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Historical review of deep learning

Neural network
Back propagation

Deep belief net
Science Speechp

1986 2006 2011 2012

• Google and Baidu announced their deep• Google and Baidu announced their deep 
learning based visual search engines (2013)

l– Google 
• “on our test set we saw double the average precision when 
compared to other approaches we had tried We acquiredcompared to other approaches we had tried. We acquired 
the rights to the technology and went full speed ahead 
adapting it to run at large scale on Google’s computers. We 
took cutting edge research straight out of an academictook cutting edge research straight out of an academic 
research lab and launched it, in just a little over six months.”

– BaiduBaidu



Historical review of DL (con’t)

Neural network
Back propagation

Deep belief net
Science Speech Face recognitionp

1986 2006 2011 2012 2014

• Deep learning achieves 99 47% face verification• Deep learning achieves 99.47% face verification 
accuracy on Labeled Faces in the Wild (LFW), 
hi h h h fhigher than human performance
Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint 
Identification‐Verification. NIPS, 2014.

Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are 
sparse selective and robust CVPR 2015sparse, selective, and robust. CVPR, 2015.

Neural network
Back propagation

Deep belief net
Science Speech Face recognitionp

1986 2006 2011 2012 2014

• Deep learning achieves 99 47% face verification• Deep learning achieves 99.47% face verification 
accuracy on Labeled Faces in the Wild (LFW), 
hi h h h fhigher than human performance
Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint 
Identification‐Verification. NIPS, 2014.

Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are 
sparse selective and robust CVPR 2015sparse, selective, and robust. CVPR, 2015.



Major types

Deep Boltzmann machine:

Auto-encoder:
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Major types

Convolutional neural networks:

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Recurrent neural networks:



Autoencoder

autoencoder

[image from http://en.wikipedia.org/wiki/Restricted_Boltzmann_machine

restricted Boltzmann machine 
a type of associative memory network

http://en.wikipedia.org/wiki/Restricted_Boltzmann_machine


Autoencoder

autoencoder

[image from [G. E. Hinton and R. R. Salakhutdinov, Science 2006]]
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[image from [G. E. Hinton and R. R. Salakhutdinov, Science 2006]]

PCA autoencoder



CNN

Convolutional Neural Networks (CNN/LeNet)

[image from http://deeplearning.net/tutorial/lenet.html]

for general image feature extraction

http://deeplearning.net/tutorial/lenet.html


CNN

Convolution layer

[image from http://deeplearning.net/tutorial/lenet.html]

sparse connectivity shared weights

http://deeplearning.net/tutorial/lenet.html


CNN

Subsampling layer

[image from http://deeplearning.net/tutorial/lenet.html]

http://deeplearning.net/tutorial/lenet.html


CNN

Convolutional Neural Networks (CNN/LeNet)

[image from http://deeplearning.net/tutorial/lenet.html]

for general image feature extraction

http://deeplearning.net/tutorial/lenet.html


Activation functions (con’t)

And many more …
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CNN

Geoffrey E. Hinton
University of Toronto

Fei-Fei Li
Stanford University

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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4.94% (DL) vs 5.1% (human)



CNN toolbox

Tensorflow (Google) 
PyTorch/Torch (Facebook & NYU)
Caffe (UC Berkeley)
…

deeplearning.net

http://deeplearning.net


NVIDIA-GPUs



Some Applications

Pre-trained model as feature extractor
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Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in N pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK-dimensional feature vector as the final image
representation.

2.2. Encoding deep descriptors by FV

The size of pool5 is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by λ = {ωk,µk,σk; k = 1, . . . ,K}, where ωk, µk

and σk are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and σ2

k are the variance
vectors. Let γt(k) be the soft-assignment weight of xt with
respect to the k-th Gaussian, the FV representation corre-
sponding to µk and σk are presented as follows [11]:

fµk
(X) =

1
√
ωk

T∑

t=1

γt(k)

(
xt − µk

σk

)
, (2)

fσk
(X) =

1√
2ωk

T∑

t=1

γt(k)

[
(xt − µk)

2

σ2
k

− 1

]
. (3)

Note that, fµk
(X) and fσk

(X) are both d-dimensional
vectors. The final Fisher Vector fλ(X) is the concatena-
tion of the gradients fµk

(X) and fσk
(X) for all K Gaus-

sian components. Thus, FV can represent the set of deep
descriptors X with a 2dK-dimensional vector. In addi-
tion, the Fisher Vector fλ(X) is improved by the power-
normalization with the factor of 0.5, followed by the ℓ2 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2 .

Level 1 Level 0

Figure 3. Illustration of the level 1 and 0 deep spatial pyramid.

2.3. Deep spatial pyramid
The key part of DSP is adding spatial pyramid informa-

tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 × 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level 0 simply aggregates all cells using FV. The
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Figure 1. Pipeline of the proposed SCDA method. (Best viewed in color.)

annotations are expensive and unrealistic in many real applications. In answer
to this di�culty, there are attempts to categorize fine-grained images with only
image-level labels, e.g., [6–9].

In this paper, we handle a more challenging but more realistic task, i.e., Fine-
Grained Image Retrieval (FGIR). In FGIR, given database images of the same
species (e.g., birds, flowers or dogs) and a query, we should return images which
are in the same variety as the query, without resorting to any other supervision
signal. FGIR is useful in applications such as biological research and bio-diversity
protection. FGIR is also di↵erent from and di�cult than general-purpose image
retrieval. Objects in fine-grained images have only subtle di↵erences, and vary
in poses, scales and rotations.

To meet these challenges, we propose the Selective Convolutional Descrip-
tor Aggregation (SCDA) method, which automatically localizes the main object
in fine-grained images and extracts discriminative representations for them. In
SCDA, only a pre-trained CNN model (from ImageNet which is not fine-grained)
is used and we use absolutely no supervision. As shown in Fig. 1, the pre-trained
CNN model first extracts convolution activations for an input image. We pro-
pose a novel approach to determine which part of the activations are useful (i.e.,
to localize the object). These useful descriptors are then aggregated and dimen-
sionality reduced to form a vector representation using practices we propose in
SCDA. Finally, a nearest neighbor search ends the FGIR process.

We conducted extensive experiments on four popular fine-grained datasets,
i.e., CUB200-2011 [10], Stanford Dogs [11], Oxford Flowers 102 [12] and Oxford-

IIIT Pets [13] for image retrieval. In addition, we also report the classification
accuracy of the SCDA method, which only uses the image labels. Both retrieval
and classification experiments verify the e↵ectiveness of SCDA. The key advan-
tages and major contributions of our method are:
1. We propose a simple yet e↵ective approach to localize the main object. This

localization is unsupervised, without utilizing bounding boxes, image labels,
object proposals, or additional learning. SCDA selects only useful deep de-
scriptors and removes background or noise, which benefits the retrieval task.
For example, SCDA’s retrieval mAP on Oxford Flowers is 77.56%, signifi-
cantly higher than the baseline without descriptor selection (70.73%). With
the ensemble of multiple CNN layers and the proposed dimensionality re-

Fine-grained image retrieval



Some Applications
DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

Amir Ghodrati1∗, Ali Diba1∗, Marco Pedersoli2†‡, Tinne Tuytelaars1, Luc Van Gool1,3
1KU Leuven, ESAT-PSI, iMinds 2Inria 3CVL, ETH Zurich

1
firstname.lastname@esat.kuleuven.be

2
marco.pedersoli@inria.fr

Abstract

In this paper we evaluate the quality of the activation

layers of a convolutional neural network (CNN) for the gen-

eration of object proposals. We generate hypotheses in a

sliding-window fashion over different activation layers and

show that the final convolutional layers can find the object

of interest with high recall but poor localization due to the

coarseness of the feature maps. Instead, the first layers of

the network can better localize the object of interest but with

a reduced recall. Based on this observation we design a

method for proposing object locations that is based on CNN

features and that combines the best of both worlds. We build

an inverse cascade that, going from the final to the initial

convolutional layers of the CNN, selects the most promising

object locations and refines their boxes in a coarse-to-fine

manner. The method is efficient, because i) it uses the same

features extracted for detection, ii) it aggregates features

using integral images, and iii) it avoids a dense evaluation

of the proposals due to the inverse coarse-to-fine cascade.

