
Symbolic Execution of Complex Program Driven by
Machine Learning Based Constraint Solving∗

Xin Li, Yongjuan Liang, Hong Qian, Yi-Qi Hu, Lei Bu, Yang Yu, Xin Chen, and Xuandong Li
State Key Laboratory for Novel Software Technology
Department of Computer Science and Technology

Nanjing University, Nanjing, Jiangsu, P.R.China
{bulei|yuy}@nju.edu.cn

ABSTRACT
Symbolic execution is a widely-used program analysis tech-
nique. It collects and solves path conditions to guide the
program traversing. However, due to the limitation of the
current constraint solvers, it is difficult to apply symbolic
execution on programs with complex path conditions, like
nonlinear constraints and function calls.

In this paper, we propose a new symbolic execution tool
MLB to handle such problem. Instead of relying on the
classical constraint solving, in MLB, the feasibility prob-
lems of the path conditions are transformed into optimiza-
tion problems, by minimizing some dissatisfaction degree.
The optimization problems are then handled by the under-
lying optimization solver through machine learning guided
sampling and validation. MLB is implemented on the ba-
sis of Symbolic PathFinder and encodes not only the simple
linear path conditions, but also nonlinear arithmetic opera-
tions, and even black-box function calls of library methods,
into symbolic path conditions. Experiment results show that
MLB can achieve much better coverage on complex real-
world programs.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Symbolic Execution; Machine Learning; Complicated Path
Condition; Constraint Solving

∗This work is supported by the Joint NSFC-ISF Research
Program, jointly funded by the National Natural Science
Foundation of China and the Israel Science Foundation
(No.61561146394), the National Natural Science Founda-
tion of China (No. 61572249, No. 61472179, No.91418204),
Jiangsu Science Foundation (BK20160066), and the 2015
Microsoft Research Asia Collaborative Research Program.

1. INTRODUCTION
Symbolic execution [3] is a widely employed program anal-

ysis technique which executes programs with symbolic in-
puts. In the process of symbolic execution, a path condition,
which is a conjunction of symbolic constraints, is maintained
and gets updated whenever the program executes a branch
instruction. Concrete inputs triggering the corresponding
path can then be generated by constraint solving [5, 25].

The processing capability of symbolic execution is heavily
relied on the underlying constraint solver. It is well known
that even strong SMT solvers like iSAT [8] and Z3 [6] can not
handle complex nonlinear constraints well [1], not to men-
tion the black-box library methods or even native methods
in real case codes.

The simple example shown in Figure 1 can be a typi-
cal representative of such programs. To cover the path of
line 4, 5 and 6, symbolic execution needs to find a solu-
tion that satisfies the corresponding if statements in line
4 (z > x) and line 5 (x + y/(y + 2) == x ∗ x − y). How-
ever, the nonlinear arithmetic operation (x + y/(y + 2) ==
x ∗ x − y) may be difficult for most of the existing solvers.
Besides, the calculation of z which needs the function call
Long.numberOfLeadingZeros(x) is also a great challenge
since normal constraint solvers have no idea to deal with the
uninterpreted item.

1public class program{
2 public static void example(long x, double y){
3 double z = Long.numberOfLeadingZeros(x);//library method
4 if (z>x)
5 if (x+y/(y+2) == x∗x −y) //nonliner arithmetic operation
6 assert(false) ;
7 }
8 public static void main(String[] args){
9 long parm1 = Long.parseLong(args[0]);

10 double parm2 = Double.parseDouble(args[1]);
11 example(parm1,parm2);
12 }
13 }

Figure 1: A Simple Java Program with
Complicated Path Conditions

To handle such programs with complicated constraints,
intensive investigations have been conducted. Concolic test-
ing [21] tries to go through the complex path conditions by
replacing complicated symbolic terms of them with concrete
values. Unfortunately, such simplification also decreases
the probability to find more desired solutions. Heuristic
search [24, 7] is a new trend. It finds the solutions that sat-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...$15.00

http://dx.doi.org/10.1145/2970276.2970364

554

isfy the constraints with the help of heuristics like genetic
algorithms (GA) [9], tabu-search [11], etc. These approaches
perform well in dealing with certain problems, revealing the
potential of such direct search methods. However, the ca-
pacity of these heuristic methods is little understood, and
the configurations of these approaches are hard to set to
achieve stable performance.

