Curriculum Abductive Learning

Wen-Chao Hu'? Qi-Jie Li''> Lin-Han Jia! Cunjing Ge!-?
Yu-Feng Li"> Yuan Jiang"? Zhi-Hua Zhou'-?
INational Key Laboratory for Novel Software Technology, Nanjing University, China
2School of Artificial Intelligence, Nanjing University, China
{huwc,1liqj,jialh,liyf, jiangy,zhouzh}@lamda.nju.edu.cn,gecunjing@nju.edu.cn

Abstract

Abductive Learning (ABL) integrates machine learning with logical reasoning
in a loop: a learning model predicts symbolic concept labels from raw inputs,
which are revised through abduction using domain knowledge and then fed back
for retraining. Due to the nondeterminism of abduction, the training process often
suffers from instability, especially when the knowledge base is large and complex,
resulting in a prohibitively large abduction space. While prior works focus on
improving candidate selection within this space, they typically treat the knowl-
edge base as a static black box. In this work, we propose Curriculum Abductive
Learning (C-ABL), a method that explicitly leverages the internal structure of the
knowledge base to address the ABL training challenges. C-ABL partitions the
knowledge base into a sequence of sub-bases, progressively introduced during
training. This reduces the abduction space throughout training and enables the
model to incorporate logic in a stepwise, smooth way. Experiments across multiple
tasks show that C-ABL outperforms previous ABL implementations, significantly
improves training stability, convergence speed, and final accuracy, especially under
complex knowledge setting.

1 Introduction

Recent advances in data-driven machine learning methods have achieved remarkable success across
a wide range of tasks [Zhou, 2021]. However, when it comes to leverage structured, formal knowl-
edge—such as logic rules or domain-specific constraints—these methods often fall short, therefore
mitigating their interpretability and reliability. This has motivated the emergence of data- and
knowledge-driven artificial intelligence, which aims to tightly integrate learning from data with
logical reasoning [Hitzler, 2022, Yang et al., 2025].

Abductive Learning (ABL) [Zhou, 2019, Zhou and Huang, 2022] is a representative framework
that integrates machine learning with logical reasoning in a balanced loop. In ABL, a machine
learning model first predicts symbolic concept labels from input data, which may initially violate
domain knowledge when the model is under-trained; abduction then generates a set of concept label
candidates compatible with domain knowledge, and from which the best candidate is selected via
consistency optimization. The selected candidate is subsequently used to supervise the model’s next
update. This loop iterates, enabling the system to gradually align predictions with logical constraints.

While elegant in principle, this loop setup often introduces training inefficiency and instability [Yang
et al., 2024, He and Li, 2025]. Due to the nondeterminism of abduction [Magnani et al., 2009],
often multiple candidates compatible with the domain knowledge exist. When the knowledge base is
complex, the resulting abduction space can become prohibitively large, causing the model to oscillate
among many plausible yet incorrect concept labels. This undermines the reliability of the supervision
signal and hinders the training process.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Prior work [Huang et al., 2021, Tao et al., 2024, He et al., 2024] has attempted to improve ABL
stability by refining consistency optimization, i.e., the selection process within the abduction space.
While these methods offer incremental gains, they remain fundamentally limited when the space
itself is too large. A key limitation is that they treat the knowledge base as a static black box, ignoring
its internal structure [Hu et al., 2025]. We argue that a more principled solution requires leveraging
the structure of knowledge base and actively manage its complexity throughout training.

Many knowledge bases exhibit inherent staged or hierarchical structural properties [Glanois et al.,
2022]. Take the legal domain as an example [Huang et al., 2020], some laws and regulations are
relatively simple and foundational, while others involve more complex conditions or exceptions. Such
rules can be organized into phases of increasing complexity. Motivated by this commonly observed
structure, we propose a logic-level Curriculum Abductive Learning (C-ABL) method. Instead of
exposing the model to the full knowledge base from the beginning, C-ABL incrementally introduces
logic rules over several phases during training. In this way, abduction space is substantially reduced
throughout training, enabling faster and more stable optimization. As training progresses, increasingly
complex logic is introduced, allowing for a gradual alignment with full-domain constraints.

To realize this idea, we first propose a principled algorithm that leverages the structural properties of
knowledge base and partitions it into a sequence of sub-bases with strong local dependencies, increas-
ing complexity, and self-contained reasoning. These are then integrated in ABL via a curriculum
training process. Our theoretical analysis shows that this curriculum design achieves efficient and
stable training within phases by leveraging prior knowledge learned in earlier phases, and ensures
smooth transitions across phases without catastrophic forgetting. Experiments on digit addition, chess
attack, and real-world legal judgment tasks demonstrate that C-ABL significantly improves training
stability, convergence speed, and final accuracy over strong ABL and neuro-symbolic baselines.

In summary, our contributions are as follows:

* We identify the uncontrolled abduction space as the core bottleneck in ABL training and highlight
the limitations of prior implementations.

* We propose the C-ABL method that explicitly structures and stages the logical knowledge base,
transforming abduction from a static process into a dynamic and adaptive one.

* We theoretically and empirically demonstrate that our curriculum design leads to a more efficient
and stable training across various domains.

To our knowledge, this is the first work to explicitly leverage the internal structure of the knowledge
base in ABL—an essential yet previously overlooked component—shifting from black-box invocation
to structure-aware, logic-enhanced training. This perspective opens new directions for improving
ABL and extends its potential for broader and more reliable applications.

2 Problem Setting and Preliminary

2.1 Knowledge Base Concepts

We begin with a brief introduction to the basic concept of a knowledge base. This paper focuses
on domain knowledge expressed in logic programming [Huth and Ryan, 2004, Ben-Ari, 2012], a
formalism rooted in first-order logic that offers expressiveness and human interpretability, while re-
maining computationally tractable for reasoning. Specifically, the knowledge base /B is represented
as a set of logic programming rules. Each rule is written in the Horn clause form [Horn, 1951]:

A< By A---ABy,

where “+” denotes logical implication, meaning that A (left-hand side, the head of the rule) holds
when the conjunction of B; (right-hand side, the body of the rule) holds. Each A and B; is a logical
statement expressed with logical predicates.

Given such a knowledge base, both deduction and abduction [Josephson and Josephson, 1996,
Magnani et al., 2009] can be performed. Deduction allows deriving A (head) from the premises
/\? B; (bodies), while abduction seeks possible explanations /\Z’ B, (bodies) that would account for
the observation of A (head).

2.2 Problem Setting

The task of this paper is as follows: Given an input data sequence x = (21, ..., z(™)) of length m,
where each element z(?) is sampled from an input space X’ and corresponds to a concept label z(?)
drawn from a symbolic concept label set Z = {z1, ..., zx }, the entire sequence x is associated with
a target label y that reflects a target reasoning outcome. In addition, we are provided with a logical
knowledge base KI5, expressed in first-order logic, that defines how concept labels can entail specific
target labels. Specifically, each concept label z € Z appears as a predicate in the bodies of rules in
KB, and target labels y appear in the heads.

The goal is to learn a model f that maps each z(*) to a concept label z(*), such that the sequence
z = (z(l), e z("")), together with ICB, can be used to deduce the target label y, in other words, z
satisfies logical condition z A KCB |= y.

Example 2.1 (Decimal d-digit Addition). Consider a task of predicting the sum of two decimal
d-digit numbers, represented by a sequence of images [Manhaeve et al., 2018]. The input x =
(x(l), ..., 2D consists of 2d images from a visual input space X, such as MNIST [LeCun et al.,
1998] or CIFARIO [Krizhevsky et al., 2009], (e.g., x = (H, B, B, B)). The concept labels are drawn
from the symbol set Z = {zero, ..., nine}, and the target label y is their sum. The knowledge
base KB encodes the rules of multi-digit addition. The goal is to map each =V to its corresponding
concept label 29, such that the resulted sequence z (e.g., [one, three, seven, three|) and KB
allows deduction of the correct sum y (e.g., 86).

2.3 Brief Introduction of Abductive Learning

Abductive Learning (ABL) [Zhou, 2019, Zhou and Huang, 2022] consists of two components: a
machine learning model f : X — Z for concept perception, and a logical reasoning module that
utilizes the first-order rules in /C5. During the training process, when the input is received, ABL
uses f to map it to perceptive concept labels 2, then the logical reasoning module checks whether
2 A KB [y holds, i.e., 2 A KB can correctly deduce y. If the condition is not satisfied, ABL utilize
the reasoning module to get revised concept labels 2z, and then, 2z is used as the ground-truth concept
label for x to train f. This process is repeated iteratively until the training of f converge.

Specifically, the process by which the reasoning module obtains the revised concept labels z involves
the following two sequential steps [Dai et al., 2019, Huang et al., 2024]: (1) Abduction: Return the
abduction space, i.c., the set of all concept label candidates that are compatible with '3, denoted
asS = {z | z A KB |= y}; and (2) Selection: Performing consistency optimization to select the
candidate z € S that is most consistent with the model’s current prediction p = f(x):

zZ=argminl — Hp(i)(z(i)), (1)

z€S =1
where p() (2(*)) denotes the probability assigned by the model to label z(*).

Challenges. Due to the nondeterminism of abduction, for a given y, the size of abduction space
S| is often large, i.e., there may be multiple z satisfying z A KB |= y. However, for each input x,
the correct concept labels should be unique [He et al., 2024]. Therefore, selecting an incorrect z
from S introduces erroneous supervision to the perception model f, which could then be reinforced
through subsequent iterations in the learning loop. This creates a vicious cycle that slows convergence,
destabilizes training, and ultimately degrades final model accuracy.