The method is also accurate; it outperforms most of the

previously proposed object proposals approaches and when

plugged into a CNN-based detector produces state-of-the-

art detection performance.

1. Introduction

In recent years, the paradigm of generating a reduced
set of object location hypotheses (or window candidates)
to be evaluated with a powerful classifier has become very
popular in object detection. Most of the recent state-of-
the-art detection methods [6, 12, 14, 25] are based on such
proposals. Using limited number of these proposals also
helps with weakly supervised learning, in particular learn-
ing to localize objects without any bounding box annota-
tions [7, 22]. This approach can be seen as a two-stage
cascade: First, selection of a reduced set of promising and

∗A. Ghodrati and A.Diba contributed equally to this work
†This work was carried out while he was in KU Leuven ESAT-PSI.
‡LEAR project, Inria Grenoble Rhone-Alpes, LJK, CNRS, Univ.

Grenoble Alpes, France.

Figure 1: DeepProposal object proposal framework. Our
method uses deep convolutional layers features in a
coarse-to-fine inverse cascading to obtain possible object
proposals in an image. Starting from dense proposal sam-
pling from the last convolutional layer (layer 5) we grad-
ually filter irrelevant boxes until the initial layers of the
net (layer 2). In the last stage we use contours extracted
from layer 2, to refine the proposals. Finally the generated
boxes can be used within an object detection pipeline.

class-independent hypotheses and second, a class-specific
classification of each hypothesis. This pipeline has the ad-
vantage that, similarly to sliding window, it casts the detec-
tion problem to a classification problem. However, in con-
trast to sliding window, more powerful and time consuming
detectors can be employed as the number of candidate win-
dows is reduced.

Methods for the generation of the window candidates are
based on two very different approaches. The first approach
uses bottom-up cues like image segmentation [3, 23], object
edges and contours [28] for window generation. The second
approach is based on top-down cues which learn to separate
correct object hypotheses from other possible window loca-
tions [1, 5]. So far, the latter strategy seems to have inferior
performance. In this paper we show that, with the proper
features, accurate and fast top-down window proposals can
be generated.

We consider for this task the convolutional neural net-
work (CNN) “feature maps” extracted from the intermedi-
ate convolutional layers of the Alexnet [18] trained on 1000
classes of ImageNet. In the first part of this work we present
a performance analysis of different CNN layers for gener-
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DeepProposal

Object detection

Rich feature hierarchies for accurate object detection and semantic segmentation

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik
UC Berkeley

{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Object detection performance, as measured on the

canonical PASCAL VOC dataset, has plateaued in the last

few years. The best-performing methods are complex en-

semble systems that typically combine multiple low-level

image features with high-level context. In this paper, we

propose a simple and scalable detection algorithm that im-

proves mean average precision (mAP) by more than 30%

relative to the previous best result on VOC 2012—achieving

a mAP of 53.3%. Our approach combines two key insights:

(1) one can apply high-capacity convolutional neural net-

works (CNNs) to bottom-up region proposals in order to

localize and segment objects and (2) when labeled training

data is scarce, supervised pre-training for an auxiliary task,

followed by domain-specific fine-tuning, yields a significant

performance boost. Since we combine region proposals

with CNNs, we call our method R-CNN: Regions with CNN

features. Source code for the complete system is available at

http://www.cs.berkeley.edu/˜rbg/rcnn.

1. Introduction

Features matter. The last decade of progress on various
visual recognition tasks has been based considerably on the
use of SIFT [27] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [13], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-
archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [17], a biologically-
inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training al-

1. Input 
image

2. Extract region 
proposals (~2k)

3. Compute 
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify 
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [34] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.

gorithm. Building on Rumelhart et al. [30], LeCun et al.
[24] showed that stochastic gradient descent via backprop-
agation was effective for training convolutional neural net-
works (CNNs), a class of models that extend the neocogni-
tron.

CNNs saw heavy use in the 1990s (e.g., [25]), but then
fell out of fashion with the rise of support vector machines.
In 2012, Krizhevsky et al. [23] rekindled interest in CNNs
by showing substantially higher image classification accu-
racy on the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [9, 10]. Their success resulted from train-
ing a large CNN on 1.2 million labeled images, together
with a few twists on LeCun’s CNN (e.g., max(x, 0) rectify-
ing non-linearities and “dropout” regularization).

The significance of the ImageNet result was vigorously
debated during the ILSVRC 2012 workshop. The central
issue can be distilled to the following: To what extent do
the CNN classification results on ImageNet generalize to
object detection results on the PASCAL VOC Challenge?

We answer this question by bridging the gap between
image classification and object detection. This paper is the
first to show that a CNN can lead to dramatically higher ob-
ject detection performance on PASCAL VOC as compared
to systems based on simpler HOG-like features. To achieve
this result, we focused on two problems: localizing objects

1



Some Applications

Semantic segmentation

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long⇤ Evan Shelhamer⇤ Trevor Darrell
UC Berkeley

{jonlong,shelhamer,trevor}@cs.berkeley.edu

Abstract

Convolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
tional networks by themselves, trained end-to-end, pixels-
to-pixels, exceed the state-of-the-art in semantic segmen-
tation. Our key insight is to build “fully convolutional”
networks that take input of arbitrary size and produce
correspondingly-sized output with efficient inference and
learning. We define and detail the space of fully convolu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections to prior models. We
adapt contemporary classification networks (AlexNet [22],
the VGG net [34], and GoogLeNet [35]) into fully convolu-
tional networks and transfer their learned representations
by fine-tuning [5] to the segmentation task. We then define a
skip architecture that combines semantic information from
a deep, coarse layer with appearance information from a
shallow, fine layer to produce accurate and detailed seg-
mentations. Our fully convolutional network achieves state-
of-the-art segmentation of PASCAL VOC (20% relative im-
provement to 62.2% mean IU on 2012), NYUDv2, and SIFT
Flow, while inference takes less than one fifth of a second
for a typical image.

1. Introduction

Convolutional networks are driving advances in recog-
nition. Convnets are not only improving for whole-image
classification [22, 34, 35], but also making progress on lo-
cal tasks with structured output. These include advances
in bounding box object detection [32, 12, 19], part and key-
point prediction [42, 26], and local correspondence [26, 10].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[30, 3, 9, 31, 17, 15, 11], in which each pixel is labeled with
the class of its enclosing object or region, but with short-
comings that this work addresses.

