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Abstract
Derivative-free optimization methods are suitable
for sophisticated optimization problems, while are
hard to scale to high dimensionality (e.g., larger
than 1,000). Previously, the random embedding
technique has been shown successful for solving
high-dimensional problems with low effective di-
mensions. However, it is unrealistic to assume a
low effective dimension in many applications. This
paper turns to study high-dimensional problems
with low optimal ε-effective dimensions, which al-
low all dimensions to be effective but many of them
only have a small bounded effect. We character-
ize the properties of random embedding for this
kind of problems, and propose the sequential ran-
dom embeddings (SRE) to reduce the embedding
gap while running optimization algorithms in the
low-dimensional spaces. We apply SRE to several
state-of-the-art derivative-free optimization meth-
ods, and conduct experiments on synthetic func-
tions as well as non-convex classification tasks with
up to 100,000 variables. Experiment results verify
the effectiveness of SRE.

1 Introduction
Solving sophisticated optimization problems plays an impor-
tant role in artificial intelligence. Let f : RD → R be a func-
tion of which we assume that a global minimizer x∗ always
exists. An optimization problem can be formally written as

x∗ = argminx∈RD f(x).

We assume that the optimization problems discussed in this
paper are deterministic, i.e., every call of f(x) returns the
same value for the same x.

In this paper, we focus on derivative-free optimization
methods, which regard f as a black-box function that can
only be evaluated point-wisely, i.e., they perform optimiza-
tion based on the function values f(x) for the sampled solu-
tions and other information like gradient is not used. Because
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these methods do not rely on derivatives, they are suitable for
optimization problems that are, e.g., with many local optima,
non-differentiable, and discontinuous, which are often en-
countered in a wide range of applications. The performance
of a derivative-free optimization algorithm can be evaluated
by the simple regret [Bubeck et al., 2009], i.e., given n func-
tion evaluations, for minimization,

rn = f(x(n))−minx∈RD f(x),

where x(n) ∈ RD is the solution with the lowest function
value found by the algorithm when the budget of n function
evaluations is used up. The simple regret measures the differ-
ence between the best function value found by the algorithm
and the minimum of f .

Many derivative-free optimization methods have been de-
signed under various principles. They can be roughly cate-
gorized into three kinds: model-based methods, determinis-
tic Lipschitz optimization methods and meta-heuristic search.
Model-based methods, such as Bayesian optimization meth-
ods [Brochu et al., 2010; Snoek et al., 2012; Kawaguchi et
al., 2015] and classification-based methods [Yu et al., 2016],
learn a model from the solutions and the model is then applied
to guide sampling of solutions for the next round. Determinis-
tic Lipschitz optimization methods need Lipschitz continuity
assumption on f , such as [Jones et al., 1993; Pintér, 1996;
Bubeck et al., 2011; Munos, 2014]. Meta-heuristic search is
designed with inspired heuristics, such as evolutionary strate-
gies [Hansen et al., 2003].

Problem. Almost all derivative-free methods are effective
and efficient in low-dimensional problems (usually less than
100 dimensions), but are hard to scale to high dimensionality
(say, larger than 1,000 dimensions). This is mainly due to ei-
ther the low convergence rate in high-dimensional space, thus
unbearably many iterations are required; or the per-iteration
computational cost is very high in high-dimensional space,
thus it is unbearable for finishing a few iterations; or even
both of the reasons. The unsatisfactory scalability is one of
the main bottlenecks of these methods.

Related Work. Recently, there are some studies focusing
on improving the scalability of derivative-free methods. The
two major directions are decomposition and embedding.

Decomposition methods extract sub-problems from the
original optimization problem, and by solving the sub-
problems the original problem will be solved. In [Kandasamy



et al., 2015], additive functions were considered, i.e., the
function value f(x) is the sum of several sub-functions with
smaller dimensions, and there is no variable overlaps be-
tween any two sub-functions. In [Kandasamy et al., 2015],
via employing a Bayesian optimization method, it was shown
that using the additive structure can effectively accelerate the
Bayesian optimization method. In [Friesen and Domingos,
2015], a recursive decomposition method was proposed for
approximately locally decomposable problems. These meth-
ods, however, rely on the (mostly axis-parallel) decompos-
ability, which may restrict their applications.