Example 2.2. In Example 2.1, given y = 86 and ICB, the resulting set S would be of size L = 87
(S = {[zero, zero, eight, siz|, [zero, one, eight, five|, ...). However, the concept labels that
are consistent with x = (I, B, B, B) should be unique: z = [one, three, seven, three|. In this
case, all other elements in S may introduce false labels that mislead the training of f.

Several solutions have been proposed to address this training challenge, including methods by Huang
et al. [2021], Tao et al. [2024], He et al. [2024], which primarily focus on consistency optimization,
i.e., how to select the best candidate z within S. However, such methods remain limited when S is
large—no selection strategy can fully compensate for the challenges brought by an overwhelming
hypothesis space [Yang et al., 2024, Jia et al., 2025]. Addressing the root of training instability
requires going beyond improving candidate selection and actively managing the size and structure of
the abduction space itself.

1
2

M-I e N]

3 Our Method

This section proposes Curriculum Abductive Learning (C-ABL), a method that addresses the
limitations in previous ABL methods. C-ABL actively managing the complexity of the knowledge
base during training: Instead of exposing the model to the full knowledge base all at once, it
divides ABL training into multiple curriculum phases, with each phase p guided by a sub-base KB,
progressively expanding towards KB.

3.1 Curriculum Design over Knowledge Base

To enable curriculum-style progression, we first introduce a principled algorithm that partitions
the full knowledge base KB into a sequence of structured sub-bases KB4, ..., Bp used in each
curriculum phase. Our partitioning strategy follows three intuitive principles that together ensure
each sub-base builds upon the last in a stable and constructive manner:

P1 Dependency Cohesion (What should be grouped together?): Rules depending on each other,
such as those frequently co-occur or form tight reasoning chains, appear in the same phase.

P2 Stepwise Complexity (What should be introduced first?): Simpler rules are placed in earlier
phases, while more complex rules built on prior predicates are introduced later.

P3 Self-contained Reasoning (Can it reason independently?): Each phase includes all rules
necessary for reasoning over the involved concepts, without relying on unseen rules.

To implement these principles, we introduce the following structure:

Definition 3.1 (Dependency Graph). Given a knowledge base I3 consisting of first-order logic
rules, its dependency graph G = (V, E) is a directed graph where each node r € V' corresponds to a
rule, and there is an edge (r;,r;) € E if the head predicate of r; appears in the body of r;.

This graph captures the structural reasoning flow: if 7; relies on conclusions from r;, there is an edge
from r; to r;. Based on this graph, we design a partitioning algorithm shown in Algorithm 1.

Partitioning Algorithm. The algorithm begins by scanning each concept label z € Z (as introduced
in Section 2.2, each z is a predicate that appears in the body of some rule) and forms an initial cluster
C, containing all rules that directly reference z (Line 3). This cluster is then recursively expanded
by traversing the dependency graph, incorporating additional rules that are required to derive the
final target label y, as well as rules that define intermediate predicates used in this process (Line 4).
In cases where the dependency graph contains cycles (e.g., formed by recursive rules), the above
process will cluster all rules involved in the cycle together.

Algorithm 1: KB partitioning

Input: Knowledge base /CB (a set of first-order logic rules), minimum sub-base size 7 (optional)
Output: A sequence of sub-bases KBy, ..., KBp
Construct the dependency graph G = (V, E) of KB > from Definition 3.1;
for each concept label z € Z do
Initialize cluster C, with all rules referencing z;
Recursively expand C, via edges in G,
for each pair (C,, Cyp) do
if C, = C, then
| Merge clusters;
else if 3(r;,r;) € E withr; € Cy, r; € C), then
| Set Cy < Ch;
Topologically sort clusters under <;
Set phase counter p < 1;
for each sorted cluster C; do
If | Z;| < 7, merge C; with the next cluster > Z;: the set of concept labels C; involves;
Assign sub-base: KB, + UJ;_, Cj;
pp+1L

Once the initial clusters are formed, we refine them in two ways: (1) Merge any duplicate clusters
with identical rule sets (Line 7); (2) Define a precedence ordering <, and perform topological sort
(Line 9-10). Specifically, this ordering is based on the interdependencies of clusters: If there is an
edge from a rule in C, to a rule in Cy, i.e., reasoning in Cj, relies on conclusions from C',, we assign
C, < C% (when bidirectional dependencies exist, we let the cluster with fewer rules appear earlier).

Sub-bases are then formed incrementally by aggregating clusters up to a given index (Line 14). This
process satisfies P1 by grouping together rules in the same reasoning chain, keeping each phase
logically localized around certain concept predicates. It also satisfies P2, as the precedence ordering
introduces foundational rules and simpler concepts earlier, and allows subsequent phases to build
upon prior ones, forming a progression from easy to complex reasoning throughout training.

To avoid overly fine-grained partitions, small clusters can be optionally merged with their immediate
successors (Line 13). This step is governed by a optional threshold 7, which specifies the minimum
number of concept label predicates per phase; if not set, no merging is performed.

Illustrative examples of the above process are shown in Appendix B.1. We also provide the com-
putational cost analysis in Appendix B.2, showing that compared to the ABL training pipeline, the
partitioning is a one-time, offline preprocessing step with negligible computational overhead.

Guarantee of Self-Contained Reasoning. To ensure P3, we define the concept label domain of
each phase p, denoted Z,, as the set of concept labels BB, involves. We require that KCI3,, is logically
sound and complete for reasoning over Z,,, without relying on future rules. This is formalized below.

Theorem 3.2. For any phase p, let @ be any logical statement over concepts in Z,. Then:

1. Soundness: KB, = ¢ = KB = ¢; that is, KB, does not derive any conclusions that are
invalid under the full knowledge base.

2. Completeness: KB, |= ¢ <= KB = ¢; that is, KB, is sufficient to derive all valid conclusions
over its concept label domain.

We then have the following corollary, indicating that the final sub-base K5 p is logically equivalent
to the full knowledge base KCB in terms of reasoning over all concept labels.

Corollary 3.3. For the final phase P, for any formula @ over Z, we have: KBp = ¢ < KB |= ¢.

All proofs are provided in Appendix C.

3.2 Curriculum-Guided Training

Building on the sub-bases from Algorithm 1, we now present C-ABL, which conducts ABL training
across P curriculum phases. The pseudocode is provided in Algorithm 2 in Appendix D.

In phase p, training is guided by sub-base CB,,. To align the model’s prediction space with the
reasoning scope of BB, we dynamically schedule training data whose concept labels fall within the
domain Z, [Bengio et al., 2009, Marconato et al., 2023a]. Then, each phase follows the standard
ABL procedure, as stated in Section 2.3.

Training in phase p continues until the prediction accuracy for every label z € Z, exceeds the
uniform guessing baseline 1/|Z|, and then C-ABL proceeds to the next phase p 4 1. This is a mild
criterion requiring only a weak signal for each concept to facilitate progression. Nonetheless, as
shown in Section 4, reaching this level is sufficient for one phase to benefit learning in the next,
enabling the model to build upon previously acquired knowledge in a curriculum-style progression.
Note that concept labels are evaluated on a held-out validation set and are not used for training or
backpropagation, and the only supervision signal during training comes from the target label y.

This process repeats until reaching the final phase P, at which point the full knowledge base ICB is
employed and training continues until a termination condition is met, such as reaching a maximum
number of training iterations.

4 Theoretical Analysis: Efficient and Smooth Optimization

In this section, we provide a formal analysis of the Curriculum Abductive Learning (C-ABL) method.
We demonstrate how C-ABL improves the training process of ABL by addressing two core aspects:
(1) Improving the efficiency and stability of training within each phase, and (2) Ensuring smooth
transitions across phases. All proofs are provided in Appendix C.

4.1 Efficient Training within Phase

We begin by analyzing each phase individually. In particular, we analyze how our method reduce the
size of the abduction space by benefiting from curriculum training paradigm, and therefore contributes
to more efficient reasoning and stable optimization.

The key bottleneck in ABL training arises from the size of the abduction space S =
{z | z A KB = y}. This space S includes all possible concept labels compatible with the knowledge
base, constituting the set of candidates ABL search and select from.

When using the full knowledge base, the size of S can grow exponentially:

Lemma 4.1. If the knowledge base KB involves N concept labels and the input has m positions,
then the size of the abduction space with full knowledge base is bounded by |S| < N™.

To mitigate this, C-ABL partitions the knowledge base to reduce complexity. At phase p, the subset
Z, C Z is active, and the abduction space is: S, = {z €Z)[2NKB, = y} The theorem below
shows that, under the curriculum strategy proposed in Section 3.2, the size of S, is largely reduced.

Theorem 4.2. Assuming that all previously introduced concepts z € Z,_1 are predicted with
accuracy exceeding random chance (i.e., Acc(z) > ‘?1'), and pseudo-labels are selected via Eq. (1).

Then the size of the abduction space in phase p is bounded by |S,| < |Z, \ Zp_1|™.

Remark 4.3. The above theorem relies on a natural assumption that the semantics of concepts remain
constant when the knowledge base evolves (e.g., the image [consistently corresponds to the concept
three regardless of training phase) [Marconato et al., 2023b, 2024]. This theorem suggests that
the abduction space in each phase is effectively confined to newly introduced concepts Z, \ Z,_1,
benefiting from the accumulated knowledge of earlier phases: The previously learned concepts
provide a foundation with lower risk of noisy supervision [Van Krieken et al., 2024, Maene et al.,
20241], enabling the model to focus on resolving the new concepts introduced in the current phase.