⇤Authors contributed equally

96

384 256 409
6
409

6 21

21

backward/learning

forward/inference

pix
elw

ise
 p

red
ict

ion

seg
men

ta
tio

n 
g.t

.

256
384

Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

We show that a fully convolutional network (FCN)
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
gation. In-network upsampling layers enable pixelwise pre-
diction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and abso-
lutely, and precludes the need for the complications in other
works. Patchwise training is common [30, 3, 9, 31, 11], but
lacks the efficiency of fully convolutional training. Our ap-
proach does not make use of pre- and post-processing com-
plications, including superpixels [9, 17], proposals [17, 15],
or post-hoc refinement by random fields or local classifiers
[9, 17]. Our model transfers recent success in classifica-
tion [22, 34, 35] to dense prediction by reinterpreting clas-
sification nets as fully convolutional and fine-tuning from
their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training
[9, 31, 30].

Semantic segmentation faces an inherent tension be-
tween semantics and location: global information resolves
what while local information resolves where. Deep feature
hierarchies encode location and semantics in a nonlinear

1
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Fig. 3. An illustration of sparse-coding-based methods in the view of a convolutional neural network.

solver behaves as a special case of a non-linear mapping
operator, whose spatial support is 1⇥ 1. See the middle
part of Figure 3. However, the sparse coding solver is
not feed-forward, i.e.,it is an iterative algorithm. On the
contrary, our non-linear operator is fully feed-forward
and can be computed efficiently. If we set f2 = 1, then
our non-linear operator can be considered as a pixel-wise
fully-connected layer. It is worth noting that “the sparse
coding solver” in SRCNN refers to the first two layers,
but not just the second layer or the activation function
(ReLU). Thus the nonlinear operation in SRCNN is also
well optimized through the learning process.

The above n2 coefficients (after sparse coding) are
then projected onto another (high-resolution) dictionary
to produce a high-resolution patch. The overlapping
high-resolution patches are then averaged. As discussed
above, this is equivalent to linear convolutions on the
n2 feature maps. If the high-resolution patches used for
reconstruction are of size f3 ⇥ f3, then the linear filters
have an equivalent spatial support of size f3 ⇥ f3. See
the right part of Figure 3.

The above discussion shows that the sparse-coding-
based SR method can be viewed as a kind of con-
volutional neural network (with a different non-linear
mapping). But not all operations have been considered in
the optimization in the sparse-coding-based SR methods.
On the contrary, in our convolutional neural network,
the low-resolution dictionary, high-resolution dictionary,
non-linear mapping, together with mean subtraction and
averaging, are all involved in the filters to be optimized.
So our method optimizes an end-to-end mapping that
consists of all operations.

The above analogy can also help us to design hyper-
parameters. For example, we can set the filter size of
the last layer to be smaller than that of the first layer,
and thus we rely more on the central part of the high-
resolution patch (to the extreme, if f3 = 1, we are
using the center pixel with no averaging). We can also
set n2 < n1 because it is expected to be sparser. A
typical and basic setting is f1 = 9, f2 = 1, f3 = 5,
n1 = 64, and n2 = 32 (we evaluate more settings in
the experiment section). On the whole, the estimation
of a high resolution pixel utilizes the information of

(9 + 5 � 1)2 = 169 pixels. Clearly, the information
exploited for reconstruction is comparatively larger than
that used in existing external example-based approaches,
e.g., using (5+5�1)2 = 81 pixels5 [15], [50]. This is one of
the reasons why the SRCNN gives superior performance.

3.3 Training
Learning the end-to-end mapping function F re-
quires the estimation of network parameters ⇥ =
{W1,W2,W3, B1, B2, B3}. This is achieved through min-
imizing the loss between the reconstructed images
F (Y;⇥) and the corresponding ground truth high-
resolution images X. Given a set of high-resolution
images {Xi} and their corresponding low-resolution
images {Yi}, we use Mean Squared Error (MSE) as the
loss function:

L(⇥) =
1

n

nX

i=1

||F (Yi;⇥)�Xi||2, (4)

where n is the number of training samples. Using MSE
as the loss function favors a high PSNR. The PSNR
is a widely-used metric for quantitatively evaluating
image restoration quality, and is at least partially related
to the perceptual quality. It is worth noticing that the
convolutional neural networks do not preclude the usage
of other kinds of loss functions, if only the loss functions
are derivable. If a better perceptually motivated metric
is given during training, it is flexible for the network to
adapt to that metric. On the contrary, such a flexibility
is in general difficult to achieve for traditional “hand-
crafted” methods. Despite that the proposed model is
trained favoring a high PSNR, we still observe satisfac-
tory performance when the model is evaluated using
alternative evaluation metrics, e.g., SSIM, MSSIM (see
Section 4.4.1).

The loss is minimized using stochastic gradient de-
scent with the standard backpropagation [28]. In partic-
ular, the weight matrices are updated as

�i+1 = 0.9 ·�i � ⌘ · @L

@W `
i

, W `
i+1 = W `

i +�i+1, (5)

5. The patches are overlapped with 4 pixels at each direction.
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Fig. 6. Illustration of instance-level object segmentation results by the proposed PFN. For each image, we show
the ground-truth instance-level segmentation, the category-level segmentation and the predicted instance-level
segmentation results sequentially. Note that for instance-level segmentation results, different colors only indicate
different object instances and do not represent the semantic categories. In terms of category-level segmentation,
different colors are used to denote different semantic labels. Best viewed in color.
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Table 2. Performance comparison on the Oxford Flower 102 dataset 

Methods Performance 
Nilsback and Zisserman [1] 72.8 

KMTJSRC-CG [21] 74.1 
Ours 76.3 

 
We compare the proposed color exemplar classifier based image classification 

method with [1, 21]. Table 2 gives the quantitative comparison results. We can have 
similar conclusions as on the Oxford Flower 17 dataset. The proposed color exemplar 
classifier based method outperforms the baseline methods [1, 21]. This again shows 
the effectiveness of the proposed method. As the Flower 102 dataset has more flower 
classes and large inter-class variation, a well chosen image representation is vital for 
the final image classification. This problem can be solved by using the proposed color 
exemplar classifier based representation hence helps to improve the classification 
performance. 

3.3 Scene-15 Dataset  

The last dataset we consider is the Scene-15 dataset [18]. This dataset consists of 15 
classes of images (bedroom, suburb, industrial, kitchen, livingroom, coast, forest, 
highway, insidecity, mountain, opencountry, street, tallbuilding, office and store). Figure 
6 shows some example images of this dataset. Each class has different sizes ranging 
from 200 to 400 images with an average of 300×250 pixel size. For fair comparison, 
we follow the same experimental procedure as [18] and randomly choose 100 images 
per class for classifier training and use the rest of images for performance evaluation.  