Embedding methods assume that in the high-dimensional
space, only a small subspace effects the function value.
Therefore, optimization only in the effective subspace can
save a lot of efforts. In [Carpentier and Munos, 2012], com-
pressed sensing was employed to deal with linear bandit prob-
lems with low-dimensional effective subspaces. In [Chen
et al., 2012], a variable selection method was proposed to
identify the effective axis-parallel subspace. In [Djolonga
et al., 2013], a low-rank matrix recovery technique was em-
ployed to learn the effective subspace. In [Wang et al., 2013;
Qian and Yu, 2016], the random embedding based on the ran-
dom matrix theory was employed to identify the underlying
linear effective subspace. However, real-world problems may
not have a clear effective subspace, also it is hard to verify the
existence of the effective subspace.

Our Contributions. In this paper, we study high-
dimensional problems with low optimal ε-effective dimen-
sions (see Definition 1). In these problems, any (linear trans-
formed) variable is allowed to effect the function value, how-
ever, only a small linear subspace has a large impact on
the function value, and the orthogonal complement subspace
makes only a small bounded effect.

Firstly, we characterize the property of random embedding
for this kind of problems. We find that, given optimal ε-
effective dimension, single random embedding bears 2ε em-
bedding gap. Note that this embedding gap cannot be com-
pensated by the optimization algorithm.

We then propose the sequential random embeddings (SRE)
to overcome the embedding gap. SRE applies the random
embedding several times sequentially, and in each subspace,
SRE employs an optimization algorithm to reduce the residue
of the previous solution. Therefore, SRE can also be viewed
as a combination of decomposition and embedding, as each
random embedding defines a sub-problem. We also disclose
the condition under which SRE could improve the optimiza-
tion quality for a large class of problems.

In experiments, we apply SRE to several state-of-the-art
derivative-free optimization methods, and conduct experi-
ments on synthetic functions as well as classification tasks
using the non-convex Ramp loss. Experiment results show
that SRE can significantly improve the performance of the
optimization methods in high-dimensional problems. More-
over, comparing with previous related studies where testing
functions are mostly up to 1,000 variables, the derivative-free
methods with SRE are tested for up to 100,000 variables, in
real-world data sets.

The consequent sections respectively introduce the optimal
ε-effective dimension problems and present the property of

random embedding, describe the proposed SRE technique as
well as its theoretical property, present the empirical results,
and finally conclude the paper.

2 Optimal ε-Effective Dimension and
Random Embedding

Optimal ε-Effective Dimension
Effective dimension defined in [Wang et al., 2013] requires
the existence of a non-effective linear subspace, which has
exactly zero effect on the function value. It is often unrealis-
tic to make such an assumption. We thus make a relaxation to
this assumption as the optimal ε-effective dimension in Defi-
nition 1.

Note that a function with optimal ε-effective dimension can
have no low-dimensional effective subspace according to the
definition given in [Wang et al., 2013], i.e., no linear subspace
that has exactly zero effect on the function value. Instead, it
has a linear subspace that makes at most ε contribution to the
function value. Therefore, this kind of problems may still be
efficiently tackled when ε is not so large.

DEFINITION 1 (Optimal ε-Effective Dimension)
For any ε > 0, a function f : RD → R is said to have
an ε-effective subspace Vε, if there exists a linear subspace
Vε ⊆ RD s.t. for all x ∈ RD, we have |f(x) − f(xε)| ≤ ε,
where xε ∈ Vε is the orthogonal projection of x onto Vε.
Let Vε denote the collection of all the ε-effective subspaces
of f , and dim(V) denote the dimension of a linear subspace
V . We define the optimal ε-effective dimension of f as
dε = minVε∈Vε

dim(Vε).
In the definition above, it should be noted that ε and dε

are related variables, commonly, a small dε implies a large ε,
while a small ε implies a large dε.

Random Embedding
Given the definition of optimal ε-effective dimension,
Lemma 1 below shows the effect of random embedding for
such functions. For simplicity, let N denote the Gaussian
distribution with zero mean and σ2 variance.