Combining Lemma 4.1 and Theorem 4.2, the relative upper

bound of the phase-level abduction space satisfies %104 BN Phase
Bl < (1) 2l R
S|~ 2] ’ S
which shrinks exponentially in m. The following example g - T '
illustrates this reduction: E ? . : ’
Example 4.4. In the d-digit addition task, as shown in Fig- <100 ? T ? ?
=1 =2 d=3 d=4

ure 1, the size of S increases rapidly with d when applying
the full knowledge base. In contrast, with phase partitioning Figure 1: Comparision of abduction
(using a phase threshold T = 2 in Algorithm 1), the abduction space w/ and w/o phase partitioning
space remains consistently small across all values of d. across different digit length.

This reduction yields two advantages:

1. Improved computational efficiency: A smaller abduction space significantly lowers the reason-
ing cost per training iteration, especially when the knowledge base is large, where the number of
logically compatible candidates explodes exponentially, making abduction prohibitively expen-
sive [Yu et al., 2016, Hu et al., 2025];

2. Faster and stabilized convergence: A large abduction space introduces many plausible yet in-
correct candidates, especially in early training when the model’s predictions are still noisy. These
incorrect candidates can mislead training and cause the model to oscillate or reinforce suboptimal
hypotheses. Limiting the abduction space will promote faster, more stable convergence, which is
captured in the following theorem:

Theorem 4.5 (Iteration Complexity of ABL). Let f*) be the model at iteration t in ABL. Assuming
that: (1) At each iteration, the model receives a pseudo-label 29 € S that satisfies 2" N KB |= y;
(2) The model updates are driven by minimizing a loss function ((f(z),z") that is convex and
p-Lipschitz; (3) The learning rate n > 0 is fixed. Then, the number of iterations T’ required to reach

2 2
an expected consistency error less than ¢ satisfies: T = O (‘S‘TP>

This theorem formally shows that the number of required iterations grows quadratically with the size
of the abduction space. Therefore, reducing S in each phase not only improves the speed of logical
reasoning but also accelerates overall convergence, particularly in large knowledge base scenarios.

4.2 Smooth Phase Transition

Besides improvements within each phase, we now examine transitions across phases. Two properties
are key to maintaining stability: logical consistency, ensuring conclusions made in earlier phases
remain valid, and topological continuity, ensuring the optimization landscape evolves with no abrupt
changes. Together, these properties help prevent catastrophic forgetting [Bengio et al., 2009], a
common challenge in curriculum learning where new updates may destabilize previously acquired
knowledge, by preserving previously acquired knowledge both semantically and parametrically as
the curriculum progresses.

To ensure logical consistency, we require that conclusions derived in one phase remain valid in all
subsequent phases. The following theorem shows sub-bases from Algorithm 1 satisfy this property:

Theorem 4.6. For any formula ¢ over Z,, we have KB, |= ¢ if and only if KBp11 = .

To analyze topological continuity, we adopt the notion of Stone spaces [Johnstone, 1982], which offer
a topological view of logical model sets (a brief introduction is provided in Appendix C.7). Assuming
each concept label z; is a unary predicate with a Boolean assignment, the set of formulas over Z,
then forms a Boolean algebra B,,. Its corresponding Stone space S(5,)—the set of ultrafilters over
B,—captures the space of logically consistent models. For these model spaces, we have:

Theorem 4.7. For each p, S(B,) C S(Bpt1).

As a result, the model spaces form a nested sequence of compact topological spaces, ensuring that
admissible models evolve smoothly, without causing abrupt shifts in the optimization landscape.

5 Experiments

In this section, we evaluate our method across three tasks. On digit addition and its variants, the most
widely used benchmarks in the neuro-symbolic field, we thoroughly validate the effectiveness of
our method. On a chess attack task, we test robustness when only Boolean target label is provided,
leading to a significantly larger abduction space. Finally, we apply our method to a real-world legal
judgment task to demonstrate its practical applicability in complex domains.

5.1 d-digit Addition

This task, as outlined in Example 2.1, the input consists of image sequences representing two d-digit
numbers, and the goal is to predict their sum. We aim to assign a concept label to each image, so
that the final result is obtained through reasoning. The standard decimal setting includes 10 concept
labels, and we use images from CIFAR [Krizhevsky et al., 2009] to represent digits. To extend the
challenge, we introduce a hexadecimal variant with 16 concept labels, constructed using the first 16
classes of CIFAR100 [Krizhevsky et al., 2009]. More details and additional experimental results are
provided in Appendix F.1.

We compare our method against two ABL baselines: (1) the original ABL [Huang et al., 2024],
and (2) the improved variant ASBL [He et al., 2024]. We also include several representative
neuro-symbolic methods: (1) NeurASP [Yang et al., 2020], (2) LTN [Serafini and Garcez, 2016],
(3) DeepProbLog [Manhaeve et al., 2018, 2021a], and (4) DeepStochLog [Winters et al., 2022].
Introduction of compared methods are provided in Appendix E. All methods use ResNet18 [He et al.,
2016] as the perception module, and are trained for a total of 5,000 iterations.

Table 1: Comparison of prediction accuracy (top) and total training time in minutes (bottom) on digit
addition tasks. “N/A” indicates runtime exceeding 12 hours. C-ABL consistently achieves higher
accuracy and faster training, with its benefits more pronounced as reasoning complexity increases.

Method Decimal Hexadecimal
d=1 d=2 d=3 d=4 d=1 d=2 d=3
NeurASP 10.0040.00 9.73+0.46 9.73+0.46 N/A 6.27+0.85 N/A N/A
DeepProbLog 7.55+0.58 N/A N/A N/A 6.56+0.73 N/A N/A
DeepStochLog ~ 70.56+089 73.25+140 72.88+130 71.80+150 49.25+234 42.42+172 35.1042.03
LTN 68.25+1.08 71.10+152 71.77+1.18 70.95+136 52.85+188 53.594201 S51.14+222
ABL 70.05+1.10 74.49+182 74.50+106 73.05+129 60.87+122 61.75+1.16 64.14+1.32
ASBL 72.06+1.12 75.62+159 74.65+172 73.28+152 22.45+525 60.75+158 65.81+1.12
C-ABL 71.77+1.03 76.74+134 77.65+132 76.30+122 63.02+1.03 64.25+1.12 66.67+1.11
NeurASP 1132+78 214.7+136 376.5+229 N/A 108.5+103 N/A N/A
DeepProbLog 269.8+77 N/A N/A N/A 214.3+142 N/A N/A
DeepStochLog 32.8421 59.2+338 101.4+79 492.5+224 34.5+23 97.3+59 182.4+9.1
LTN 30.2+2.0 55.6+35 96.7+6.8 473.2425.1 33.1+20 93.5+57 176.0+8.8
ABL 12.6+1.1 27.4+42.1 47.1+32 253.6+14.8 20.8+1.2 49.143.1 99.7+5.2
ASBL 20.6+1.9 29.1424 60.1+4.0 291.24182 31.2+26 68.2+43 109.8+6.8
C-ABL 16.2+1.4 21.5+19 39.8+2.8 132.6+7.7 16.4+1.9 32.0+2.0 55.5+4.2
d=2 d=3
06 06
2o H
3 59 —— ABL
:Cd 03 — A’BL g 03 — A’BL
02 —— C-ABL 02 —— C-ABL
0.1 0.1
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Iteration Iteration Iteration

Figure 2: Comparison of training curves on the hexadecimal addition task with varying digit length d.

Experiments were conducted on decimal addition (d = 1 to 4) and hexadecimal addition (d = 1 to
3). As shown in Table 1, compared to previous ABL and other neuro-symbolic methods, C-ABL
consistently achieves higher accuracy and requires significantly less total training time, indicating a
more efficient reasoning process within each iteration. This improvement becomes especially evident
in more complex settings (e.g., higher-digit or hexadecimal tasks), where the knowledge base is larger
and reasoning becomes more expensive, highlighting the benefits of curriculum-style learning.

Analysis of the Training Process. We examine how curriculum learning affects ABL training
process. Figure 2 shows the training curves on the hexadecimal setting with varied d. We may see that
C-ABL achieves faster and more stable convergence than ABL and A®BL across all settings: While
the baselines often exhibit noisy or stagnant training curves, C-ABL rapidly improves within the first
few hundred iterations and reaches near-maximum performance by iteration 1,000. This aligns with
our theoretical findings: C-ABL mitigates training instability
and achieves faster convergence.

Figure 3 further shows the training curves of three randomly
selected concept labels in C-ABL (shown in green curves), each
introduced in a different phase, with three vertical dashed lines
indicating the start of each phase. (Here we present the first
2,000 iterations; the full training curves are provided in Figure 6
in Appendix F.1.) As shown, each concept improves imme-
diately and stably once its corresponding phase begins, while 0 500 1000 1500 2000
learned concepts from earlier phases remain unaffected. In con- Tteration

trast, ABL introduces all labels at once (shown in red curves), Figure 3: Training curve of three
leading to early-stage oscillations and slower convergence forall - concept labels (hex., d = 1), each
labels. This support our claim: C-ABL enables stable, stepwise jntroduced in a different phase.
learning with smooth transitions across curriculum phases.