We give the performance comparison of the proposed method with [17, 18, 22, 23, 24] 
in Table 3. We can see from Table 3 that the proposed method outperforms the baseline 
methods.  Compared with exemplar based method [24], the use of color information 
can further improve the semantic representativeness of the exemplar based methods. 
These results demonstrate the proposed method’s effectiveness.  
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Abstract

Fine-grained classification is challenging because cate-

gories can only be discriminated by subtle and local dif-

ferences. Variances in the pose, scale or rotation usually

make the problem more difficult. Most fine-grained clas-

sification systems follow the pipeline of finding foreground

object or object parts (where) to extract discriminative fea-

tures (what).
In this paper, we propose to apply visual attention to fine-

grained classification task using deep neural network. Our

pipeline integrates three types of attention: the bottom-up

attention that propose candidate patches, the object-level

top-down attention that selects relevant patches to a certain

object, and the part-level top-down attention that localizes

discriminative parts. We combine these attentions to train

domain-specific deep nets, then use it to improve both the

what and where aspects. Importantly, we avoid using ex-

pensive annotations like bounding box or part information

from end-to-end. The weak supervision constraint makes

our work easier to generalize.

We have verified the effectiveness of the method on

the subsets of ILSVRC2012 dataset and CUB200 2011

dataset. Our pipeline delivered significant improvements

and achieved the best accuracy under the weakest super-

vision condition. The performance is competitive against

other methods that rely on additional annotations.

1. Introduction

Fine-grained classification is to recognize subordinate-
level categories under some basic-level category, e.g., clas-
sifying different bird types [22], dog breeds [11], flower
species [15], aircraft models [14] etc. This is an impor-

⇤Corresponding author.
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Figure 1. Illustration of the difficulty of fine-grained classification
: large intra-class variance and small inter-class variance.

tant problem with wide applications. Even in the ILSVR-
C2012 1K categories, there are 118 and 59 categories un-
der the dog and bird class, respectively. Counter intuitively,
intra-class variance can be larger than inter-class, as shown
in Figure 1. Consequently, fine-grained classification are
technically challenging.

Specifically, the difficulty of fine-grained classification
comes from the fact that discriminative features are local-
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segmentation results sequentially. Note that for instance-level segmentation results, different colors only indicate
different object instances and do not represent the semantic categories. In terms of category-level segmentation,
different colors are used to denote different semantic labels. Best viewed in color.
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highway, insidecity, mountain, opencountry, street, tallbuilding, office and store). Figure 
6 shows some example images of this dataset. Each class has different sizes ranging 
from 200 to 400 images with an average of 300×250 pixel size. For fair comparison, 
we follow the same experimental procedure as [18] and randomly choose 100 images 
per class for classifier training and use the rest of images for performance evaluation.  

We give the performance comparison of the proposed method with [17, 18, 22, 23, 24] 
in Table 3. We can see from Table 3 that the proposed method outperforms the baseline 
methods.  Compared with exemplar based method [24], the use of color information 
can further improve the semantic representativeness of the exemplar based methods. 
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Abstract

Event recognition from still images is one of the most im-
portant problems for image understanding. However, com-
pared with object recognition and scene recognition, event
recognition has received much less research attention in
computer vision community. This paper addresses the prob-
lem of cultural event recognition in still images and focuses
on applying deep learning methods on this problem. In
particular, we utilize the successful architecture of Object-
Scene Convolutional Neural Networks (OS-CNNs) to per-
form event recognition. OS-CNNs are composed of object
nets and scene nets, which transfer the learned representa-
tions from the pre-trained models on large-scale object and
scene recognition datasets, respectively. We propose four
types of scenarios to explore OS-CNNs for event recogni-
tion by treating them as either “end-to-end event predic-
tors” or “generic feature extractors”. Our experimental
results demonstrate that the global and local representa-
tions of OS-CNNs are complementary to each other. Finally,
based on our investigation of OS-CNNs, we come up with a
solution for the cultural event recognition track at the ICCV
ChaLearn Looking at People (LAP) challenge 2015. Our
team secures the third place at this challenge and our result
is very close to the best performance.

1. Introduction
Image understanding [12, 18, 20, 27] is becoming one of

the most important problems in computer vision and many
research efforts have been devoted to this topic. While ob-
ject recognition [4] and scene recognition [28] have been
extensively studied in the task of image classification, event
recognition [14, 23, 26] in still images received much less
research attention, which also plays an important role in
semantic image interpretation. As shown in Figure 1, the
characterization of event is extremely complicated as the
event concept is highly related to many other high-level
visual cues, such as objects, scene categories, human gar-
ments, human poses, and other context. Therefore, event
recognition in still images poses more challenges for the

Figure 1. Examples of cultural event images from the ICCV
ChaLearn Looking at People (LAP) dataset. From these examples,
we can see that the characterization of event is complicated and it
is related to many visual cues, such as objects, secne category, and
human garments.

current state-of-the-art image classification methods, and
needs to be further investigated in the computer vision re-
search.

Convolutional neural networks (CNNs) [13] have re-
cently enjoyed great successes in large-scale image classifi-
cation, in particular for object recognition [9, 18, 20] and
scene recognition [21, 28]. For event recognition, much
fewer deep learning methods have been designed for this
problem. Our previous work [23] proposed a new deep ar-
chitecture, called Object-Scene Convolutional Neural Net-
work (OS-CNN), for cultural event recognition. OS-CNNs
are designed to extract useful information for event under-
standing from the perspectives of containing objects and
scene categories, respectively. OS-CNNs are composed of
two-stream CNNs, namely object nets and scene nets. Ob-
ject nets are pre-trained on the large-scale object recogni-
tion datasets (e.g. ImageNet [4]), and scene nets are based
on models learned from the large-scale scene recognition
datasets (e.g. Places205 [28]). Decomposing into object
nets and scene nets enables us to use the external large-scale
annotated images to initialize OS-CNNs, which may be fur-
ther fine tuned elaborately on the event recognition dataset.
Finally, event recognition is performed based on the late fu-
sion of softmax outputs of object nets and scene nets.

Following the research line of OS-CNNs, in this pa-
per, we try to further explore different aspects of OS-CNNs

1

Cultural event recognition

  

Caption generation is like MT

A cat is sitting behind some books

- MT: translate from one language to another

- Caption generation: translate from an image to a description

- Similar notion of “words”, “phrases” and “alignments”

- translation feature functions:

Image caption
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colours

- blue + red = 

- blue + yellow = 

- yellow + red =

- white + red = 

Nearest images
Multimodal Linguistic Regularities

[Kiros et al., TACL 2015]
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Some interesting examples

- day + night  =

- flying + sailing = 

- bowl + box =

- box + bowl = 

Nearest images
Multimodal Linguistic Regularities

[Kiros et al., TACL 2015]



Transformation for text

One-hot encoding

“I love it.”

pixels in the region, which would be, for example,
75-dimensional if the region is 5⇥5 and the number
of channels is three (red, green, and blue). Concep-
tually, computation units are placed over the input
image so that the entire image is collectively cov-
ered, as illustrated in Figure 2. The region stride
(distance between the region centers) is often set to
a small value such as 1 so that regions overlap with
each other, though the stride in Figure 2 is set larger
than the region size for illustration.

A distinguishing feature of convolution layers
is weight sharing. Given input x, a unit associ-
ated with the `-th region computes �(W · r`(x) +
b), where r`(x) is a region vector representing
the region of x at location `, and � is a pre-
defined component-wise non-linear activation func-
tion, (e.g., applying �(x) = max(x, 0) to each vec-
tor component). The matrix of weights W and the
vector of biases b are learned through training, and
they are shared by the computation units in the same
layer. This weight sharing enables learning useful
features irrespective of their location, while preserv-
ing the location where the useful features appeared.