LEMMA 1
Given a function f : RD → R with optimal ε-effective di-
mension dε, and any random matrix A ∈ RD×d (d ≥ dε)
with independent entries sampled from N , then, with prob-
ability 1, for any x ∈ RD, there exists y ∈ Rd s.t.
|f(x)− f(Ay)| ≤ 2ε.
Proof. We borrow the idea of constructing such y as in
[Wang et al., 2013]. Since f has the optimal ε-effective di-
mension dε, there exists an ε-effective subspace Vε ⊆ RD
s.t. dim(Vε) = dε. Besides, any x ∈ RD can be decom-
posed as x = xε + x⊥ε , where xε ∈ Vε, x⊥ε ∈ V⊥ε and V⊥ε
is the orthogonal complement of Vε. By the definition of ε-
effective subspace, we have |f(x) − f(xε)| ≤ ε. Hence, it
suffices to show that, for any xε ∈ Vε, there exists y ∈ Rd
s.t. |f(xε)− f(Ay)| ≤ ε.

Let Φ ∈ RD×dε be a matrix whose columns form a stan-
dard orthonormal basis for Vε. For any xε ∈ Vε, there ex-
ists c ∈ Rdε s.t. xε = Φc. Let us for now assume that



Φ>A has rank dε. If rank(Φ>A) = dε, there must ex-
ist y ∈ Rd s.t. (Φ>A)y = c, because rank(Φ>A) =
rank([Φ>A, c]). The orthonormal projection of Ay onto Vε
is given by ΦΦ>Ay = Φc = xε. Thus, Ay = xε+x̃ where
x̃ ∈ V⊥ε for xε is the orthonormal projection of Ay onto Vε.
Since Ay ∈ RD, by the definition of ε-effective subspace, we
have |f(xε)− f(Ay)| ≤ ε, and thus |f(x)− f(Ay)| ≤ 2ε.

Similar to the proof of Theorem 2 in [Wang et al., 2013],
we have that rank(Φ>A) = dε with probability 1. �

Lemma 1 implies that, given a random embedding matrix
A ∈ RD×d, for any minimizer x∗ ∈ RD, there exists ỹ ∈ Rd
such that f(Aỹ)−f(x∗) ≤ 2ε. Note that this embedding gap
grows twice as fast as ε.

Optimization with Random Embedding
Via random embedding, current derivative-free optimization
algorithms can be applied to solve high-dimensional opti-
mization problems by running in a low-dimensional solution
space. Given a high-dimensional function f and a random
matrix A ∈ RD×d, we construct a new optimization function
g(y) = f(Ay), where the solution space for g only has a di-
mension d. Note that every solution is evaluated by mapping
back to the original high-dimensional space.

For functions with a low optimal ε-effective dimension, we
can bound the gap between the optimal function values of g
and f based on Lemma 1, which is stated in Theorem 1. We
omit the proof since it can be verified directly.

THEOREM 1
Given a function f : RD → R with optimal ε-effective di-
mension dε, and a random matrix A ∈ RD×d (d ≥ dε) with
independent entries sampled fromN , let x∗ be a global min-
imizer of f and g(y) = f(Ay) where y ∈ Rd, then, with
probability 1, we have

inf
y∈Rd

g(y)− f(x∗) ≤ 2ε.

We then look into the simple regret of a derivative-free op-
timization algorithm using a random embedding. The opti-
mization algorithm works in the low-dimensional space, and
usually, it can only approximate the optimal solution, thus
there is a gap between the found solution ỹ and the optimal
solution in the low-dimensional space infy∈Rd g(y). This ap-
proximation gap is related to dimension size, function com-
plexity, and optimization budget. We assume that the approx-
imation gap is upper bounded by θ. Furthermore, as disclosed
by Theorem 1, there exists an embedding gap 2ε, which can-
not be compensated by the optimization algorithm. We then
have that the simple regret of the algorithm is upper bounded
by the approximation gap and the embedding gap,

g(ỹ)− f(x∗) = g(ỹ)− inf
y∈Rd

g(y) + inf
y∈Rd

g(y)− f(x∗)

≤ θ + 2ε. (1)

3 Sequential Random Embeddings
From Eq.(1), in order to improve the simple regret, i.e.,
g(ỹ)− f(x∗), we need to reduce the approximation gap and
the embedding gap. Unfortunately, this two factors are con-
flicting: In order to reduce the embedding gap, we need to

use a large dε to trade for a smaller ε, but with a large dε, the
optimization algorithm needs to deal with more dimensions,
which will badly increase the approximation gap.