In this paper, we present a new symbolic execution tool,
MLB, which is driven by Machine Learning Based constraint
solving, to handle the complicate programs discussed above.
First, MLB encodes all the difficult operations, including
nonlinear constraints, mathematical methods (e.g. sin, log),
floating point symbolic variables and the library method
calls, as (uninterpreted) symbolic constraints.

Then, different from existing tools, MLB transforms the
feasibility problems of the path conditions into optimization
problems. A recently introduced machine learning based
optimization technique, RACOS [26], is adopted to solve
the optimization problems. RACOS has a solid theoretical
foundation for complex optimization problems. It basically
samples solutions from a learning model, updates the model
from the feedback of the solutions, and continues this it-
eration to find better solutions. MLB adapts RACOS by
using the dissatisfaction degree as the feedback of the sam-
pled solutions, and thus RACOS converges to feasible path
conditions as quickly as possible.

MLB is implemented on the basis of Java symbolic execu-
tion engine, Symbolic PathFinder [16, 18]. To evaluate the
performance of MLB, intensive case studies are conducted
to generate test cases for 16 real case programs, with a total
number of 290 methods full of nonlinear operations, floating
point arithmetic and even native method calls. The exper-
imental results prove that our tool outperforms the other
state-of-the-art tools in terms of both effectiveness and effi-
ciency. Furthermore, it is worth to note that, unlike most of
the existing tools, MLB is fully automatic that users do not
have to modify any single line of their code to use our tool
which means great convenience.

The rest part of this paper is organized as follows. The
background of machine learning based constraint solving is
introduced in section 2. Section 3 introduces the symbolic
execution architecture of MLB and presents how MLB en-
codes complex program behaviors as symbolic constraints
and solves them by machine learning. The implementation
of MLB and the intensive case studies are introduced in sec-
tion 4. The related works are discussed in section 5. Section
6 is the conclusion of the paper.

2. MACHINE LEARNING BASED
OPTIMIZATION METHOD

As mentioned above, the major obstacle in applying sym-
bolic execution to real world programs is the capability of
constraint solving which targets of finding solutions to make
all constraints satisfiable. The problem is closely related
with the optimization problem: finding solutions to mini-
mize the dissatisfaction degree.

However, the optimization problem for general complex
constraints is usually quite complex too. One kind of solv-
ing techniques suitable for complex optimization tasks are
derivative-free methods. They use only the information of
solution evaluations instead of the objective function gradi-
ents, and thus are not misled by, e.g., gradients on complex

optimization tasks. They commonly consist of an iteration
of two key steps: sample solutions from a model (initially
the uniform sampling from the solution space), and update
the model from the objective function values of the sampled
solutions. Many derivative-free methods have been proposed
(e.g., [15, 2, 12, 14]). Unfortunately, most of these methods
have little theoretical foundation due to the difficulty of anal-
ysis. Very recently, a machine learning based optimization
method named RACOS was developed with solid theoret-
ical ground [26], of which the required number of samples
is well upper bounded in the approximation quality of the
final solution.

This new machine learning based algorithm employs a
hyper-rectangle classifier as its model. Better solutions can
be distinguished from the worse ones by training the classi-
fier according to the objective function values of the sampled
solutions through covering all better solutions within the
hyper-rectangle. The classifier, once been trained, produces
a hyper-rectangle in the solution space, which indicates the
region that contains better solutions. The solutions for the
next iteration are then sampled from the hyper-rectangle.
The simplicity of this hyper-rectangle classifier model allows
the algorithm to be well analyzed. The analysis indicates
that, to achieve a high optimization efficiency, the classifier
should be highly randomized and the region of better solu-
tions should be small [26]. The new algorithm RACOS [26]
is accordingly designed.

This new machine learning based algorithm has remark-
able merits comparing with other derivative-free optimiza-
tion methods. Besides its solid theoretical foundation, it has
also been empirically verified to have high efficacy and high
efficiency [26], particularly in high dimensions ranged up to
thousands, with default algorithm parameters. It supports
optimization tasks with continuous, discrete [20], and mixed
variables, and it almost has no parameters to adjust.

3. TECHNIQUE UNDER MLB
To overcome the limitations of the classical symbolic exe-

cution, MLB adapts the classical symbolic execution frame-
work with a new sampling-validation style machine learning
based solving as reviewed in section 2. The main workflow
of MLB, Figure 2, is as follows:

• The underlying machine learning solver proposes a val-
uation sample.