We regard the output of a convolution layer as an
‘image’ so that the output of each computation unit
is considered to be a ‘pixel’ of m channels where
m is the number of weight vectors (i.e., the number
of rows of W) or the number of neurons. In other
words, a convolution layer converts image regions
to m-dim vectors, and the locations of the regions
are inherited through this conversion.

The output image of the convolution layer is
passed to a pooling layer, which essentially shrinks
the image by merging neighboring pixels, so that
higher layers can deal with more abstract/global in-
formation. A pooling layer consists of pooling units,
each of which is associated with a small region
of the image. Commonly-used merging methods
are average-pooling and max-pooling, which respec-
tively compute the channel-wise average/maximum
of each region.

2.2 CNN for text

Now we consider application of CNN to text data.
Suppose that we are given a document D =
(w1, w2, . . .) with vocabulary V . CNN requires vec-
tor representation of data that preserves internal lo-
cations (word order in this case) as input. A straight-

forward representation would be to treat each word
as a pixel, treat D as if it were an image of |D| ⇥ 1
pixels with |V | channels, and to represent each pixel
(i.e., each word) as a |V |-dimensional one-hot vec-
tor4. As a running toy example, suppose that vocab-
ulary V = { “don’t”, “hate”, “I”, “it”, “love” } and
we associate the words with dimensions of vector
in alphabetical order (as shown), and that document
D=“I love it”. Then, we have a document vector:

x = [ 0 0 1 0 0 | 0 0 0 0 1 | 0 0 0 1 0 ]> .

2.2.1 seq-CNN for text

As in the convolution layer for image, we repre-
sent each region (which each computation unit re-
sponds to) by a concatenation of the pixels, which
makes p|V |-dimensional region vectors where p is
the region size fixed in advance. For example, on
the example document vector x above, with p = 2
and stride 1, we would have two regions “I love” and
“love it” represented by the following vectors:

r0(x) =

2

666666666666664

0
0
1
0
0

—
0
0
0
0
1

3

777777777777775

don0t
hate
I
it

love

don0t
hate
I
it

love

r1(x) =

2

666666666666664

0
0
0
0
1
—
0
0
0
1
0

3

777777777777775

don0t
hate
I
it

love

don0t
hate
I
it
love

The rest is the same as image; the text region vec-
tors are converted to feature vectors, i.e., the con-
volution layer learns to embed text regions into low-
dimensional vector space. We call a neural net with
a convolution layer with this region representation
seq-CNN (‘seq’ for keeping sequences of words) to
distinguish it from bow-CNN, described next.

2.2.2 bow-CNN for text

A potential problem of seq-CNN however, is that
unlike image data with 3 RGB channels, the number
of ‘channels’ |V | (size of vocabulary) may be very
large (e.g., 100K), which could make each region
vector r`(x) very high-dimensional if the region size

4Alternatively, one could use bag-of-letter-n-gram vectors
as in (Shen et al., 2014; Gao et al., 2014) to cope with out-of-
vocabulary words and typos.

V={“don’t”, “hate”, “I”, “it”, “love”}
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Seq-CNN for text

“I love it.”

V={“don’t”, “hate”, “I”, “it”, “love”}

pixels in the region, which would be, for example,
75-dimensional if the region is 5⇥5 and the number
of channels is three (red, green, and blue). Concep-
tually, computation units are placed over the input
image so that the entire image is collectively cov-
ered, as illustrated in Figure 2. The region stride
(distance between the region centers) is often set to
a small value such as 1 so that regions overlap with
each other, though the stride in Figure 2 is set larger
than the region size for illustration.

A distinguishing feature of convolution layers
is weight sharing. Given input x, a unit associ-
ated with the `-th region computes �(W · r`(x) +
b), where r`(x) is a region vector representing
the region of x at location `, and � is a pre-
defined component-wise non-linear activation func-
tion, (e.g., applying �(x) = max(x, 0) to each vec-
tor component). The matrix of weights W and the
vector of biases b are learned through training, and
they are shared by the computation units in the same
layer. This weight sharing enables learning useful
features irrespective of their location, while preserv-
ing the location where the useful features appeared.

We regard the output of a convolution layer as an
‘image’ so that the output of each computation unit
is considered to be a ‘pixel’ of m channels where
m is the number of weight vectors (i.e., the number
of rows of W) or the number of neurons. In other
words, a convolution layer converts image regions
to m-dim vectors, and the locations of the regions
are inherited through this conversion.

The output image of the convolution layer is
passed to a pooling layer, which essentially shrinks
the image by merging neighboring pixels, so that
higher layers can deal with more abstract/global in-
formation. A pooling layer consists of pooling units,
each of which is associated with a small region
of the image. Commonly-used merging methods
are average-pooling and max-pooling, which respec-
tively compute the channel-wise average/maximum
of each region.

2.2 CNN for text

Now we consider application of CNN to text data.
Suppose that we are given a document D =
(w1, w2, . . .) with vocabulary V . CNN requires vec-
tor representation of data that preserves internal lo-
cations (word order in this case) as input. A straight-

forward representation would be to treat each word
as a pixel, treat D as if it were an image of |D| ⇥ 1
pixels with |V | channels, and to represent each pixel
(i.e., each word) as a |V |-dimensional one-hot vec-
tor4. As a running toy example, suppose that vocab-
ulary V = { “don’t”, “hate”, “I”, “it”, “love” } and
we associate the words with dimensions of vector
in alphabetical order (as shown), and that document
D=“I love it”. Then, we have a document vector:

x = [ 0 0 1 0 0 | 0 0 0 0 1 | 0 0 0 1 0 ]> .

2.2.1 seq-CNN for text

As in the convolution layer for image, we repre-
sent each region (which each computation unit re-
sponds to) by a concatenation of the pixels, which
makes p|V |-dimensional region vectors where p is
the region size fixed in advance. For example, on
the example document vector x above, with p = 2
and stride 1, we would have two regions “I love” and
“love it” represented by the following vectors:

r0(x) =

2

666666666666664

0
0
1
0
0

—
0
0
0
0
1

3

777777777777775

don0t
hate
I
it

love

don0t
hate
I
it

love

r1(x) =

2

666666666666664

0
0
0
0
1
—
0
0
0
1
0

3

777777777777775

don0t
hate
I
it

love

don0t
hate
I
it
love

The rest is the same as image; the text region vec-
tors are converted to feature vectors, i.e., the con-
volution layer learns to embed text regions into low-
dimensional vector space. We call a neural net with
a convolution layer with this region representation
seq-CNN (‘seq’ for keeping sequences of words) to
distinguish it from bow-CNN, described next.