Let Si = {A(i)y |y ∈ Rd} denote the subspace defined by
the random matrix, where i = 1, . . . ,m. In spired by [Zhang
et al., 2013], we propose the technique of sequentially using
multiple random embeddings to reduce the embedding gap
while keeping the approximation gap almost unaffected:
• In the first step, it generates a random matrix A(1) which
defines a subspace S1, and applies the chosen optimization
algorithm to find a near-optimal solution in the subspace, i.e.,
ỹ1 = argminy f(A

(1)y). Let x̃2 = A(1)ỹ1 be the high-
dimensional solution.
• In the second step, it generates another random matrix A(2)

which defines a subspace S2, and applies the algorithm to op-
timize the residue of the current solution x̃2 in the subspace,
i.e., ỹ2 = argminy f(x̃2 +A(2)y). Then update the current
solution x̃3 = x̃2 +A(2)ỹ2.
• In the following steps, it acts like the second step that per-
forms the optimization to reduce the residue.

By this simple sequence of applying random embeddings,
we show that, for a large class of functions with optimal
ε-effective dimension, an upper bound of the solution gap
f(x̃i)− f(x∗) reduces as the step i increases.

Theoretical Property
Let x̃1 = 0, and ‖ · ‖ represent ‖ · ‖2 for simplicity. In the
step i of the sequential random embeddings, the residue so-
lution to be approximated is x∗ − x̃i, let x̂i be the orthonor-
mal projection of x∗ − x̃i onto the subspace Si. Thus, we
call ‖x̂i‖/‖x∗− x̃i‖ as the embedding ratio which is smaller
than 1, and ‖x̂i −A(i)ỹi‖/‖x̂i‖ as the optimization ratio for
this step. We show in Proposition 1 that, when the optimiza-
tion ratio is less than a fraction of the embedding ratio, the
solution is closer to the optimal solution.

PROPOSITION 1
Given f ∈ F , and a sequence of random matrices {A(i)}i ⊆
RD×d (d ≥ dε) each with independent entries sampled from
N , for all i = 1, . . . ,m, if

‖x̂i −A(i)ỹi‖/‖x̂i‖ ≤ (1/5) · ‖x̂i‖/‖x∗ − x̃i‖,

it holds that ‖x∗ − x̃i‖ > ‖x∗ − x̃i+1‖ .

Proof. For any i = 1, . . . ,m, since x̂i is the orthonormal
projection of x∗ − x̃i onto Si, we have that

‖x∗ − x̃i‖2 = ‖x∗ − x̃i − x̂i‖2 + ‖x̂i‖2

≥ (‖x∗ − x̃i −A(i)ỹi‖ − ‖x̂i −A(i)ỹi‖)2 + ‖x̂i‖2

= ‖x∗ − x̃i+1‖2 + ‖x̂i −A(i)ỹi‖2 + ‖x̂i‖2

− 2‖x∗ − x̃i −A(i)ỹi‖ · ‖x̂i −A(i)ỹi‖
≥ ‖x∗ − x̃i+1‖2 + (‖x̂i −A(i)ỹi‖ − ‖x̂i‖)2

− 2(‖x∗ − x̃i‖+ ‖A(i)ỹi‖) · ‖x̂i −A(i)ỹi‖
+ 2‖x̂i‖ · ‖x̂i −A(i)ỹi‖
≥ ‖x∗ − x̃i+1‖2 + (‖x̂i −A(i)ỹi‖ − ‖x̂i‖)2



− 2‖x∗ − x̃i‖ · ‖x̂i −A(i)ỹi‖ − 2‖x̂i −A(i)ỹi‖2,

where the last inequality is by ‖A(i)ỹi‖ − ‖x̂i‖ ≤ ‖x̂i −
A(i)ỹi‖.

Since ‖x̂i−A(i)ỹi‖·‖x∗−x̃i‖/‖x̂i‖2 ≤ 1/5 and ‖x̂i‖ ≤
‖x∗− x̃i‖, we have that (‖x̂i−A(i)ỹi‖− ‖x̂i‖)2− 2‖x∗−
x̃i‖ · ‖x̂i − A(i)ỹi‖ − 2‖x̂i − A(i)ỹi‖2 > 0. Therefore,
‖x∗ − x̃i‖ > ‖x∗ − x̃i+1‖ for all i = 1, . . . ,m. �

We then consider a very general class of problems, i.e.,
functions with local Hölder continuity as in Definition 2.