• The upper layer symbolic execution engine validates
the guessed sample by direct execution.

• The solver converges to the correct answer by analyz-
ing the validation feedback using machine learning.

Dissatisfaction Function

Symbolic Execution Engine

Path Condition

Samples

FeedBack

Evaluated
Result

Learning

Figure 2: Machine Learning Based Solving
under MLB

555

In order to fulfill the workflow and take advantage of the
new machine learning based optimization technique RACOS
to handle more complex programs, two main techniques un-
derlying MLB are presented below:

• Transform the feasibility problem of the path condi-
tion to optimization problem, to take advantage of the
machine learning based method.

• Enrich the path condition by encoding library method
calls as uninterpreted path conditions which can be
handled in the sampling-validation style.

3.1 Dissatisfaction Function Oriented Path
Condition Optimization

To apply the machine learning based optimization tech-
nique RACOS, MLB transforms the feasibility problem of
a path condition into an optimization problem through the
dissatisfaction function so that a sampling-validation style
solving can be conducted.

Given a path condition with the conjunction of n con-
straints Ci (1 ≤ i ≤ n), we define a dissatisfaction degree
Di for each Ci. Di is used to measure how badly a sample
violates the constraint Ci. For example, the most straight-
forward way for defining Di is that if Ci is satisfiable by a
valuation sample S, then Di = 0, otherwise, Di = 1. Then,
we can generate a Dissatisfaction Function Df = Σn

i=1Di

to measure the total distance from the evaluated valuation
sample S to a correct solution of the path condition.

To accelerate the convergence speed, MLB calculates the
dissatisfaction degree as the formula shown below where opi
is the comparator of Ci and lefti stands for the left expres-
sion value of it while righti is the right expression value. In
detail,

Di =

0, if S satisfies Ci

1, if S dissatisfies Ci and opi is 6=
|lefti - righti|, if S dissatisfies Ci and opi is not 6=

Clearly, when the dissatisfaction function result is 0, the
path condition is satisfied. In this manner, we transform
the feasibility problem of the path condition into an opti-
mization problem to minimize the dissatisfaction function,
so that the machine learning based optimization solving me-
thod reviewed in section 2 can be used to analyze the com-
plex path conditions in MLB.

3.2 Library Call Related Path Condition
Generation

To support the diverse and complex codes in the real
world, MLB generates more comprehensive path conditions
during program analysis. The details of the path conditions
enhanced in MLB are described as follows.

In the classical symbolic execution, the handling of third-
party library method is always a big challenge. The reason is
that it is difficult to present the third-party library method
calls as simple mathematical constraints since the contents
of the library methods are often uninterpreted.

Luckily, in our machine learning style solving, the spe-
cific contents are not indispensable. Actually, all the con-
straints in the optimization program can be handled in a
black-box style. The symbolic execution engine can validate
them by executing the corresponding statements with the
sample guessed directly without knowing the deep detail.

Therefore, in MLB, each library method call is presented
as an uninterpreted constraint, where the function name is
treated as the uninterpreted operator in the constraint and
the input arguments of the function call consistitue the sym-
bolic variables in this library method PC.

Take the code in Figure 1 for example, statement 4 (z >
x) needs a function call Long.numberOfLeadingZeros(x).
MLB will generate a library method PC Long.numberOf −
LeadingZeros(x) > x for it. Suppose the sample is (x = 2),
we call the method with argument (x = 2) directly and get
the return value 62. Then the result is used to calculate the
dissatisfaction degree value.

Actually, all the function calls in the program can be en-
coded as uninterpreted symbolic constraints and processed
in such a black-box manner. As a result, MLB can provide
users black-box options to mark specific functions as black-
box. Then MLB will avoid going through the detail of the
specific functions and increase the efficiency.

Besides of the library call related PC, another special class
of PC, domain related PC, is generated in MLB. The main
idea is that samples proposed by the underlying solver may
violate the path condition’s domain requirement and cause
exceptions. Therefore, MLB analyzes the basic constraint
first, and adds special constraints to make sure the proposed
sample does not violate the domain requirement. For exam-
ple, MLB generates (y 6= −2) for (x+y/(y+2) == x∗x−y)
in statement 5, Figure 1. Due to the space limitation, the
detail of domain related PC generation is omitted here.