Table 2: Results on chess attack task.

no attack = b= It " &
erations to
= s Method Accurac
-) e k% n y1 Converge |
= ABL 73.75+0384 4560496

ASBL 74.96+0.78 33891105

Figure 4: Examples of chess attack task. C-ABL 86.79:046 255348

Table 3: Results on judicial sentencing task. C-ABL achieves improved F1, MAE and MSE scores,
and takes fewer tokens to converge (defined as the point where F1 reaches 99% of its final value).

Method Labeled Data % F11 MAE | MSE | Tokens to Converge |
ABL 10% 0.895+0024 0.762+0.018 0.888+0.069 4.100M
C-ABL ¢ 0.904-t0011 0.762+0036 0.865-+0.094 3.199M
ABL 50% 0.910+0016 0.773x0010 0.874+0022 3.101M
C-ABL ° 0.920+0.006 0.722+0.014 0.773+0.048 2.106M

5.2 Chess Attack

We consider a chess attack task [Dai et al., 2019, Huang et al., 2023]. The input is a randomly
generated chessboard populated with chess pieces, each represented by an image, and the goal is to
determine whether any pair of pieces are in an attacking relationship, see examples in Figure 4. We
aim to assign a concept label to each piece from Z = {rook, pawn, bishop, king, knight, queen},
such that the assignments can logically determine the boolean target label (attack). The knowledge
base defines the attack behavior of each piece. In our setup, chess pieces are represented using
randomly sampled MNIST digits, and we use LeNet-5 [LeCun et al., 1998] as the perception model.
More details are provided in Appendix F.2.

We compare C-ABL with ABL and A®BL, with results shown in Table 2. C-ABL achieves higher
accuracy with faster convergence. Notably, since the target label in this task is binary, the abduction
space is particularly large, highlighting the advantage of C-ABL in complex reasoning scenarios.

5.3 Judicial Sentencing

In this section, we apply C-ABL to a real-world task: judicial sentencing. This task aims to predict the
final sentence length y € R™ based on the input criminal judgment records. The model first predicts
concept labels z representing sentencing factors (e.g., “voluntary surrender”, “repeat offense”), and
then reasons with a legal knowledge base KCB to deduce y. We use the dataset from Huang et al. [2020],
which includes 687 records. We use the pretrained google-bert/bert-base-chinese [Devlin

et al., 2019] as the learning model. More details are provided in Appendix F.3.

We compare C-ABL with prior ABL implementations under two semi-supervised training settings,
where 10% and 50% of the data include ground-truth concept labels available for training supervision.
As shown in Table 3, C-ABL achieves higher F1 scores, lower MAE and MSE, and requires fewer
tokens to converge, showing superior accuracy and training efficiency in real-world setting.

6 Related Work

Recently, there has been notable progress in combining data-driven machine learning with knowledge-
driven logical reasoning. Some methods embed logical structure into neural networks [Serafini and
Garcez, 2016, Xu et al., 2018, Badreddine et al., 2022, Yang et al., 2022, Ahmed et al., 2022], often by
relaxing logical constraints, which can undermine reliability. Probabilistic neuro-symbolic systems
preserve classical reasoning by treating neural outputs as distributions over symbols [Manhaeve
et al., 2018, Yang et al., 2020, Kikaj et al., 2025]. Their inference typically involves weighted model
counting [Chavira and Darwiche, 2008], whose exact computation can be intractable for large or
complex knowledge bases. Recent efforts have introduced approximate inference methods to alleviate
this issue [Manhaeve et al., 2021b, Winters et al., 2022, van Krieken et al., 2023, Li et al., 2023].
Abductive Learning (ABL) [Zhou, 2019, Zhou and Huang, 2022] integrates learning and reasoning in
a balanced loop, where abduction and consistency optimization provide a bridge between the two

components. Supported by an open-source toolkit [Huang et al., 2024], ABL has shown success in
diverse applications [Huang et al., 2020, Cai et al., 2021, Wang et al., 2021a, Gao et al., 2024, Hu
et al., 2025, Wang et al., 2025]. However, current implementations treat the knowledge base as a
black box and perform reasoning over the full logical space, often resulting in unstable supervision
and inefficient convergence when the logical knowledge base is large or complex.

Curriculum learning improves generalization by organizing the learning process from easier to
harder [Bengio et al., 2009, Wang et al., 2021b]. In the neuro-symbolic field, prior work has
incorporated curriculum strategies by gradually increasing the complexity of input data or task
structure [Mao et al., 2019, Chen et al., 2020, Le-Phuoc et al., 2021, Marconato et al., 2023a, Abbe
et al., 2023, Lorello et al., 2024, Wei et al., 2025]. While they mainly focus on the data side, C-
ABL introduces a curriculum over the knowledge base itself—leveraging its symbolic structure to
guide reasoning progression. This allows the model to engage with increasingly complex logic in a
controlled, interpretable way, and better align with the goal of exploiting structured knowledge.

Another line of research investigates ambiguity and shortcut behavior in neuro-symbolic systems
and ABL framework [Marconato et al., 2023a, 2024, Li et al., 2024, Yang et al., 2024, He et al.,
2024], which shares an underlying connection with our analysis: Large abduction spaces in ABL
introduce ambiguity in concept label selection, which can in turn result in unstable or shortcut-driven
supervision [He et al., 2024]. C-ABL tackles this structually by actively managing the reasoning
space of knowledge base, thereby enhancing the reliability of reasoning supervision.

Partitioning knowledge bases into structured components has long been studied in the logic and
knowledge representation communities [Amir and Mcllraith, 2000, 2005, Gocht and Balyo, 2017,
Siminski, 2017]. While originally developed for formal reasoning, these ideas motivate our logic-
guided curriculum for improving learning dynamics in ABL.

7 Conclusion

This paper presents Curriculum Abductive Learning (C-ABL), a method designed to improve the
training stability and efficiency of Abductive Learning (ABL). Unlike prior methods that treat the
knowledge base as a fixed black box, C-ABL leverages structual properties of knowledge base,
partitions the logic into sub-bases and introduces them progressively. This curriculum design reduces
the abduction space, stabilizes supervision, and enables the model to incorporate domain knowledge
from simple to complex. We provide theoretical guarantees for phase-level improvements and smooth
transitions, and demonstrate strong empirical results on synthetic and real-world tasks. By structurally
organizing domain knowledge, C-ABL offers a principled path toward scalable and efficient ABL.

Acknowledgements

This research was supported by the Jiangsu Science Foundation Leading-edge Technology
(BK20232003) and the National Natural Science Foundation of China (62176117). Cunjing Ge was
supported by the National Natural Science Foundation of China (62202218). The authors would like
to thank Reviewer #dk43 of OpenReview for the thorough review and insightful suggestions.

References

E. Abbe, S. Bengio, A. Lotfi, and K. Rizk. Generalization on the unseen, logic reasoning and degree curriculum.
In International Conference on Machine Learning, pages 31-60. PMLR, 2023.

K. Ahmed, E. Wang, K.-W. Chang, and G. Van den Broeck. Neuro-symbolic entropy regularization. In
Uncertainty in Artificial Intelligence, pages 43-53. PMLR, 2022.

E. Amir and S. Mcllraith. Improving the efficiency of reasoning through structure-based reformulation. In
International Symposium on Abstraction, Reformulation, and Approximation, pages 247-259. Springer, 2000.

E. Amir and S. Mcllraith. Partition-based logical reasoning for first-order and propositional theories. Artificial
intelligence, 162(1-2):49-88, 2005.

S. Badreddine, A. d. Garcez, L. Serafini, and M. Spranger. Logic tensor networks. Artificial Intelligence, 303:
103649, 2022.

10

M. Ben-Ari. Mathematical logic for computer science. Springer Science & Business Media, 2012.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, pages 41-48, 2009.

G. Brewka, T. Eiter, and M. Truszczynski. Answer set programming at a glance. Communications of the ACM,
54(12):92-103, 2011.

L.-W. Cai, W.-Z. Dai, Y.-X. Huang, Y.-F. Li, S. H. Muggleton, and Y. Jiang. Abductive learning with ground
knowledge base. In Proceedings of the 30th International Joint Conference on Artificial Intelligence (1J-
CAI’21), pages 1815-1821, 2021.

M. Chavira and A. Darwiche. On probabilistic inference by weighted model counting. Artificial Intelligence,
172(6-7):772-799, 2008.

X. Chen, C. Liang, A. W. Yu, D. Song, and D. Zhou. Compositional generalization via neural-symbolic stack
machines. Advances in Neural Information Processing Systems, 33:1690-1701, 2020.

G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik. Emnist: Extending mnist to handwritten letters. In 2017
international joint conference on neural networks (IJCNN), pages 2921-2926. IEEE, 2017.

K. Conrad. Zorn’s lemma and some applications. Expository papers, 2016.

W.-Z. Dai, Q. Xu, Y. Yu, and Z.-H. Zhou. Bridging machine learning and logical reasoning by abductive learning.
Advances in Neural Information Processing Systems, 32, 2019.

L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic prolog and its application in link discovery.
In IJCAI 2007, Proceedings of the 20th international joint conference on artificial intelligence, pages
2462-2467, 2007.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019 conference of the North American chapter of the
association for computational linguistics: human language technologies, volume 1 (long and short papers),
pages 4171-4186, 2019.

E.-H. Gao, Y.-X. Huang, W.-C. Hu, X.-H. Zhu, and W.-Z. Dai. Knowledge-enhanced historical document
segmentation and recognition. In Proceedings of the 38th AAAI Conference on Artificial Intelligence
(AAAI’24), pages 8409-8416, 2024.