DEFINITION 2 (Local Hölder Continuity)
There exists L,α > 0 s.t., for all x ∈ RD, f(x) − f(x∗) ≤
L · ‖x− x∗‖α2 , where x∗ is a global minimizer of f .

Intuitively, Definition 2 means that the rate of increase of f
around x∗ is bounded. Note that a function with local Hölder
continuity can have many local optima, or non-differentiable.

For any function with local Hölder continuity, since

f(x̃i)− f(x∗) ≤ L · ‖x̃i − x∗‖α2 ,

Proposition 1 implies that the sequential random embeddings
can reduce this upper bound in a mild condition.

Less Greedy
By the method of sequential random embeddings (SRE), each
sub-problem in the subspace is solved greedily. However, a
perfect solution for one sub-problem may not be good glob-
ally, and once an unsatisfied solution is found, it is hard to be
corrected by the later solutions because of the greedy process.
Therefore, we further introduce a withdraw variable α to the
previous solution such that it is possible to eliminate the pre-
vious solution if necessary, and the optimization problem in
each step becomes

min
y,α

f(αx̃i +A(i)y).

Since derivative-free optimization methods are employed,
which make few requirements on the optimization problems,
we can simply let the algorithm optimize α together with y.

The full algorithm named SRE is depicted in Algorithm 1.
Given a derivative-free optimization algorithm M, in each
step of SRE,M optimizes a low-dimensional function gi(y)
as defined in line 4, and returns the best solution as well as
the withdraw variable found byM (line 5). Finally, the best
solution throughout the procedure is returned as the output.

4 Experiments
For the practical issues in experiments, we set the random
matrix A ∈ RD×d with independent entries sampled from
N (0, 1/d), and we consider the high-dimensional solution
space X = [−u, u]D instead of RD and low-dimensional so-
lution space Y = [−l, l]d instead of Rd with u, l > 0 for sim-
plicity. To implement the derivative-free algorithm in Y , note
that there may exist y′ ∈ Y s.t. Ay′ /∈ X and thus f cannot
be evaluated at point Ay′. To tackle this problem, we em-
ploy Euclidean projection, i.e., Ay′ is projected to X when
it is outside X by PX (Ay′) = argminx∈X ‖x−Ay′‖2. Let
f(PX (Ay′)) + ‖PX (Ay′)−Ay′‖1 be the function value of

Algorithm 1 Sequential Random Embeddings (SRE)
Input:

Objective function f ;
Derivative-free optimization algorithmM;
Number of function evaluation budget n;
Upper bound of the optimal ε-effective dimension d;
Number of sequential random embeddings m.

Procedure:
1: x̃1 = 0.
2: for i = 1 to m do
3: Sample a random matrix A(i)∈RD×d with Ai,j ∼ N .
4: Apply M to optimize the low-dimensional function

gi(y) = f(αx̃i+A(i)y) with n
m function evaluations.

5: Obtain the solution ỹi and αi for gi(y) byM.
6: x̃i+1 = αix̃i +A(i)ỹi.
7: end for
8: return argmini=2,...,m+1 f(x̃i).

Ay′ where Ay′ /∈ X . Let [x]i denote the i-th coordinate of
x. Since X = [−u, u]D, the closed form of Euclidean pro-
jection is [PX (Ay)]i = −u if [Ay]i < −u; [PX (Ay)]i =
[Ay]i if −u ≤ [Ay]i ≤ u; and [PX (Ay)]i = u otherwise.

We employ three state-of-the-art derivative-free optimiza-
tion methods: IMGPO [Kawaguchi et al., 2015], which is
a combination of Bayesian optimization and optimistic opti-
mization, CMAES [Hansen et al., 2003], which is a repre-
sentative of evolutionary algorithms, and RACOS [Yu et al.,
2016], which is a model-based optimization algorithm pro-
posed recently. All implementations of them are by their au-
thors. We also employ random search as a reference baseline.