4. IMPLEMENTATION AND EVALUATION
This section presents the implementation and performance

evaluation of MLB. The implementation and all the data
used in the evaluation are available from GitHub, https:
//github.com/MLB-SE.

Machine Learning

Based Solving

User

Configuration
Output Reporter

 jpf-symbc
jpf-nhandler

 SPF

jpf-core

Figure 3: MLB Tool Architecture

4.1 Implementation
MLB is implemented on the basis of Symbolic PathFinder

(SPF) [16, 18], which is a Java symbolic execution engine
based on Java PathFinder (JPF) [13]. The architecture of
MLB is shown in Fig.3.
• The classical program traversing core in SPF provides

symbolic path condition generation for the execution seman-
tics. MLB adapts it with more comprehensive path condi-
tion generation, including the library method call related
PC and domain related PC as mentioned in section 3.
•To make MLB easier to use, we intergrate jpf-nhandler [23]

into MLB to execute the complex path conditions with na-
tive methods more efficiently. The jpf-nhandler module del-
egates the execution of the native methods as it provides

556

the necessary information of them for MLB to generate the
uninterpreted constraints.
• To solve the collected path conditions, the classical con-

straint solving is replaced by a new sampling and validation
style machine learning based constraint solving module. A
generic interface is created for the frequent interaction be-
tween the symbolic execution core and the machine learning
based solver. Information required during the sampling and
validation iterations is transmitted through the interface so
that valid solutions can be quickly found and referred to the
exploring process.
•Additionally, we employed and updated the convenient

publisher system of SPF to provide the program analysis
data and produce test cases from the solutions. Users can
fetch these data easily and analyze them with the help of
other off-the-shelf tools freely. For example, following the
merits of [7], MLB supports the automatic invoking of Ja-
CoCo1 coverage measuring library to demonstrate the cov-
erage reached by the generated test cases.

4.2 Tool Usage
1. target = program //Target class under test

2. classpath = <project-main-class> //File path of the target class

3. symbolic.method = program.example(sym#sym)

//Target method under test

4. symbolic.dp = CSP //Default solver setting

5. symbolic.mlpm = 4000 //Default sample size

6. @using = jpf-nhandler //Call jpf-nhandler

7. nhandler.delegateUnhandledNative = true //Call jpf-nhandler

8. nhandler.spec.skip = java.lang.Long.numberOfLeadingZeros

//Set the specific function in the black-box mode

Figure 4: Configuration of MLB
for the Example in Fig.1

Except the special capability of handling complex pro-
grams with complicated constraints and library method calls,
another key feature of MLB is the user-friendliness. MLB is
a fully automatic symbolic execution engine for Java. Unlike
most of the existing tools, users only need to configure our
tool expediently before analysing their codes. MLB does not
require users to modify any single line of their codes.

Figure 4 presents an illustration of the configuration for
the code shown in Figure 1 to use MLB. As MLB is imple-
mented on the basis of SPF, it shares the configuration style
of SPF. Line 1 - 3 in Figure 4 show the necessary settings
required by SPF for declaring the target. It points out the
target under test is the method example in class program.

Line 4 sets the constraint solver under MLB to CSP which
implements RACOS algorithm [26]. Line 5 is the optional
parameter for MLB to set the sample size of each round for
CSP to 4000. In another word, CSP guesses 4000 valuations
each round and presents them to MLB to validate. If users
do not set the parameter, the default value is 3000. It is
worth to note that this is the only parameter that relates to
the performance of the underlying machine learning solver.

For running the specific function call java.lang.Long.numbe
rOfLeadingZeros, line 6 - 8 are added to call the extension
jpf-nhandler. More specifically, line 8 tells MLB to encode
and analyze the function as an uninterpreted function in a
black-box mode.