C. Glanois, Z. Jiang, X. Feng, P. Weng, M. Zimmer, D. Li, W. Liu, and J. Hao. Neuro-symbolic hierarchical rule
induction. In International Conference on Machine Learning, pages 7583-7615. PMLR, 2022.

S. Gocht and T. Balyo. Accelerating sat based planning with incremental sat solving. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 27, pages 135-139, 2017.

H.-Y. He and M. Li. A learnability analysis on neuro-symbolic learning. Advances in Neural Information
Processing Systems, 38, 2025.

H.-Y. He, H. Sun, Z. Xie, and M. Li. Ambiguity-aware abductive learning. In Proceedings of The 41st
International Conference on Machine Learning. Vienna, Austria, volume 235, pages 18019—18042, Vienna,
Austria, 2024. PMLR.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778, 2016.

P. Hitzler. Neuro-symbolic artificial intelligence: The state of the art. 10S Press, 2022.

A. Horn. On sentences which are true of direct unions of algebrasl. The Journal of Symbolic Logic, 16(1):
14-21, 1951.

W.-C. Hu, W.-Z. Dai, Y. Jiang, and Z.-H. Zhou. Efficient rectification of neuro-symbolic reasoning inconsistencies
by abductive reflection. In Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI’25),
pages 17333-17341, 2025.

Y.-X. Huang, W.-Z. Dai, J. Yang, L.-W. Cai, S. Cheng, R. Huang, Y.-F. Li, and Z.-H. Zhou. Semi-supervised ab-
ductive learning and its application to theft judicial sentencing. In Proceedings of the 20th IEEE International
Conference on Data Mining (ICDM’20), pages 1070-1075, 2020.

Y.-X. Huang, W.-Z. Dai, L.-W. Cai, S. H. Muggleton, and Y. Jiang. Fast abductive learning by similarity-based
consistency optimization. Advances in Neural Information Processing Systems, 34:26574-26584, 2021.

11

Y.-X. Huang, W.-Z. Dai, Y. Jiang, and Z.-H. Zhou. Enabling knowledge refinement upon new concepts in
abductive learning. In Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI’23), pages
7928-7935, 2023.

Y.-X. Huang, W.-C. Hu, E.-H. Gao, and Y. Jiang. Ablkit: a python toolkit for abductive learning. Frontiers of
Computer Science, 18(6):186354, 2024.

M. Huth and M. Ryan. Logic in Computer Science: Modelling and reasoning about systems. Cambridge
university press, 2004.

L.-H. Jia, S.-Y. Han, L.-Z. Guo, Z. Zhou, Z.-L. Li, Y.-F. Li, and Z.-H. Zhou. A smooth transition between
induction and deduction: Fast abductive learning based on probabilistic symbol perception. arXiv preprint
arXiv:2502.12919, 2025.

P. T. Johnstone. Stone spaces, volume 3. Cambridge university press, 1982.

J. R. Josephson and S. G. Josephson. Abductive inference: Computation, philosophy, technology. Cambridge
University Press, 1996.

A. Kikaj, G. Marra, F. Geerts, R. Manhaeve, and L. De Raedt. Deepgraphlog for layered neurosymbolic ai.
arXiv preprint arXiv:2509.07665, 2025.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

D. Le-Phuoc, T. Eiter, and A. Le-Tuan. A scalable reasoning and learning approach for neural-symbolic stream
fusion. Proceedings of the AAAI Conference on Artificial Intelligence, 35(6):4996-5005, May 2021. doi:
10.1609/aaai.v35i6.16633. URL https://ojs.aaai.org/index.php/AAAI/article/view/16633.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278-2324, 1998.

Z.L1i,J. Huang, and M. Naik. Scallop: A language for neurosymbolic programming. Proceedings of the ACM
on Programming Languages, T7(PLDI):1463-1487, 2023.

Z.1i,7Z. Liu, Y. Yao, J. Xu, T. Chen, X. Ma, and J. Lii. Learning with logical constraints but without shortcut
satisfaction. arXiv preprint arXiv:2403.00329, 2024.

L. S. Lorello, M. Lippi, and S. Melacci. The kandy benchmark: Incremental neuro-symbolic learning and
reasoning with kandinsky patterns. arXiv preprint arXiv:2402.17431, 2024.

J. Maene, V. Derkinderen, and L. De Raedt. On the hardness of probabilistic neurosymbolic learning. arXiv
preprint arXiv:2406.04472, 2024.

L. Magnani et al. Abductive cognition: The epistemological and eco-cognitive dimensions of hypothetical
reasoning, volume 3. Springer, 2009.

R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. De Raedt. Deepproblog: Neural probabilistic
logic programming. advances in neural information processing systems, 31, 2018.

R. Manhaeve, S. Dumanci¢, A. Kimmig, T. Demeester, and L. De Raedt. Neural probabilistic logic programming
in deepproblog. Artificial Intelligence, 298:103504, 2021a.

R. Manhaeve, G. Marra, and L. De Raedt. Approximate inference for neural probabilistic logic programming. In
Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning,

pages 475-486. IICAI Organization, 2021b.

J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu. The Neuro-Symbolic Concept Learner: Interpreting Scenes,
Words, and Sentences From Natural Supervision. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=rJgMlhRctm.

E. Marconato, G. Bontempo, E. Ficarra, S. Calderara, A. Passerini, and S. Teso. Neuro Symbolic Continual
Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal. In Proceedings of the 40th International
Conference on Machine Learning (ICML), 2023a.

E. Marconato, S. Teso, A. Vergari, and A. Passerini. Not all neuro-symbolic concepts are created equal: Analysis
and mitigation of reasoning shortcuts. Advances in Neural Information Processing Systems, 36:72507-72539,
2023b.

E. Marconato, S. Bortolotti, E. van Krieken, A. Vergari, A. Passerini, and S. Teso. Bears make neuro-symbolic
models aware of their reasoning shortcuts. arXiv preprint arXiv:2402.12240, 2024.

12

https://ojs.aaai.org/index.php/AAAI/article/view/16633
https://openreview.net/forum?id=rJgMlhRctm

L. Serafini and A. d. Garcez. Logic tensor networks: Deep learning and logical reasoning from data and
knowledge. arXiv preprint arXiv:1606.04422, 2016.

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algorithms. Cambridge
university press, 2014.

R. Siminski. The experimental evaluation of rules partitioning conception for knowledge base systems. In Infor-
mation Systems Architecture and Technology: Proceedings of 37th International Conference on Information
Systems Architecture and Technology—ISAT 2016—Part I, pages 79-89. Springer, 2017.

M. H. Stone. The theory of representation for boolean algebras. Transactions of the American Mathematical
Society, 40(1):37-111, 1936.

L. Tao, Y.-X. Huang, W.-Z. Dai, and Y. Jiang. Deciphering raw data in neuro-symbolic learning with provable
guarantees. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 15310-15318,
2024.

E. van Krieken, T. Thanapalasingam, J. Tomczak, F. Van Harmelen, and A. Ten Teije. A-nesi: A scalable
approximate method for probabilistic neurosymbolic inference. Advances in Neural Information Processing
Systems, 36:24586-24609, 2023.

E. Van Krieken, P. Minervini, E. M. Ponti, and A. Vergari. On the independence assumption in neurosymbolic
learning. arXiv preprint arXiv:2404.08458, 2024.

J. Wang, D. Deng, X. Xie, X. Shu, Y.-X. Huang, L.-W. Cai, H. Zhang, M.-L. Zhang, Z.-H. Zhou, and Y. Wu.
Tac-valuer: Knowledge-based stroke evaluation in table tennis. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD’21), pages 3688-3696, 2021a.

X. Wang, Y. Chen, and W. Zhu. A survey on curriculum learning. IEEE transactions on pattern analysis and
machine intelligence, 44(9):4555-4576, 2021b.

Z. Wang, J. Wang, X. Chen, M. Wang, M. Ma, Z. Wang, Z. Zhou, T. Yang, and W.-Z. Dai. From end-to-end
to step-by-step: Learning to abstract via abductive reinforcement learning. In J. Kwok, editor, Proceedings
of the Thirty-Fourth International Joint Conference on Artificial Intelligence, IJCAI-25, pages 6515-6523.
International Joint Conferences on Artificial Intelligence Organization, 2025.

W.-D. Wei, X.-W. Yang, J.-J. Shao, and L.-Z. Guo. Curriculum abductive learning for mitigating reasoning
shortcuts. In J. Kwok, editor, Proceedings of the Thirty-Fourth International Joint Conference on Artificial
Intelligence, IICAI-25, pages 6533-6541, 2025.

T. Winters, G. Marra, R. Manhaeve, and L. De Raedt. Deepstochlog: Neural stochastic logic programming. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 10090-10100, 2022.

J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. Broeck. A semantic loss function for deep learning with symbolic
knowledge. In International conference on machine learning, pages 5502-5511. PMLR, 2018.

X.-W. Yang, W.-D. Wei, J.-J. Shao, Y.-F. Li, and Z.-H. Zhou. Analysis for abductive learning and neural-symbolic
reasoning shortcuts. In Proceedings of The 41st International Conference on Machine Learning. Vienna,
Austria, Vienna, Austria, 2024. PMLR.

X.-W. Yang, J.-J. Shao, L.-Z. Guo, B.-W. Zhang, Z. Zhou, L.-H. Jia, W.-Z. Dai, and Y.-F. Li. Neuro-symbolic
artificial intelligence: Towards improving the reasoning abilities of large language models. In J. Kwok, editor,
Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence, IJCAI-25, pages
10770-10778, 2025. Survey Track.