When we apply the single random embedding with these
optimization algorithms, we denote by the prefix “RE-”,
and when we apply the SRE, we denote by the prefix
“SRE-”. Thus we have combinations including RE-IMGPO,
RE-CMAES, RE-RACOS, SRE-IMGPO, SRE-CMAES, and
SRE-RACOS.

On Synthetic Functions
We first test the algorithms on two synthetic testing functions.
Based on the convex Sphere function and the highly non-
convex Ackley function, we construct the high-dimensional
Sphere function and Ackley function to meet the optimal ε-
effective dimension assumption.

The high-dimensional Sphere function is constructed as

f1(x) =
∑10
i=1 ([x]i − 0.2)

2
+ 1

D

∑D
i=11 ([x]i − 0.2)

2,
where the dimensions except the first 10 ones have limited
impact on the function value. The high-dimensional Ackley
function is similarly constructed as

f2(x) = −20 exp
(
− 1

5

√
1
10

∑10
i=1 ([x]i − 0.2)2

)
− exp

(
1
10

∑10
i=1 cos 2π([x]i − 0.2)

)
+exp(1)+20

+ 1
D

∑D
i=11 ([x]i − 0.2)

2.

Noted that the optimal solutions of these functions are
(0.2, . . . , 0.2), in order to avoid the all-zero optimal solu-
tion which is in all the linear subspaces. These functions are



minimized within the solution space X = [−1, 1]D. We set
Y = [−1, 1]d, α ∈ [−1, 1]. Each algorithm is run 30 times
independently, and the average performance is reported.
On the number of random embeddings m. We first study
the effect of SRE iteration number m, i.e., the number of se-
quential random embeddings. We choose D = 10000, set the
total number of function evaluations n = 10000 and the sub-
space size d = 10, and choose the number of sequential ran-
dom embeddings m = {1, 2, 5, 8, 10, 20}. When m = 1, al-
gorithms with SRE degenerate into algorithms with RE. The
achieved objective function values are shown in Figure 1.
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Figure 1: On the effect of the number of random embeddings
m.

Figure 1 (a) and (b) show that, if the total number of func-
tion evaluations is fixed, we should choose a compromised
value for m. Because if m is large then the budget for each
step of SRE is limited, and ifm is small then the steps in SRE
is limited, and both of them can lead to unsatisfied optimiza-
tion performance.
On subspace dimension d. To study how low-dimensional
size d affects optimization performance, we only adopt the
algorithms with SRE (SRE-IMGPO, SRE-CMAES, SRE-
RACOS). We choose D = 10000, set the total num-
ber of function evaluations n = 10000, choose d =
{1, 5, 8, 10, 12, 15, 20}, and set the number of sequential ran-
dom embeddings m = 5. The achieved objective function
values are shown in Figure 2.
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Figure 2: On the effect of the subspace dimension d.

Figure 2 (a) and (b) show that, for algorithms with SRE, in
most cases the closer the d to dε the better the optimization
performance, indicating that a good estimate of the optimal
ε-effective dimension is desirable. Besides, we can observe
that, even if d < dε = 10 but close to dε, the performances
of algorithms with SRE are still satisfied.
On scalability. We then study the scalability w.r.t.
the solution space dimensions D, we choose D =

{100, 500, 1000, 5000, 10000}, set the total number of func-
tion evaluations n = 10000 for all algorithms, set d = 10 for
algorithms with RE and SRE, and set the number of sequen-
tial random embeddingsm = 5 for algorithms with SRE. The
achieved objective function values are shown in Figure 3.
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Figure 3: Comparing the scalability with n = 10000 function
evaluations.

Figure 3 (a) and (b) show that the algorithms with SRE
have the lowest growing rate, while the algorithms without
RE have the highest growing rate as the dimension increases,
indicating that SRE can scale the derivative-free algorithms
to high-dimensional problems better than the compared algo-
rithms.
On convergence rate. To study the convergence rate w.r.t.
the number of function evaluations, we set D = 10000,
and set the total number of function evaluations n =
{2000, 4000, 6000, 8000, 10000}, set low-dimensional size
d = 10 for RE as well as SRE, and set m = 5 for SRE. The
achieved objective function values are shown in Figure 4.
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Figure 4: Comparing the convergence rate with D = 10000.
The Y-axis is in log-scale. The legend is shared with Figure 3.