1http://www.eclemma.org/jacoco/

Table 1: Benchmark for the Experiments
Program Operations Method Loc From

coral
Trigonometric functions,

logarithms, polynomials
86 254 [7]

dart Polynomials, required overflow 5 11 [7]

hash Polynomial, shift, bit-wise xor 7 34 [7]

opti Exponentials, square roots 8 24 [7]

power Exponential function 3 20 [7]

ray Polynomials (dot product) 35 190 [7]

sine Float to bit-vector conversion 7 184 [7]

stat Mean and std. dev. computation 17 61 [7]

tcas Constant equality checks 13 75 [7]

tsafe Trigonometric functions 8 63 [7]

airy
Polynomials, square roots,

logarithms
11 296 [19]

bess Polynomials, square roots 19 191 [19]

caldat
Polynomials, trigonometric

functions
6 86 [19]

ell
Polynomials, square roots,

trigonometric functions
31 484 [19]

gam
Logarithms, factorials,

exponentials
21 195 [19]

ran
Polynomials, exponentials, xor,

logarithms, square roots
13 218 [19]

Furthermore, as mentioned before, MLB also provides
template script files, following the format of [7], to auto-
matically run the test cases and invoke JaCoCo to generates
visualized coverage reports. With the help of the script files
and the configuration files, users can get the detail cover-
age report with a push button style user experience. More
details can be found on the GitHub link mentioned before.

4.3 Evaluation Setup
To evaluate the performance of MLB, a variety of pro-

grams are used mainly from 2 sets of real case benchmarks.
The first set of programs is from study [7], consisting of
different kinds of nonlinear operations in real tool distri-
butions2. The second set of the benchmarks is selected
from the classical numerical computation book Numerical
Recipes [19]. Typical pointer-free scientific computing func-
tions whose constraints contain nonlinear computation and
function calls are chosen as benchmarks and divided into 6
programs in accordance of the structure of the book. The
basic information of the benchmarks is listed in Table.1.

In our experiments, MLB and 4 state-of-the-art symbolic
execution tools are used to conduct test case generation on
all the benchmarks. Then, we use the JaCoCo coverage
measuring library to measure the instruction, branch and
line coverage achieved by every competitors. Each tool is
repeated for 5 times to eliminate the randomness. To pre-
vent small programs from dominating the mean coverage of
the tools, we weight each program’s contribution with dif-
ferent metrics when computing the arithmetic mean on this
specific metric.

The competitors used in the experiments including: j-
CUTE [22], SPF-Mixed [17], SPF-CORAL [24] and Con-

2Please refer to [7] for the detail introduction of these pro-
grams. Also note that the line of codes(Loc) listed in Table 1
is different from the Table 1 in [7], as that the Loc values
reported here are counted by JaCoCo, where useless lines
like blank lines are not counted as valid lines by JaCoCo.

557

colic Walk (CW) [7]. These tools stand for different classes
of symbolic execution methods, for example, concolic test-
ing, heuristic searching and so on. All the experiments are
conducted on a desktop running Ubuntu 12.04 LTS with
3.10GHz Intel Core i5 and 4GB RAM, with time limit 300
seconds per method.

4.4 Experimental Study
MLB’s performance is evaluated on the aspects of both

effectiveness and efficiency as follows.
• Effectiveness Analysis

56%

41%

62%

25%
22%

30%

52%
48%

54%56%
50%

57%

89%

82%
89%

0%

20%

40%

60%

80%

100%

Instr. Branch Line

jCUTE SPF-Mixed SPF-CORAL Concolic Walk MLB

Figure 5: Weighted Coverage Reports

As described above, weighted coverage is used as the main
indicator of effectiveness analysis. The data on all the pro-
grams with respect to different metrics is summarized in
Figure 5. While computing the arithmetic mean over all the
programs, the respective metric weight factor is introduced
to prevent small benchmarks dominating the coverage. For
example, for line coverage, we use the line of codes as weight,
while for branch coverage the number of branches is treated
as the weight.

It is clear that MLB outperforms all the other competi-
tors significantly on all the coverage metrics. As seen from
Figure 5, MLB’s instruction coverage (89%) ranges from 1.6
times of CW (56%) to 3.6 times of SPF-Mixed (25%). This
set of experiments strengthens our belief that by the help
of machine learning based solving technique, MLB can han-
dle the symbolic execution of complex nonlinear programs
effectively.
• Efficiency Analysis

0.26

0.12

0.43

0.08 0.08
0.10

0.13
0.12 0.12

0.27 0.28 0.28

0.44

0.39
0.42

0.00

0.10

0.20

0.30

0.40

0.50

Instr. Branch Line

jCUTE SPF-Mixed SPF-CORAL Concolic Walk MLB

Figure 6: Weighted Efficiency Reports

The second aspect evaluated in the experiment is effi-
ciency. To evaluate the efficiency of MLB, we use the cover-
age including instruction, branch and line achieved per unit
of generation time as the metrics. Similar with Figure 5, we

compute the average efficiency over all the benchmarks of
every tool and summary the results in Figure 6.

