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1 Introduction

The integration of machine learning and logical reasoning has
long been considered a holy grail problem in artificial
intelligence. Recent years have seen considerable attention
and significant progress in this field. ABductive Learning
(ABL) [1,2] is a groundbreaking paradigm that integrates
machine learning and logical reasoning in a unified
framework. In ABL, the learning model learns to convert data
into primitive logic facts, which serve as inputs for logical
reasoning. The reasoning part, which employs abductive
reasoning, utilizes a given knowledge base to infer the truth
value of these logic facts, for updating the learning model. The
above process is iterative, enabling learning and reasoning to
work together in a balanced loop.

In this paper, we introduce ABLKkit, an open-source Python
toolkit for ABL. ABLKit provides a comprehensive framework
that covers the entire ABL workflow, including data loading,
learning model development, reasoning module construction,
and bridging between learning and reasoning.

The key features of ABLKkit include:

e High flexibility ABLkit’s flexible architecture ensures
compatibility with widely-used learning and reasoning
libraries, including scikit-learn [3], PyTorch [4], and
SWI-Prolog [5]. This adaptability enables users to
leverage diverse machine learning modules and logical
reasoning components within their ABL systems.

e Easy-to-Use interface ABLKit offers easy-to-use APIs
that simplify the development process. Providing data,
model, and knowledge, users can build ABL systems
efficiently, often with minimal coding effort.

e Optimized performance  ABLkit incorporates
advanced engineering optimizations like caching
mechanisms and abstract data interfaces. These
enhancements ensure superior performance and
accelerated training speed.

The source code is available at the website of
github.com/AbductiveLearning/ABLKkit, along with extensive
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documentation and examples. For convenient installation,
users can directly install it from PyPl by executing the
command pip install ABLkit.

2 The ABLKkit toolkit

The overview of ABLKkit is shown in Fig. 1, which consists of
four modules: Data, Learning, Reasoning, and Bridge.

Data module efficiently manages data storage, operations,
and evaluations. It includes implementations of abstract data
interface, which is responsible for transferring data between
various components of ABLkit and ensures a unified and
versatile interface. It also contains a series of evaluation
metrics for assessing performance.

Learning module concentrates on creating, training, and
utilizing machine learning models. It provides a standardized
wrapper with a unified interface for learning models. This
module is fully compatible with popular toolkits like “scikit-
learn” or “PyTorch”. Additionally, it provides flexible
interfaces, enabling users to freely customize their models
according to specific needs and preferences.

Reasoning module focuses on constructing knowledge base
and performing logical reasoning. Users can conveniently
customize a domain knowledge base by overriding the
logic_forward method, or import knowledge expressed in
Prolog language. Similarly, reasoning techniques can be
customized. The module’s Reasoner class then minimizes
inconsistency between knowledge and data, using the ZOOpt
library [6] or alternative methods.

Bridge module integrates the above three parts. Providing
data, model, and knowledge, users can execute the ABL
process with a single line of code using its train method.

When using the ABLKkit, it involves the following steps:
preparing datasets, building the learning part, building the
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Fig. 1 An overview of ABLKkit
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reasoning part, and bridging learning and reasoning. Users
first prepare data into the desired format, and construct the
learning model with a standard wrapper. Next, the reasoning
part is set up by creating a knowledge base and passing it to
the Reasoner. Finally, the ABL process is executed with the
methods of Bridge. Users can adjust the hyper-parameters
within each module for optimized performance. For advanced
customization, they could override the existing methods in the
toolkit.

3 Experiments

We compare ABLkit with DeepProbLog [7], DeepStochLog
[8], and NGS [9] on two benchmark datasets, MNIST
Addition [7] and HWF [9]. These selected methods represent
the neuro-symbolic approaches but differ from ABL.
Specifically, they necessitate the adoption of neural networks
as the learning model, and restrict their reasoning modules to
specific languages, such as probabilistic logic, stochastic
definite clause grammar, or context-free grammar. ABLKkit’s
high flexibility enables it to use any learning model and
reasoning module suitable for specific tasks, and enables
learning and reasoning to work together in a mutually
beneficial way.

The results are shown in Table 1. In the HWF dataset,
DeepProbLog fails to converge within a day, resulting in low
accuracy. By effectively integrating machine learning and
logical reasoning in a balanced loop, coupled with engineering
optimizations, ABLkit demonstrates superior performance in
terms of predictive accuracy, training time efficiency, and
memory usage. Detailed experimental results are available in
ABLKkit’s documentation.

Table 1

w_»

Performance comparison of different methods within a 1-day time
means no official implementation for the dataset. The units for time
and memory are seconds (s) and megabytes (MB), respectively

limit.

Addition HWF
Method : :
Acc. Time Mem. Acc. Time Mem.
DeepProbLog 97.1 2045 3521 31.7  timeout 4315
DeepStochLog 97.5 257 3545 97.9 43098 4355
NGS - - - 98.4 338 3705
ABLKit 98.1 47 2482 99.2 77 3074

4 Conclusion

In this paper, we present ABLkit, a Python toolkit for
abductive learning. It offers high flexibility, easy-to-use
interface, and optimized performance, promising to facilitate
both academic research and practical applications in this field.
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