2.2.2 bow-CNN for text

A potential problem of seq-CNN however, is that
unlike image data with 3 RGB channels, the number
of ‘channels’ |V | (size of vocabulary) may be very
large (e.g., 100K), which could make each region
vector r`(x) very high-dimensional if the region size

4Alternatively, one could use bag-of-letter-n-gram vectors
as in (Shen et al., 2014; Gao et al., 2014) to cope with out-of-
vocabulary words and typos.
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bow-CNN for text

p is large. Since the dimensionality of region vec-
tors determines the dimensionality of weight vec-
tors, having high-dimensional region vectors means
more parameters to learn. If p|V | is too large, the
model becomes too complex (w.r.t. the amount of
training data available) and/or training becomes un-
affordably expensive even with efficient handling of
sparse data; therefore, one has to lower the dimen-
sionality by lowering the vocabulary size |V | and/or
the region size p, which may or may not be desir-
able, depending on the nature of the task.

An alternative we provide is to perform bag-
of-word conversion to make region vectors |V |-
dimensional instead of p|V |-dimensional; e.g., the
example region vectors above would be converted
to:

r0(x) =

2

6664

0
0
1
0
1

3

7775

don0t
hate
I
it

love

r1(x) =

2

6664

0
0
0
1
1

3

7775

don0t
hate
I
it

love

With this representation, we have fewer param-
eters to learn. Essentially, the expressiveness
of bow-convolution (which loses word order only
within small regions) is somewhere between seq-
convolution and bow vectors.

2.2.3 Pooling for text

Whereas the size of images is fixed in image ap-
plications, documents are naturally variable-sized,
and therefore, with a fixed stride, the output of a con-
volution layer is also variable-sized as shown in Fig-
ure 3. Given the variable-sized output of the convo-
lution layer, standard pooling for image (which uses
a fixed pooling region size and a fixed stride) would
produce variable-sized output, which can be passed
to another convolution layer. To produce fixed-sized
output, which is required by the fully-connected top
layer5, we fix the number of pooling units and dy-
namically determine the pooling region size on each
data point so that the entire data is covered without
overlapping.

In the previous CNN work on text, pooling is
typically max-pooling over the entire data (i.e., one

5In this work, the top layer is fully-connected (i.e., each neu-
ron responds to the entire data) as in CNN for image. Alterna-
tively, the top layer could be convolutional so that it can receive
variable-sized input, but such CNN would be more complex.

I  love  it This  isn’t   what   I  expected  ! 
(a)                                                       (b)

This  isn’t   what   I  expected  ! 
(a)                                                       (b)

Figure 3: Convolution layer for variable-sized text.

pooling unit associated with the whole text). The dy-
namic k-max pooling of (Kalchbrenner et al., 2014)
for sentence modeling extends it to take the k largest
values where k is a function of the sentence length,
but it is again over the entire data, and the operation
is limited to max-pooling. Our pooling differs in that
it is a natural extension of standard pooling for im-
age, in which not only max-pooling but other types
can be applied. With multiple pooling units associ-
ated with different regions, the top layer can receive
locational information (e.g., if there are two pooling
units, the features from the first half and last half of
a document are distinguished). This turned out to be
useful (along with average-pooling) on topic classi-
fication, as shown later.

2.3 CNN vs. bag-of-n-grams

Traditional methods represent each document en-
tirely with one bag-of-n-gram vector and then ap-
ply a classifier model such as SVM. However, since
high-order n-grams are susceptible to data sparsity,
use of a large n such as 20 is not only infeasible
but also ineffective. Also note that a bag-of-n-gram
represents each n-gram by a one-hot vector and ig-
nores the fact that some n-grams share constituent
words. By contrast, CNN internally learns embed-
ding of text regions (given the consituent words as
input) useful for the intended task. Consequently,
a large n such as 20 can be used especially with the
bow-convolution layer, which turned out to be useful
on topic classification. A neuron trained to assign a
large value to, e.g., “I love” (and a small value to “I
hate”) is likely to assign a large value to “we love”
(and a small value to “we hate”) as well, even though
“we love” was never seen during training. We will
confirm these points empirically later.

2.4 Extension: parallel CNN

We have described CNN with the simplest network
architecture that has one pair of convolution and
pooling layers. While this can be extended in sev-
eral ways (e.g., with deeper layers), in our experi-
ments, we explored parallel CNN, which has two or

“I love it.”

V={“don’t”, “hate”, “I”, “it”, “love”}
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Figure courtesy of [Xiang Zhang et. al, NIPS’ 15]

2.3 Model Design

We designed 2 ConvNets – one large and one small. They are both 9 layers deep with 6 convolutional
layers and 3 fully-connected layers. Figure 1 gives an illustration.

Some Text

Convolutions Max-pooling

Length
F

e
a

tu
re

Q
u
a
n
ti
z
a
ti
o
n

...

Conv. and Pool. layers Fully-connected

Figure 1: Illustration of our model

The input have number of features equal to 70 due to our character quantization method, and the
input feature length is 1014. It seems that 1014 characters could already capture most of the texts of
interest. We also insert 2 dropout [10] modules in between the 3 fully-connected layers to regularize.
They have dropout probability of 0.5. Table 1 lists the configurations for convolutional layers, and
table 2 lists the configurations for fully-connected (linear) layers.

Table 1: Convolutional layers used in our experiments. The convolutional layers have stride 1 and
pooling layers are all non-overlapping ones, so we omit the description of their strides.

Layer Large Feature Small Feature Kernel Pool
1 1024 256 7 3
2 1024 256 7 3
3 1024 256 3 N/A
4 1024 256 3 N/A
5 1024 256 3 N/A
6 1024 256 3 3

We initialize the weights using a Gaussian distribution. The mean and standard deviation used for
initializing the large model is (0, 0.02) and small model (0, 0.05).

Table 2: Fully-connected layers used in our experiments. The number of output units for the last
layer is determined by the problem. For example, for a 10-class classification problem it will be 10.

Layer Output Units Large Output Units Small
7 2048 1024
8 2048 1024
9 Depends on the problem

For different problems the input lengths may be different (for example in our case l0 = 1014), and
so are the frame lengths. From our model design, it is easy to know that given input length l0, the
output frame length after the last convolutional layer (but before any of the fully-connected layers)
is l6 = (l0 � 96)/27. This number multiplied with the frame size at layer 6 will give the input
dimension the first fully-connected layer accepts.

2.4 Data Augmentation using Thesaurus

Many researchers have found that appropriate data augmentation techniques are useful for control-
ling generalization error for deep learning models. These techniques usually work well when we
could find appropriate invariance properties that the model should possess. In terms of texts, it is not
reasonable to augment the data using signal transformations as done in image or speech recognition,
because the exact order of characters may form rigorous syntactic and semantic meaning. Therefore,

3

Deep-CNN
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function approximation by deep 
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a powerful neural network architecture for image analysis

differentiable
require a lot of samples to train



Deep Q-Network

DQN
• using ϵ-greedy policy
• store 1million recent history (s,a,r,s’) in replay memory D
• sample a mini-batch (32) from D
• calculate Q-learning target
• update CNN by minimizing the Bellman error (delayed update)

Q̃

X
(r + �max

a0
Q̃(s0, a0)�Qw(s, a))

2

DQN on Atari
learn to play from pixels

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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Deep Q-Network

Extended Data Table 3 | The effects of replay and separating the target Q-network