Overall, MLB achieves better performance than other com-
petitors. In case of instruction efficiency, MLB (0.44%/s)
ranges from 1.6 times as efficient as CW (0.27%/s) to 5.5
times of SPF-Mixed (0.08%/s). The branch efficiency shares
the similar results. For line efficiency, MLB is more effi-
cient than other 4 tools except for jCUTE. Though jCUTE
(0.43%/s) is as efficient as MLB (0.42%/s), MLB achieves
much higher line coverage than jCUTE (89% vs 62%).
• Processing of Library Method Call

As described in section 3, MLB is able to handle library
method calls in a black-box mode by encoding them as un-
interpreted constraints.

To assess this special capability of MLB, we replace the
mathematical methods in coral with the methods in the
widely-used mathematics and statistics library The Apache
Commons Math3. Then, we use MLB to generate test cases
for the modified coral in the black-box mode. As Symbolic
PathFinder can load the library method calls and execute
the instructions one by one, we conduct the classical white-
box analysis on this program as well.

The result is quite interesting. MLB achieves 79% branch
coverage in 345.6 seconds with black-box mode. However,
if we run MLB in the classical white-box mode, in another
word, traversing each line of instructions in the library me-
thod, the branch coverage drops to 62% with even much
longer time, 19347 seconds.

The reason is that in the classical white-box mode, we
have to go through the complete structure of the methods
called step by step. While in the black-box mode, we com-
pact the third-party function calls as uninterpreted symbolic
constraints and solve them directly. Thus, we can put the re-
source in the traversing of the main program itself to achieve
higher coverage.

5. RELATED WORK
In the areas of software engineering, symbolic execution

tools including KLEE [4], SPF[16, 18], Pex [25] and so on
play an important role in many program analysis cases. It is
well recognized that the applicability and scalability of these
tools rely heavily on the underlying constraint solver. How-
ever, it is difficult for existing constraint solvers like Z3 [6]
to handle complex path conditions involving nonlinear op-
erations and library method calls, which appear commonly
in real-world programs.

For solving those complex path conditions, several miti-
gation strategies are proposed. As one typical representa-
tive of simplification-based approaches, concolic testing [21]
which has been used in jCUTE [22] and SPF-Mixed [17] tries
to handle complex path conditions by replacing complex
terms with concrete values. Besides, there are also other ap-
proaches which substitute nonlinear constraints by linear en-
velopes, e.g. [1], to abstract the state space and make it solv-
able by linear constraint solvers. Unlike the simplification-
based solving with the abstraction of the search space, MLB
encodes all the complex behaviors as they are and guides the
solver to converge to the correct answer efficiently.

As used in CORAL solver [24] and CW algorithm [7],
search-based approaches perform symbolic execution in a
heuristic search style. For example, particle-swarm opti-

3https://commons.apache.org/

558

mization [10] and tabu search [11] are used to solve complex
path conditions in the above works. However, these heuris-
tic search algorithms are commonly weak in their theoreti-
cal foundation, which blocks the rational understandings of
their optimization performance. In contrast, the machine
learning based algorithm adapted in MLB is theoretically
grounded ensuring the stable and great performance of the
tool.

Last but not least, on the implementation level, most of
the existing tools, e.g. [7], require users to modify their code
according to certain regulations firstly before starting the
analysis. While in MLB, users can feed their code to the
tool directly, which improves the ease of use significantly.

6. CONCLUSIONS
In this paper, we propose a new Java symbolic execu-

tion tool, MLB, which is supported by a machine learning
based optimization solving technique. Different from exist-
ing works, the solver under MLB works with the symbolic
execution core in a sampling-validation and learning style
interaction loop. In this manner, MLB supports the sym-
bolic execution of not only simple codes with linear path
conditions, but also complex real world programs with com-
plicated nonlinear constraints and calls of library methods.

MLB is an automatic tool implemented on the basis of
SPF, jpf-nhandler and JaCoCo. Therefore, MLB can be
used to analysis complex Java codes with library methods
and can get the coverage report directly without changing
any line of the code. An intensive set of case studies on real-
world case programs shows that MLB supports a wide range
of well-known difficult real-world programs with outstanding
efficacy and efficiency.

7. REFERENCES
[1] Barr, E. T., Vo, T., Le, V., and Su, Z. Automatic

detection of floating-point exceptions. ACM
SIGPLAN Notices 48, 1 (2013), 549–560.

