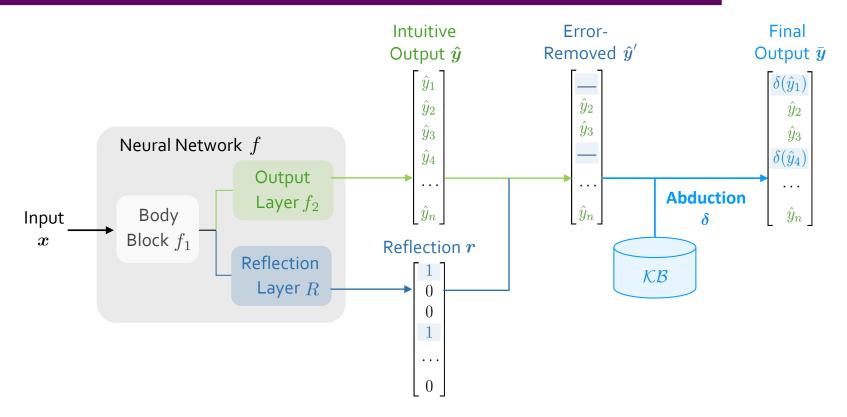
Our Method: Abductive Learning with Reflection



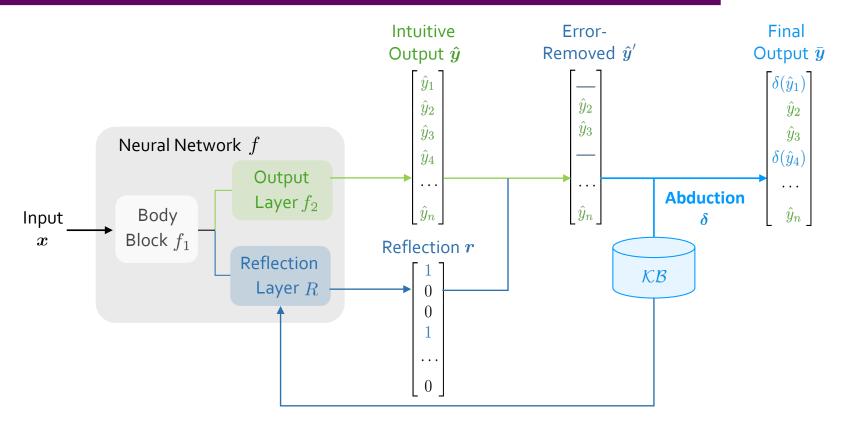
Our Method: Abductive Learning with Reflection (cont.)



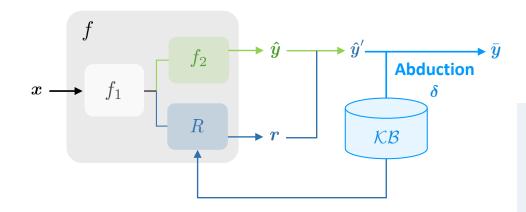
Our Method: Abductive Learning with Reflection (cont.)



Our Method: Abductive Learning with Reflection (cont.)



Method Recap



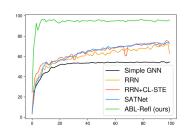
Neural network provides a fast, overall approximate solution, and

Reflection promptly directs the focus for **Symbolic reasoning** on a much reduced space.

- Reflection vector is generated simultaneously with intuitive output;
- During each inference, KB is only invoked **once**, regardless of data scale;
- Reflection is trained using information directly from \mathcal{KB} .

Experiments

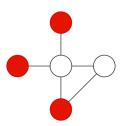
Method	Training Time (min)	Inference Time (s)	Inference Accuracy
RRN	114.8 ± 7.8	$0.19{\scriptstyle\pm0.01}$	73.1 ± 1.2
CL-STE	173.6 ± 9.9	0.19 ± 0.02	76.5 ± 1.8
SATNet	140.3 ± 6.8	0.11 ± 0.01	74.1 ± 0.4
ABL-Refl	$109.8{\scriptstyle\pm10.8}$	$0.22{\scriptstyle\pm0.02}$	$97.4 {\scriptstyle \pm 0.3}$



Solver	Method	Inference Time (s)		
201.01		NN Time	Abduction Time	Overall Time
MiniSAT	Solver only	-	0.227±0.024	0.227 ± 0.024
	ABL-Refl	0.021 ± 0.004	0.196±0.015	0.217±0.019
Prolog with CLP(FD)	Solver only	-	105.81±5.62	105.81±5.62
	ABL-Refl	0.021 ± 0.004	$31.86{\scriptstyle\pm1.88}$	31.88±1.89

Achieves far better accuracy in only a few epochs (<10).

Enhances the **efficiency** of symbolic solvers.



Method	Dataset (Graph nums./Avg. nodes per graph/Avg. edges per graph)				
	ENZYMES (600/33/62)	PROTEINS (1113/39/73)	IMDB-Binary (1000/19/97)	COLLAB (5000/74/2457)	
Erdos	0.883 ± 0.156	0.905 ± 0.133	0.936 ± 0.175	0.852 ± 0.212	
Neural SFE	0.933 ± 0.148	0.926 ± 0.165	0.961 ± 0.143	0.781 ± 0.316	
ABL-Refl	$0.991 {\pm 0.017}$	$0.985 \!\pm\! 0.020$	$\boldsymbol{0.979} \scriptstyle{\pm 0.029}$	$0.982 {\pm 0.015}$	

Capable of handling scalable data scenarios, and a wide range of domain knowledge.

Thanks!



Presented by Wen-Chao Hu