Z. Yang, A. Ishay, and J. Lee. Neurasp: Embracing neural networks into answer set programming. In 29th
International Joint Conference on Artificial Intelligence, 2020.

Z. Yang, J. Lee, and C. Park. Injecting logical constraints into neural networks via straight-through estimators.
In International Conference on Machine Learning, pages 25096-25122. PMLR, 2022.

Y. Yu, H. Qian, and Y.-Q. Hu. Derivative-free optimization via classification. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 30, 2016.

Z.-H. Zhou. Abductive learning: towards bridging machine learning and logical reasoning. Science China
Information Sciences, 62:1-3, 2019.

Z.-H. Zhou. Machine learning. Springer nature, 2021.

Z.-H. Zhou and Y.-X. Huang. Abductive learning. In P. Hitzler and M. K. Sarker, editors, Neuro-Symbolic
Artificial Intelligence: The State of the Art, pages 353-369. 10S Press, Amsterdam, 2022.

13

A Limitation

While Curriculum Abductive Learning (C-ABL) demonstrates substantial improvements in training
stability and reasoning performance, it also has several limitations. First, our partitioning strategy
assumes that the knowledge base exhibits certain structural regularity—such as modularity or de-
pendency chains—that supports meaningful curriculum design. This assumption holds for many
real-world domains, including law, mathematics, medicine, structured game, etc. However, in some
cases where the rule set is densely entangled or lacks clear structure, such partitioning may be less
effective. Second, the current design of phase transitions is based on fixed structural principles
and a simple accuracy threshold; more adaptive or learnable curriculum schedules could further
improve performance but remain unexplored. Third, like standard ABL, C-ABL assumes access to a
pre-defined, human-curated knowledge base. While our focus is on leveraging such structured knowl-
edge, future work may explore methods for acquiring or refining the knowledge base, potentially by
leveraging information from data.

B Additional Analysis of Algorithm 1

B.1 Examples of Knowledge Base Partitioning

This section illustrates examples of partitioning the knowledge base into sub-bases based on Algo-
rithm 1 in Section 2.1.

Chess Attack. We use the chess attack task as the first example. As stated in Section 5.2, in
this task, the input is a chessboard configuration with several pieces, and the concept label set is
Z = {rook, pawn, bishop, king, knight, queen}. KB contains rules of the attack behavior for
each piece, with the target label y = attack, indicating whether any pair of pieces in the chessboard
are in an attacking relation.

Figure 5 illustrates a portion the aforementioned KB, and provides a visual example of how the
dependency graph is constructed as well as how sub-base clusters are formed based on Algorithm 1.

Each node in the dependency graph corresponds to a rule in the knowledge base, and a directed edge
is drawn from rule r; to r; if the head predicate of r; appears in the body of r;. For example, in the
top portion of the figure, the rule for 1shape depends on both 1left and fwd, and in turn supports
the rule for attack when the piece is a knight. This forms a dependency path: left,fwd —
1shape — attack.

Our algorithm begins by constructing an initial cluster C', for each concept label z € Z by collecting
all rules that directly reference z in their bodies. In the figure, these clusters are color-coded by
background:

* The green-shaded region corresponds to Cynigne, Which includes the attack rule with concept
knight, the 1shape rule, and the supporting geometric rules left and fwd.

* The red-shaded region represents Cyoox, Which includes the attack rule with concept rook, and
the supporting 1ine predicate rules that it depends on.

e The represents Chignop, Which includes the attack rule with concept
bishop, and the supporting diag predicate rules that it depends on.

* The blue-shaded region shows Cqueen, Which includes the attack rule involving queen and the
line_or_diag predicate, along with its dependencies on both 1ine and diag.

Edges in the figure indicate predicate-level dependencies between rules, which guide the recursive
expansion of clusters and the establishment of inter-cluster precedence. For example, Cgyeen depends
on both Croox and Chpisnep due to its reliance on 1ine and diag via line_or_diag, so both Croox
and Chisnop must precede Cyueen in the curriculum.

14

lshape ((X1,Y1), (X2,Y2)) «+
left ((X1,Y1), (X3,Y3)),
fwd((X3,Y3), (X4,Y4)),
fwd ((X4,Y4), (X2,Y2)).

left ((X1,Y1),(X2,Y2)) <«
X1=X2+1, Y1=Y2.

fwd ((X1,Y1), (X2,Y2)) «
Y1=Y2+1, X1=X2.

line((X1,Y1),(X2,Y2)) « X1=X2, Y1<Y2
line((X1,Y1),(X2,Y2)) + ---

line or_diag((X1,Y1),(X2,Y2)) +
line((X1,Y1),(X2,Y2)).

line or_diag((X1,Y1),(X2,Y2)) +
diag((X1,Y1),(X2,Y2)),

diag((X1,Y1),(X2,Y2)) < ---

1shape ((X1,Y1),(X2,Y2)) + ---

attack((X1,Y1),P, (X2,Y2)) +
knight (P),
lshape((X1,Y1),(X2,Y2)).

attack((X1,Y1),P, (X2,Y2)) +
rook(P),line((X1,Y1), (X2,Y2)).

attack((X1,Y1),P, (X2,Y2)) «+
queen(P),
line or_diag((X1,Y1), (X2,Y2)).

attack((X1,Y1),P, (X2,Y2)) +
bishop(P),diag((X1,Y1), (X2,Y2)).

Figure 5: A portion of knowledge base in chess attack task.

The resulting sub-bases, for example, follow an incremental structure such as:

K:Bl = Cknight
ICB2 = Cknight U C(rook

ICB?) = C(knight) Crook U C'bishop

KBy = C'knight U C(roc:k U C’bishop) C(queen

d-digit Addition. In the digit addition task (outlined in Example 2.1 and Section 5.1), the knowledge
base 5 encodes multi-digit addition through symbolic predicates for digits and arithmetic operations.
It includes logic for digit-wise computation and mappings from concept labels (e.g., zero, one) to

numeric values, as illustrated below:

addition(Numl, Num2,Y) < number(Numl, Res1),
number(Num2, Res?2),
Y is Resl + Res2.

number([], Res, Res) .

number ([H|T], Acc,Res) < digit(H,D),
Accl is D+ 10 x Acc,
number (T, Accl, Res).
number (X, N) + number(X,0,N).

)

digit(Pos,0) < zero(Pos).
digit(Pos,1) < one(Pos).
digit(Pos,2) < two(Pos).
digit(Pos, 3) < three(Pos).
digit(Pos,4) < four(Pos).
digit(Pos,5) + five(Pos).
digit(Pos,6) < six(Pos).
digit(Pos,7) + seven(Pos).
digit(Pos,8) + eight(Pos).
digit(Pos,9) + nine(Pos).

15

When applying Algorithm 1, rules are partitioned based on concept label dependencies. For
example, KB; may include rules for Z; = {zero,one}, then expand to KBy with Z; =
{zero, one, two, three}, and so on. Each K5, includes (1) digit-mapping rules relevant to Z,,
and (2) shared arithmetic rules for addition (rules with predicate addition as head) and number
construction (rules with predicate number as head). While the core arithmetic logic remains fixed
across phases, digit-related rules are introduced gradually.

The above two visualizations on chess attack and digit addition make clear how our algorithm traces
dependencies to group semantically related rules into coherent sub-bases, and defines a curriculum
order based on the reasoning hierarchy encoded in the knowledge base structure.

B.2 Computational Cost Analysis

We now analyze the computational overhead introduced by the knowledge base partitioning algorithm,
i.e., Algorithm 1 proposed in Section 3.1.

Time Complexity. Let n and e be the number of nodes (also, number of rules in X3) and edges in
the dependency graph of ICB. The partitioning process involves the following major steps:

1. Dependency Graph Construction: For each rule, we inspect its head and compare it against all
other rule bodies. This results in O(n?) comparisons in the worst case. Also, since predicates
tend to be sparse in practice, a hash-based indexing scheme can reduce this to O(n + e).

2. Cluster Initialization and Expansion: For each concept label z € Z (with |Z| = N), we
initiate a cluster and expand it by traversing the dependency graph, the overall time complexity of
this process is O(N(n + e)).

3. Precedence Ordering and Topological Sort: After forming clusters, we identify precedence
relations based on cross-cluster dependencies. This forms a directed acyclic graph over clusters,
with topological sorting in O(N + e.) time, where e. is the number of inter-cluster edges
(typically e. < e).

Putting all steps together, the overall complexity is approximately O(N (n + e)) under practical
sparsity assumptions.

Empirical Partition Time. In practice, we evaluated the partitioning time on the two examples
described in Appendix B.1. For the digit addition task, the knowledge base contains 14 rules, and
partitioning takes 0.05 seconds. For the chess attack task, which includes 58 rules, partitioning
completes in 0.9 seconds. All measurements were conducted on a standard CPU (Intel Xeon Gold
6226R, single thread), with no GPU required.

To put this in context, a full ABL training run (e.g., under 1,000 iterations) typically takes several
minutes to hours, depending on the task and model. Therefore, the knowledge base partitioning
accounts for a minimal portion of the total runtime. More importantly, it is a one-time, offline
preprocessing step, independent of data size or iteration count, and its cost amortizes over training.
In summary, Algorithm 1 incurs negligible computational overhead while providing benefits in
reasoning efficiency, supervision quality, and convergence speed.

C Theorem Proof
C.1 Proof of Theorem 3.2

Proof. We prove the two directions separately.