[2] Beyer, H., and Schwefel, H. Evolution strategies -
A comprehensive introduction. Natural Computing 1,
1 (2002), 3–52.

[3] Boyer, R. S., Elspas, B., and Levitt, K. N.
SELECT-a formal system for testing and debugging
programs by symbolic execution. ACM SigPlan
Notices 10, 6 (1975), 234–245.

[4] Cadar, C., Dunbar, D., Engler, D. R., et al.
KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In
OSDI (2008), vol. 8, pp. 209–224.

[5] Cadar, C., Godefroid, P., Khurshid, S.,
Păsăreanu, C. S., Sen, K., Tillmann, N., and
Visser, W. Symbolic execution for software testing in
practice: preliminary assessment. In ICSE (2011),
ACM, pp. 1066–1071.

[6] De Moura, L., and Rner, N. Z3: an efficient SMT
solver. In Theory and Practice of Software, TACAS
(2008).

[7] Dinges, P., and Agha, G. Solving complex path
conditions through heuristic search on induced
polytopes. In FSE (2014), ACM, pp. 425–436.

[8] Franzle, M., Herde, C., Teige, T., Ratschan, S.,
and Schubert, T. Efficient solving of large
non-linear arithmetic constraint systems with complex

boolean structure. Journal on Satisfiability, Boolean
Modeling and Computation 1 (2007), 209–236.

[9] Galeotti, J. P., Fraser, G., and Arcuri, A.
Improving search-based test suite generation with
dynamic symbolic execution. In ISSRE (2013), IEEE,
pp. 360–369.

[10] Gies, D., and Rahmat-samii, Y. Particle swarm
optimization (PSO) for reflector antenna shaping. In
APS/URSI (2004), vol. 3, IEEE, pp. 2289–2292.

[11] Glover, F. Tabu search: A tutorial. Interfaces 20, 4
(1990), 74–94.

[12] Goldberg, D. E. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley,
Reading, MA, 1989.

[13] Havelund, K., and Pressburger, T. Model
checking Java programs using Java PathFinder.
International Journal on Software Tools for
Technology Transfer 2, 4 (2000), 366–381.

[14] Kennedy, J., and Eberhart, R. Swarm
Intelligence. Morgan Kaufmann, 2001.

[15] Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi,
M. P. Optimization by simulated annealing. Science
220, 4598 (1983), 671–680.

[16] Păsăreanu, C. S., and Rungta, N. Symbolic
PathFinder: symbolic execution of Java bytecode. In
ASE (2010), ACM, pp. 179–180.

[17] Păsăreanu, C. S., Rungta, N., and Visser, W.
Symbolic execution with mixed concrete-symbolic
solving. In ISSTA (2011), ACM, pp. 34–44.

[18] Păsăreanu, C. S., Visser, W., Bushnell, D.,
Geldenhuys, J., Mehlitz, P., and Rungta, N.
Symbolic PathFinder: integrating symbolic execution
with model checking for Java bytecode analysis.
Automated Software Engineering 20, 3 (2013),
391–425.

[19] Press, W. H. Numerical recipes 3rd edition: The art
of scientific computing. Cambridge university press,
2007.

[20] Qian, H., and Yu, Y. On sampling-and-classification
optimization in discrete domains. In CEC (2016).

[21] Sen, K. Concolic testing. In ASE (2007), ACM,
pp. 571–572.

[22] Sen, K., and Agha, G. CUTE and jCUTE: Concolic
unit testing and explicit path model-checking tools. In
Computer Aided Verification (2006), Springer,
pp. 419–423.

[23] Shafiei, N., and Breugel, F. v. Automatic
handling of native methods in Java PathFinder. In
SPIN (2014), ACM, pp. 97–100.

[24] Souza, M., Borges, M., d’Amorim, M., and
Păsăreanu, C. S. CORAL: solving complex
constraints for Symbolic PathFinder. In NASA Formal
Methods. Springer, 2011, pp. 359–374.

[25] Tillmann, N., and De Halleux, J. Pex–white box
test generation for. net. In Tests and Proofs. Springer,
2008, pp. 134–153.

[26] Yu, Y., Qian, H., and Hu, Y.-Q. Derivative-free
optimization via classification. In AAAI (2016),
pp. 2286–2292.

559