Figure 4 (a) and (b) show that, in most cases, algorithms
with SRE reduce the objective function value with the highest
rate, while the algorithms without RE reduce the objective
function value with the lowest rate, indicating that algorithms
with SRE converge faster in general than the others.

On Classification with Ramp Loss
We finally study on a classification task with Ramp loss [Col-
lobert et al., 2006]. The Ramp loss is defined as Rs(z) =
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Figure 5: Comparing the achieved objective function values against the parameter C of the classification with Ramp loss. The
legend is shared with Figure 3 except CCCP.

H1(z) −Hs(z) with s < 1, where Hs(z) = max{0, s − z}
is the Hinge loss with s being the Hinge point. The task is to
find a vector w and a scalar b to minimize
f(w, b) = 1

2‖w‖
2
2 + C

∑L
`=1Rs

(
y`(w

>v` + b)
)
,

where v` is the training instance and y` ∈ {−1,+1} is its
label. This objective function is similar to that of support
vector machines (SVM) [Vapnik, 2000], but the loss function
of SVM is the Hinge loss. Due to the convexity of the Hinge
loss, the number of support vectors increases linearly with
the number of training instances in SVM, which is undesired
with respect to scalability. While this problem can be relieved
by employing the Ramp loss [Collobert et al., 2006].

The applied algorithms here are RE-IMGPO, RE-CMAES,
RE-RACOS, SRE-IMGPO, SRE-CMAES, SRE-RACOS and
the concave-convex procedure (CCCP) [Yuille and Rangara-
jan, 2001] which is a gradient-based non-convex optimiza-
tion approach for objective functions that can be decomposed
into convex sub-function plus concave sub-function. We em-
ploy four binary class UCI datasets [Blake et al., 1998],
Gisette, Arcene, Dexter and Dorothea. The feature dimen-
sion (D) of which are 5 × 103, 104, 2 × 104, and 105, re-
spectively. Since there are two hyper-parameters in the opti-
mization formulation, i.e., C and s, to study the effectiveness
of the compared algorithms under different hyper-parameters,
we test s ∈ {−1, 0} and C ∈ {0.1, 0.5, 1, 2, 5, 10}. We
set d = 20, the number of function evaluations n = 3D,
and X = [−10, 10]D,Y = [−10, 10]d, α ∈ [−10, 10] for
all applied algorithms except for CCCP. For CCCP, we set
X = [−10, 10]D and let CCCP run until it converges. For al-
gorithms with SRE, we set the number of sequential random
embeddings m = 5. Each randomized algorithm is repeated
30 times independently. Since we focus on the optimization
performance, the achieved objective function values on each
dataset are reported in Figure 5.

We should note that, in Figure 5, the lines of RE-IMGPO
often overlap with those of SRE-IMPGO, and in sub-figure

(c), the line of CCCP overlaps with SRE-IMPGO. As shown
in Figure 5, except in the dataset Arcene, algorithm with SRE
has the best performance for any setting of s and C. And
in the dataset Arcene, algorithm with RE achieves the best
performance. This verifies the effectiveness of SRE and RE,
and indicates that SRE is more effective than RE. Compar-
ing CCCP to the derivative-free algorithms with SRE, we can
observe that the objective function value of CCCP is approx-
imately as twice as that of the best algorithm with SRE. This
implies that algorithms with SRE can be significantly better
than CCCP with respect to optimization performance.

5 Conclusion
This paper investigates high-dimensional problems in a more
general situation compared with previous works, i.e., all vari-
ables can be effective to the function value, while many of
them only have a small bounded effect. We define this kind of
problems as functions with a low optimal ε-effective dimen-
sion, and find that, for this kind of problems, single random
embedding makes 2ε loss that can not be compensated by the
following optimization algorithm. Thus, we propose the se-
quential random embeddings (SRE) that employ the random
embedding several times, and the condition under which SRE
can reduce the embedding loss strictly in each step of SRE is
disclosed. To study the effectiveness of SRE, we apply SRE
to several state-of-the-art derivative-free algorithms. Exper-
iment results on optimization testing functions and classifi-
cation with the non-convex Ramp loss (where the number of
variables are up to 100,000) indicate that SRE can scale these
derivative-free methods to high-dimensional problems signif-
icantly.
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