Soundness. This follows from the fact that B, C KB, Any logical derivation that holds under
KB, also holds under the full knowledge base KB, since KB contains all rules in KCB,,. Therefore,
we have:

KB, | o = KB F ¢. 3)

16

Completeness. We assume that KB |= ¢, i.e., there exists a proof (derivation) of ¢ using rules
from ICB. Let R C KCB denote the minimal set of rules used in this derivation. We now argue that all
rules in R are also contained in KB,,.

As stated in Algorithm 1, for any predicate z € Z,,, sub-base involving it is constructed by: (1) Create
a cluster C', by collecting all rules whose bodies mention z. (2) Recursively expand C,, by traversing
the dependency graph G If a rule depends on a predicate a, and a is concluded by another rule, then
that rule is also included. (3) Continue until all rules needed to derive any conclusions involving z are
included. Therefore, for each 2 € Z,, all reasoning chains involving z and the predicates it depends
on are included in KCB,, by construction. Since by assumption, ¢ only involves predicates in Z,, and
the derivation of ¢ in XCI3 uses only predicates and rules in these chains, we conclude that R C KCB,,.

Hence, the same inference of ¢ can be carried out within KC3,,. Therefore, we have:

KBE ¢ = KB, = ¢. “
O

C.2 Proof of Corollary 3.3

Proof. Since the final phase P includes all clusters and thus covers all predicates in Z, we have
Zp = Z. Therefore, for any formula ¢ over Z, we trivially have:

KBp E ¢ < KB . 5)

C.3 Proof of Lemma 4.1

Proof. Each of the m positions independently selects a label from Z, giving N™ possible assignments
in total. Logical constraints may eliminate some assignments, but the maximum remains N™. [

C.4 Proof of Theorem 4.2

Proof. We first denote Z, = Z,_1 UAZ,, where AZ, = Z,\ Z,_; are the new concept labels
introduced in phase p, and for any z € S, we write 2 = (2o, Znew) accordingly.

Recall that the consistency score used for pseudo-label selection is:

m

Con(z, f) = [[p(="). 6)

i=1
where p(*) (z(i)) denotes the model’s predicted probability for concept z(*) at position 7.

Now fix two candidate concept sequences z(*) and z(®) in Sp, such that: 2@ and z(® agree on
all positions ¢ where 20 ¢ Z, \ Z,_1, but disagree at some positions 7 where PONS Z,_1. Then
their consistency scores differ only in terms involving Z,,_;. By the semantic stability assumption,
previously learned concepts retain their meaning across phases. Combined with the assumption
that for any previously introduced concept z € Z,_1, the model achieves accuracy exceeding
random chance, so that for positions i with () € Z,,_1, the predicted probabilities p(*) (2(*)) tend to
assign higher mass to correct concepts learned in prior phases. Therefore we have Con(2(®), f) >
Con(z®, f), meaning the selection strategy will typically prefer z() over z(®).

This shows that, under consistency-based selection, the model tends to preserve earlier learned
concepts (those in Z,,_1), and variations in S, primarily arise from the newly introduced concepts
Z, \ Zp—1. Therefore, the number of valid configurations in S, is bounded by the number of possible
combinations of z,ey:

|Sp| < |AZP\7" = |Zp \ Zp—l‘m- @)
O

17

C.5 Proof of Theorem 4.5

Proof. Let the loss function at iteration ¢ be defined as:
LY = e(f9 (), 2), ®)

where 2(!) € S is selected via abduction given i and X3, we aim to bound the average suboptimality
of the iterates:

T

1

T § E[L® — L*] <e, ©)
t=1

where L* = ming ¢(f(x), z*) is the best possible loss under the true concept label z*.

By chapter 14 in Shalev-Shwartz and Ben-David [2014], under the assumptions that: (1) loss function
L® is convex, (2) the gradient norm is bounded by the Lipschitz constant p, i.e., |[VL®|| < p, and
(3) the model lies in a bounded domain of diameter D, then the regret over T steps is bounded by:

T
D? Tp?
S o< 4 B (10)
P 2n 2
Choosing the optimal learning rate n = p%, we obtain:
T
1 D
TZ]E{L“LL*} g\/—%. (11)
t=1

To ensure this average suboptimality is below ¢, it suffices that:

Dp Dp 2
\/T<6:>T><€) . (12)

Now, suppose that due to the abductive process, at each iteration t, the pseudo-label 2(*) is selected
uniformly from a candidate set of size |S|, then the effective variance or inconsistency in supervision
may grow linearly with |S|. To conservatively account for this, we assume the domain diameter
D = O(|S]), which reflects the number of pseudo-label variants over which the model needs to

generalize. Therefore, we have
IS|? - p?
T=0 — |- (13)

e

which completes the proof. O

C.6 Proof of Theorem 4.6
Proof. Recall that for each phase p, we have KB, C KB, and that Z, C Z,, therefore, by

Theorem 3.2, both KB, and B, are sound and complete with respect to all formulas over Z,,.
Then, for any formula ¢ over Z,, we have:

KB,y < KBEy¢ < KBy11E¢ (14)

where the first equivalence comes from applying Theorem 3.2 to X3, and the second from applying
it to LBy, 11, since both sub-bases fully capture all reasoning over the same concept domain Z,,.

Hence, KB, = ¢ if and only if B,1+1 = ¢, completing the proof. O
C.7 Background on Stone Spaces and Proof of Theorem 4.7

We first provide backgrounds on stone spaces [Johnstone, 1982]: Stone spaces provide a topological
perspective on logic by characterizing the space of all models (truth assignments) that satisfy a given
set of logical formulas. Formally, given a Boolean algebra B, its Stone space S(B) is defined as the

18

set of all ultrafilters over B, where an ultrafilter is a maximal consistent set of formulas—intuitively,
it corresponds to a complete and consistent truth assignment over the logic.

Stone’s representation theorem [Stone, 1936] states that every Boolean algebra is isomorphic to the
algebra of clopen (simultaneously closed and open) subsets of its Stone space. This construction
enables logical entailment to be interpreted as topological containment: if ¢ € B holds in all
ultrafilters in S(B), then ¢ is a logical consequence of 5.

In our setting, for each phase p, we define a Boolean algebra B, as the closure of all logical formulas
over the predicate set Z,,. The Stone space S(,) thus encodes all logically consistent concept-level
assignments admissible under K13,,.

Below is the proof of Theorem 4.7.

Proof. Recall that for each phase p, we construct a sub-base KB, such that B, C KB, and that
Z, C Z,11. Let B, denote the Boolean algebra of formulas over Z,, and B, denote that over
Zpy1. Since Z, C Z,41, every formula over Z,, is also a formula over Z, 1, that is, the Boolean
algebras satisfies B, C Bj,11.

We now argue that any ultrafilter over B, can be extended to an ultrafilter over B, ,: Following
Zorn’s Lemma [Conrad, 2016], any consistent set of formulas over a Boolean algebra can be extended
to an ultrafilter over a larger Boolean algebra containing it, therefore, any model over Z,, can be
extended to a model over Z, that preserves the truth values of formulas in B,,. Then, for every
ultrafilter U,, € S(1B,,), there exists at least one ultrafilter U, 11 € S(Bp41) such that U,11 NB, = U,,.
This directly implies:

S(Bp) € S(Bp+1), (15)
since every model in phase p remains valid (or extendable) in phase p + 1.

O

D Pseudocode for Curriculum Abductive Learning

This section shows the pseudocode (see Algorithm 2) for the Curriculum Abductive Learning (C-ABL)
training process, as stated in Section 3.2.

Algorithm 2: Curriculum Abductive Learning (C-ABL) Training
Input: Sub-bases KBy, ..., KBp, training dataset D
Output: Trained model f

1 Initialize f randomly;

2 forp=1to Pdo

3 Schedule training stream D,, C D with concept labels in Z,;

4 repeat

5 for each x € D, do

6 z <+ f(z);

7 if 2 A KB, = y then

8 |z %

9 else

10 S« {z|2AKB, =y};

1 z « argmin 1 — [, p® () > from Eq. (1);

z€S

12 Update f using z;
13 until Phase transition condition met (p < P) or termination condition met (p = P) ;

E Comparison Methods

In this section, we provide a brief supplementary introduction to the compared baseline methods used
in experiments.

19

ABL and its Variants.

(1) ABL [Dai et al., 2019], the original implementation of Abductive Learning, supported by an
efficient open-source toolkit [Huang et al., 2024]. For consistency evaluation, we adopt the
confidence-based selection strategy as defined in Section 2.3 (see Eq. (1));

(2) A®BL [He et al., 2024], one of the most effective ABL variants, which improves concept label
selection by evaluating all candidates in the abduction space.

Other variants such as Huang et al. [2021], Tao et al. [2024] also focus on refining label selection but
perform less robustly than ABL. We do not compare with methods like ABL-Refl [Hu et al., 2025]
or ABL-PSP [Jia et al., 2025], as they process the entire input sequence jointly and hence require
different perception modules, making direct comparison less meaningful.

Neuro-Symbolic Methods.

(1) NeurASP [Yang et al., 2020], an extension of answer set programs [Brewka et al., 2011] by
treating the neural network output as the probability distribution over atomic facts;

(2) LTN [Serafini and Garcez, 2016], a neural-symbolic framework that uses differentiable first-
order logic language. This is a representative work of relaxing logical rules as soft constraints in
neural networks;

(3) DeepProbLog [Manhaeve et al., 2018], an extension of ProbLog [De Raedt et al., 2007] by
introducing neural predicates;

(4) DeepStochLog [Winters et al., 2022], a related strategy to DeepProbLog that improves inference
efficiency through stochastic logic program.