DQN agents were trained for 10 million frames using standard hyperparameters for all possible combinations of turning replay on or off, using or not using a separate target Q-network, and three different learning
rates. Each agent was evaluated every 250,000 training frames for 135,000 validation frames and the highest average episode score is reported. Note that these evaluation episodes were not truncated at 5 min
leading to higher scores on Enduro than the ones reported in Extended Data Table 2. Note also that the number of training frames was shorter (10 million frames) as compared to the main results presented in
Extended Data Table 2 (50million frames).
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learning of convolutional networks, won 11% of games against Pachi23 
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation, 
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E( )= | = ∼…v s z s s a p[ , ]p
t t t T

Ideally, we would like to know the optimal value function under 
perfect play v*(s); in practice, we instead estimate the value function 

ρv p  for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ, 

⁎( )≈ ( )≈ ( )θ ρv s v s v sp . This neural network has a similar architecture  
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to 
minimize the mean squared error (MSE) between the predicted value 
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ( )
∂
( − ( ))θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that 
successive positions are strongly correlated, differing by just one stone, 
but the regression target is shared for the entire game. When trained 
on the KGS data set in this way, the value network memorized the 
game outcomes rather than generalizing to new positions, achieving a 
minimum MSE of 0.37 on the test set, compared to 0.19 on the training 
set. To mitigate this problem, we generated a new self-play data set 
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and 
itself until the game terminated. Training on this data set led to MSEs 
of 0.226 and 0.234 on the training and test set respectively, indicating 
minimal overfitting. Figure 2b shows the position evaluation accuracy 
of the value network, compared to Monte Carlo rollouts using the fast 
rollout policy pπ; the value function was consistently more accurate. 
A single evaluation of vθ(s) also approached the accuracy of Monte 
Carlo rollouts using the RL policy network pρ, but using 15,000 times 
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge  

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a), 
and prior probability P(s, a). The tree is traversed by simulation (that 
is, descending the tree in complete games without backup), starting 
from the root state. At each time step t of each simulation, an action at 
is selected from state st

= ( ( )+ ( ))a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

( )∝
( )
+ ( )

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with  
repeated visits to encourage exploration. When the traversal reaches a 
leaf node sL at step L, the leaf node may be expanded. The leaf position 
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,  
( )= ( | )σP s a p a s,  . The leaf node is evaluated in two very different ways: 

first, by the value network vθ(sL); and second, by the outcome zL of a 
random rollout played out until terminal step T using the fast rollout 
policy pπ; these evaluations are combined, using a mixing parameter 
λ, into a leaf evaluation V(sL)

λ λ( )= ( − ) ( )+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all 
traversed edges are updated. Each edge accumulates the visit count and 
mean evaluation of all simulations passing through that edge

∑

∑

( )= ( )

( )=
( )

( ) ( )

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i  is the leaf node from the ith simulation, and 1(s, a, i) indicates 

whether an edge (s, a) was traversed during the ith simulation. Once 
the search is complete, the algorithm chooses the most visited move 
from the root position.

It is worth noting that the SL policy network pσ performed better in 
AlphaGo than the stronger RL policy network pρ, presumably because 
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function 
( )≈ ( )θ ρv s v sp  derived from the stronger RL policy network performed 

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation 
traverses the tree by selecting the edge with maximum action value Q, 
plus a bonus u(P) that depends on a stored prior probability P for that 
edge. b, The leaf node may be expanded; the new node is processed once 
by the policy network pσ and the output probabilities are stored as prior 
probabilities P for each action. c, At the end of a simulation, the leaf node 

is evaluated in two ways: using the value network vθ; and by running 
a rollout to the end of the game with the fast rollout policy pπ, then 
computing the winner with function r. d, Action values Q are updated to 
track the mean value of all evaluations r(·) and vθ(·) in the subtree below 
that action.
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AlphaGo

fast roll-out policy:
supervised learning from human v.s. human dataARTICLERESEARCH

Extended Data Table 4 | Input features for rollout and tree policy

Features used by the rollout policy (first set) and tree policy (first and second set). Patterns are based on stone colour (black/white/empty) and liberties (1, 2, ≥3)  
at each intersection of the pattern.

© 2016 Macmillan Publishers Limited. All rights reserved
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Extended Data Table 2 | Input features for neural networks

Feature # of planes Description

Stone colour 3 Player stone / opponent stone / empty
Ones 1 A constant plane filled with 1
Turns since 8 How many turns since a move was played
Liberties 8 Number of liberties (empty adjacent points)
Capture size 8 How many opponent stones would be captured
Self-atari size 8 How many of own stones would be captured
Liberties after move 8 Number of liberties after this move is played
Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1 Whether a move at this point is a successful ladder escape
Sensibleness 1 Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color 1 Whether current player is black
Feature planes used by the policy network (all but last feature) and value network (all features).

© 2016 Macmillan Publishers Limited. All rights reserved
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ ( | )
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ =  σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t <  T. The outcome zt =  ±  r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: + 1 for winning and − 1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ ( | )

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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Extended Data Table 3 | Supervised learning results for the policy network

Architecture Evaluation

Filters Symmetries Features Test accu-
racy %

Train accu-
racy %

Raw net
wins %

AlphaGo
wins %

Forward
time (ms)

128 1 48 54.6 57.0 36 53 2.8
192 1 48 55.4 58.0 50 50 4.8
256 1 48 55.9 59.1 67 55 7.1

256 2 48 56.5 59.8 67 38 13.9
256 4 48 56.9 60.2 69 14 27.6
256 8 48 57.0 60.4 69 5 55.3

192 1 4 47.6 51.4 25 15 4.8
192 1 12 54.7 57.1 30 34 4.8
192 1 20 54.7 57.2 38 40 4.8

192 8 4 49.2 53.2 24 2 36.8
192 8 12 55.7 58.3 32 3 36.8
192 8 20 55.8 58.4 42 3 36.8

The policy network architecture consists of 128, 192 or 256 filters in convolutional layers; an explicit symmetry ensemble over 2, 4 or 8 symmetries; using only the first 4, 12 or 
20 input feature planes listed in Extended Data Table 1. The results consist of the test and train accuracy on the KGS data set; and the percentage of games won by given policy 
network against AlphaGo’s policy network (highlighted row 2): using the policy networks to select moves directly (raw wins); or using AlphaGo’s search to select moves (AlphaGo 
wins); and finally the computation time for a single evaluation of the policy network.

© 2016 Macmillan Publishers Limited. All rights reserved
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ ( | )
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ =  σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t <  T. The outcome zt =  ±  r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: + 1 for winning and − 1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ ( | )

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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better in AlphaGo than a value function ( )≈ ( )θ σv s v sp  derived from the 
SL policy network.