F Experiment Details and Additional Results

All experiments are performed on a server with Intel Xeon Gold 6226R CPU and Tesla A100 GPU,
and each experiment is repeated 5 times.

F.1 d-digit Addition Tasks

Curriculum Design. The curriculum partitioning of KB for this task is detailed in Appendix B.1.
We set the minimum phase size to 7 = 2.

Additionally, Table 4 presents a sensitivity analysis on different values of 7, conducted under the
hexadecimal addition setting with d = 3. In this configuration, there are a total of 16 concept
labels, and we experimented with 7 values ranging from 1 to 4. Results show that our method
consistently outperforms both ABL and A®BL across different 7 settings. In general, a smaller
7 leads to finer-grained sub-bases and a smaller abduction space, which often improve reasoning
accuracy and training efficiency. Indeed, when the phases are too fine-grained, the model will go
through more curriculum, which slightly brings implementation complexity.

Cross-Dataset Analysis. We further validate our method on alternative datasets. In the decimal
setting, we now use digit images from MNIST dataset [Krizhevsky et al., 2009], and in the hex-
adecimal setting, we use digits 0-9 and letters A—F from EMNIST dataset [Cohen et al., 2017]. All
methods use LeNet-5 [LeCun et al., 1998] as the perception model, and are trained for a total of
1,000 iterations. Results in Table 5 show that C-ABL continues to yield superior reasoning accuracy
and training efficiency compared to baselines.

Full Training Curve (Complementing Figure 3). Previously in Figure 3, we illustrated a segment
of the training curves for three randomly selected concept labels, each introduced in a different phase
(with three vertical dashed lines indicating the start of their respective phases). Here in Figure 6, we
present the full training curve of these concept labels (left). We also provide a zoomed-in view (right)
focusing on the early training period of C-ABL, which highlights that in C-ABL, each concept label
improves immediately and stably upon the start of its corresponding curriculum phase, while the
performance of previously learned concepts remains unaffected—demonstrating the smoothness and
stability of phase transitions.

20

Table 4: Sensitivity analysis on different 7 values across different tasks. C-ABL outperforms ABL
and A®BL across different 7 settings.

Digit Addition Chess Attack
Method Test Training Test Training
Accuracy Time (min) Accuracy Time (min)
ABL 64.14+1.3 99.7 452 73.75+084 36.7+28
ASBL 65.81+1.12 109.8 463 74.96+078 45.6432
T=1 66.78+t105 53.7+27 85.86+074 20.9+16
C-ABL 7= 66.67+1.11 55.5442 86.79+0.66 23. 1418

T=3 06576+108 64.8+49 84.69+071 26.3+2.1
T=4 66.01+116 70.1+5.1 - -

Table 5: Comparison of prediction accuracy (top) and total training time in minutes (bottom) on digit
addition tasks with MNIST / EMNIST dataset. “N/A” indicates runtime exceeding 3 hours. C-ABL
consistently achieves higher accuracy and faster training.

Method Decimal Hexadecimal

d=1 d=2 d=3 d=4 d=1 d=2 d=3
NeurASP 97.01+024 10.21+0.39 N/A N/A 77.65+629 N/A N/A
DeepProbLog ~ 97.42+0.29 N/A N/A N/A 96.59+0.48 N/A N/A
DeepStochLog 99.00+0.13 98.72+014 98.59+012 98.46+011 97.56+012 97.96+011 97.13+0.15
LTN 98.64+018 98.53+021 98.48+017 98.34+019 97.18+014 96.53+017 97.11x+0.3
ABL 98.79+0.10 98.99+008 98.59+009 98.29+011 97.17+010 97.49+008 97.50+0.06
ASBL 98.94+012 99.03+0090 98.68+0.10 98.42+012 96.76+012 97.62+009 97.65+0.07
C-ABL 99.04+0.06 99.17+005 99.09+0.04 99.17+003 98.48+003 98.41+0.04 98.83+0.02
NeurASP 33.1+16 87.8422 N/A N/A 48.3+46 N/A N/A
DeepProbLog 44.8+15 N/A N/A N/A 69.8+7.7 N/A N/A
DeepStochLog 3.9+05 7.6+09 38.5+14 166.8+6.3 6.8+05 24.0+2.0 139.4+9.1
LTN 42404 8.0+1.0 29.1+16 140.2+509 7.1+06 24.5+22 155.0+133
ABL 1.9+02 2.5+03 11.9+12 80.3+73 1.4+02 4.840.7 30.8424
A®BL 2.9+03 4.6+05 15.5+17 105.8+6.5 3.2+0.1 6.5+06 54.2+37
C-ABL 0.9-+0.1 1.8+0.2 6.9+07 33.2+23 1.0+0.1 3.4+04 20.6+2.1

F.2 Chess Attack Task

Curriculum Design. The partitioning strategy for this task is also described in Appendix B.1. We
again set the minimum phase size to 7 = 2. A sensitivity analysis of this hyperparameter is provided
also in Table 4, where we evaluate 7 values ranging from 1 to 3 under the setting with 6 concept
labels. Results show performance advantage of C-ABL over ABL and A3BL in almost all tested T
values. As in the digit addition task, a smaller 7 introduces more fine-grained sub-bases and smaller
abduction spaces, which may lead to improved accuracy or faster convergence.

F.3 Judicial Sentencing Tasks

Dataset Description. The dataset consists of 687 criminal judgment records for theft cases authored
by judges in Guizhou, China, between 2017 and 2018 [Huang et al., 2020]. Each record includes
detailed descriptions of the defendant’s background and criminal record, as well as some facts and
legal basis of the ruling.

Knowledge Base. The legal domain offers rich structured prior knowledge that can be encoded
as first-order logic rules, forming the knowledge base KCB. These include statutory law, attribute-
matching rules, and general common sense constraints. Below is an example adapted from Huang
et al. [2020], which outlines how various attributes and the stolen amount of money determine the
final sentence:

21

P NS S A Pt
0.6 (P
M TN e
05 0.6
>
Q04 >\0-5 L
—~
2 & 04 v
Q
S 0.3 &5
< 803
0.2 <
0.2
- — ABL
0.1
M JW ——— C-ABL 01
bl 7
0 1000 2000 3000 4000 5000 0 100 200 300 400 500 600 700
Iteration Iteration

Figure 6: Full training curves of three concept labels introduced in different phases (left) and a
zommed-in early-stage view for C-ABL (right).

penalty(X,Y) < base_penalty(X,Z;) Aweight(X,Z2) AY = Z1(1 + Z2).
base_penalty(X,Y) < money(X,m) AY=0.7m + 5.7.
weight([],0)
weight([X|Xs],Y)

= o
<+ element_weight(X,Z;) A weight(Xs,Z3) AY = Z1 + Zs.

I,
I,

However, such symbolic knowledge is often incomplete—for instance, the rule “voluntary surrender
reduces sentence” may exist, but the precise reduction is unspecified. To incorporate these partially
defined patterns into a learnable system, we parametrize the knowledge base as:

y=1+w"2)(am+Db), (16)

where z is a binary vector representing predicted case attributes (i.e., concept labels), m € N is the
amount of money involved (a ground-truth numeric input), and y € R™ is the predicted sentence
length. This formulation mirrors the logical structure of first-order rules while allowing the unknown
parameters w, a, and b to be learned via a linear regression model. Like the original rule-based
system, Eq. (16) supports abduction: given a known sentence length y and monetary amount m, the
model can infer plausible case attributes z.

In summary, this task requires both the prediction of concept labels and the joint optimization
of symbolic parameters to produce sentence predictions directly from judgment documents. The
integration of symbolic reasoning and statistical learning makes this possible in a unified framework.

Curriculum Design. In C-ABL, the knowledge base is partitioned according to the number of case
attributes involved: earlier phases include rules with fewer attributes, while later phases expand to
incorporate more. For example, the initial sub-knowledge bases contain rules for basic case attributes,
such as whether the defendant is a repeat offender. In contrast, later phases include rules incorporating
additional factors, such as the defendant’s cooperation with law enforcement, whether the crime
involves mitigating circumstances, etc. Specifically, we define the sub-knowledge base for phase p as:

KB, = {y =(1 erTz)(aer b) | 172 < p} , a7

ensuring that earlier phases focus on simpler cases, thereby facilitating a smoother and more stable
training process.

22

	Introduction
	Problem Setting and Preliminary
	Knowledge Base Concepts
	Problem Setting
	Brief Introduction of Abductive Learning

	Our Method
	Curriculum Design over Knowledge Base
	Curriculum-Guided Training

	Theoretical Analysis: Efficient and Smooth Optimization
	Efficient Training within Phase
	Smooth Phase Transition

	Experiments
	d-digit Addition
	Chess Attack
	Judicial Sentencing

	Related Work
	Conclusion
	Limitation
	Additional Analysis of Algorithm 1
	Examples of Knowledge Base Partitioning
	Computational Cost Analysis

	Theorem Proof
	Proof of Theorem 3.2
	Proof of Corollary 3.3
	Proof of Lemma 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.5
	Proof of Theorem 4.6
	Background on Stone Spaces and Proof of Theorem 4.7

	Pseudocode for Curriculum Abductive Learning
	Comparison Methods
	Experiment Details and Additional Results
	d-digit Addition Tasks
	Chess Attack Task
	Judicial Sentencing Tasks