Evaluating policy and value networks requires several orders of 
magnitude more computation than traditional search heuristics. To 
efficiently combine MCTS with deep neural networks, AlphaGo uses 
an asynchronous multi-threaded search that executes simulations on 
CPUs, and computes policy and value networks in parallel on GPUs. 
The final version of AlphaGo used 40 search threads, 48 CPUs, and 
8 GPUs. We also implemented a distributed version of AlphaGo that 

exploited multiple machines, 40 search threads, 1,202 CPUs and  
176 GPUs. The Methods section provides full details of asynchronous 
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants 
of AlphaGo and several other Go programs, including the strongest 
commercial programs Crazy Stone13 and Zen, and the strongest open 
source programs Pachi14 and Fuego15. All of these programs are based 

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a  
tournament between different Go programs (see Extended Data Tables 
6–11). Each program used approximately 5 s computation time per move.  
To provide a greater challenge to AlphaGo, some programs (pale upper 
bars) were given four handicap stones (that is, free moves at the start of 
every game) against all opponents. Programs were evaluated on an  
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,  
which roughly corresponds to one amateur dan rank advantage on  
KGS38; an approximate correspondence to human ranks is also shown, 

horizontal lines show KGS ranks achieved online by that program. Games 
against the human European champion Fan Hui were also included;  
these games used longer time controls. 95% confidence intervals are 
shown. b, Performance of AlphaGo, on a single machine, for different 
combinations of components. The version solely using the policy network 
does not perform any search. c, Scalability study of MCTS in AlphaGo 
with search threads and GPUs, using asynchronous search (light blue) or 
distributed search (dark blue), for 2 s per move.
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Figure 5 | How AlphaGo (black, to play) selected its move in an 
informal game against Fan Hui. For each of the following statistics,  
the location of the maximum value is indicated by an orange circle.  
a, Evaluation of all successors s′ of the root position s, using the value 
network vθ(s′); estimated winning percentages are shown for the top 
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from 
root position s; averaged over value network evaluations only (λ =  0).  
c, Action values Q(s, a), averaged over rollout evaluations only (λ =  1).  

d, Move probabilities directly from the SL policy network, ( | )σp a s ; 
reported as a percentage (if above 0.1%). e, Percentage frequency with 
which actions were selected from the root during simulations. f, The 
principal variation (path with maximum visit count) from AlphaGo’s 
search tree. The moves are presented in a numbered sequence. AlphaGo 
selected the move indicated by the red circle; Fan Hui responded with the 
move indicated by the white square; in his post-game commentary he 
preferred the move (labelled 1) predicted by AlphaGo.
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s
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We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ =  σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t <  T. The outcome zt =  ±  r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: + 1 for winning and − 1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25
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∂
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t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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better in AlphaGo than a value function ( )≈ ( )θ σv s v sp  derived from the 
SL policy network.

Evaluating policy and value networks requires several orders of 
magnitude more computation than traditional search heuristics. To 
efficiently combine MCTS with deep neural networks, AlphaGo uses 
an asynchronous multi-threaded search that executes simulations on 
CPUs, and computes policy and value networks in parallel on GPUs. 
The final version of AlphaGo used 40 search threads, 48 CPUs, and 
8 GPUs. We also implemented a distributed version of AlphaGo that 

exploited multiple machines, 40 search threads, 1,202 CPUs and  
176 GPUs. The Methods section provides full details of asynchronous 
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants 
of AlphaGo and several other Go programs, including the strongest 
commercial programs Crazy Stone13 and Zen, and the strongest open 
source programs Pachi14 and Fuego15. All of these programs are based 

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a  
tournament between different Go programs (see Extended Data Tables 
6–11). Each program used approximately 5 s computation time per move.  
To provide a greater challenge to AlphaGo, some programs (pale upper 
bars) were given four handicap stones (that is, free moves at the start of 
every game) against all opponents. Programs were evaluated on an  
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,  
which roughly corresponds to one amateur dan rank advantage on  
KGS38; an approximate correspondence to human ranks is also shown, 

horizontal lines show KGS ranks achieved online by that program. Games 
against the human European champion Fan Hui were also included;  
these games used longer time controls. 95% confidence intervals are 
shown. b, Performance of AlphaGo, on a single machine, for different 
combinations of components. The version solely using the policy network 
does not perform any search. c, Scalability study of MCTS in AlphaGo 
with search threads and GPUs, using asynchronous search (light blue) or 
distributed search (dark blue), for 2 s per move.
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Figure 5 | How AlphaGo (black, to play) selected its move in an 
informal game against Fan Hui. For each of the following statistics,  
the location of the maximum value is indicated by an orange circle.  
a, Evaluation of all successors s′ of the root position s, using the value 
network vθ(s′); estimated winning percentages are shown for the top 
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from 
root position s; averaged over value network evaluations only (λ =  0).  
c, Action values Q(s, a), averaged over rollout evaluations only (λ =  1).  

d, Move probabilities directly from the SL policy network, ( | )σp a s ; 
reported as a percentage (if above 0.1%). e, Percentage frequency with 
which actions were selected from the root during simulations. f, The 
principal variation (path with maximum visit count) from AlphaGo’s 
search tree. The moves are presented in a numbered sequence. AlphaGo 
selected the move indicated by the red circle; Fan Hui responded with the 
move indicated by the white square; in his post-game commentary he 
preferred the move (labelled 1) predicted by AlphaGo.
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s
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We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ =  σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t <  T. The outcome zt =  ±  r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: + 1 for winning and − 1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25
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We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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The uncertain about intelligence is a 
fundamental problem of AI 



What is AI?

AI is a system that

think like humans think rationally

act like humans act rationally
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Thinking humanly: Cognitive Science Thinking humanly: Cognitive Science

1960s “cognitive revolution”: information-processing psychology replaced
prevailing orthodoxy of behaviorism

Requires scientific theories of internal activities of the brain
– What level of abstraction? “Knowledge” or “circuits”?
– How to validate? Requires

1) Predicting and testing behavior of human subjects (top-down)
or 2) Direct identification from neurological data (bottom-up)

Both approaches (roughly, Cognitive Science and Cognitive Neuroscience)
are now distinct from AI

Both share with AI the following characteristic:
the available theories do not explain (or engender)
anything resembling human-level general intelligence

Hence, all three fields share one principal direction!

Chapter 1 5



Acting humanly: The Turing test Acting humanly: The Turing test

Turing (1950) “Computing machinery and intelligence”:
♦ “Can machines think?” −→ “Can machines behave intelligently?”
♦ Operational test for intelligent behavior: the Imitation Game

AI SYSTEM

HUMAN

?        HUMAN
INTERROGATOR

♦ Predicted that by 2000, a machine might have a 30% chance of
fooling a lay person for 5 minutes

♦ Anticipated all major arguments against AI in following 50 years
♦ Suggested major components of AI: knowledge, reasoning, language

understanding, learning

Problem: Turing test is not reproducible, constructive, or
amenable to mathematical analysis

Chapter 1 4



Thinking rationally: Laws of Thought Thinking rationally: Laws of Thought

Normative (or prescriptive) rather than descriptive

Aristotle: what are correct arguments/thought processes?

Several Greek schools developed various forms of logic:
notation and rules of derivation for thoughts;

may or may not have proceeded to the idea of mechanization

Direct line through mathematics and philosophy to modern AI

Problems:
1) Not all intelligent behavior is mediated by logical deliberation
2) What is the purpose of thinking? What thoughts should I have

out of all the thoughts (logical or otherwise) that I could have?

Chapter 1 6



Acting rationally 
Acting rationally

Rational behavior: doing the right thing

The right thing: that which is expected to maximize goal achievement,
given the available information

Doesn’t necessarily involve thinking—e.g., blinking reflex—but
thinking should be in the service of rational action

Aristotle (Nicomachean Ethics):
Every art and every inquiry, and similarly every
action and pursuit, is thought to aim at some good

Chapter 1 7
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AI IS BLOOMING 

HOPE YOU ENJOY 

THANK YOU ALL!


