

SCHOOL OF ARTIFICIAL INTELLIGENCE, NANJING UNIVERSITY

Lecture 13: Deep Learning

FORME TO DOCH FORMUNP

Historical review of deep learning

- Google and Baidu announced their deep learning based visual search engines (2013)
 - <u>Google</u>
 - "on our test set we saw double the average precision when compared to other approaches we had tried. We acquired the rights to the technology and went full speed ahead adapting it to run at large scale on Google's computers. We took cutting edge research straight out of an academic research lab and launched it, in just a little over six months."
 - <u>Baidu</u>

Historical review of DL (con't)

 Deep learning achieves 99.47% face verification accuracy on Labeled Faces in the Wild (LFW), higher than human performance

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-Verification. NIPS, 2014.

Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust. CVPR, 2015.

Deep Boltzmann machine:

Auto-encoder:

ŊJ

Convolutional neural networks:

Recurrent neural networks:

Autoencoder

autoencoder

restricted Boltzmann machine a type of associative memory network

[image from http://en.wikipedia.org/wiki/Restricted_Boltzmann_machine

Autoencoder

autoencoder

[image from [G. E. Hinton and R. R. Salakhutdinov, Science 2006]]

Autoencoder

autoencoder

[image from [G. E. Hinton and R. R. Salakhutdinov, Science 2006]]

Convolutional Neural Networks (CNN/LeNet) for general image feature extraction

[image from <u>http://deeplearning.net/tutorial/lenet.html</u>]

Convolution layer

sparse connectivity

shared weights

[image from http://deeplearning.net/tutorial/lenet.html]

ŊJ

Subsampling layer

[image from <u>http://deeplearning.net/tutorial/lenet.html]</u>

Convolutional Neural Networks (CNN/LeNet) for general image feature extraction

[image from <u>http://deeplearning.net/tutorial/lenet.html</u>]

And many more ...

CNN

CNN

Geoffrey E. Hinton

University of Toronto

IM GENET

4.94% (DL) vs 5.1% (human)

Fei-Fei Li Stanford University

CNN toolbox

- Tensorflow (Google)
- PyTorch/Torch (Facebook & NYU)
- Caffe (UC Berkeley)

MatConvNet	tConvNet Home Getting Starte						
MatConvNet: CNNs for MATLAB							

deeplearning.net

Ŷ

. . .

NVIDIA-GPUs

DEEP LEARNING

NVIDIA Home > Products > NVIDIA DOX-1

THE WORLD'S FIRST DEEP LEARNING SUPERCOMPUTER IN A BOX

🔀 Subscribe

Power normalization l2-matrix normalize Dictionary (GMM) l2-normalization Vector conv3-64 max-pooling conv3-512 conv3-512 conv3-64 Fisher Input image Pre-trained CNN Activations Normalization Spatial pyramid The Fisher Vector encoding (Any resolution)

Pre-trained model as feature extractor

Fine-grained image retrieval

ŊIJĄ

DeepProposal

ŊJ

 $f_3 \times f_3$ neighbouring

Super-resolution

ŊJIJĄ

Object segmentation

Fine-grained classification

ŊJIJĄ

Caspian_Tern Fine-grained classification

Common_Tern

Fosters_Tern

ŊJIJĄ

Object segmentation

Fine-grained classification

Face recognition

Action recognition

ŊJŲĄ

Image caption

Automatic driving

Ballon_Fiesta

Australia_day

Heiva

Chinese_New_Year Keene_Pumpkin Sapporo_Snow_Festival

ŊIJĄ

Multimodal Linguistic Regularities

- blue + red =

- blue + yellow =
 - yellow + red =

- white + red =

Nearest images

Multimodal Linguistic Regularities

- day + night =
- flying + sailing =

- bowl + box =

-box + bowl =

Nearest images

[Kiros et al., TACL 2015]

One-hot encoding

V={"don't", "hate", "l", "it", "love"}

Transformation for text

Seq-CNN for text

V={"don't", "hate", "l", "it", "love"}

bow-CNN for text

V={"don't", "hate", "l", "it", "love"}

More for text

Deep-CNN

Figure courtesy of [Xiang Zhang et. al, NIPS' 15]

RL in continuous state space

Deep Reinforcement Learning

function approximation by deep neural networks

Convolutional neural networks

a powerful neural network architecture for image analysis

differentiable

require a lot of samples to train

Deep Q-Network

ŊJUA

DQN

- using *E*-greedy policy
- store 1million recent history (s,a,r,s') in replay memory D
- sample a mini-batch (32) from D
- calculate Q-learning target $\, ilde{Q} \,$
- update CNN by minimizing the Bellman error (delayed update)

$$\sum (r + \gamma \max_{a'} \tilde{Q}(s', a') - Q_w(s, a))^2$$

DQN on Atari

learn to play from pixels

Deep Q-Network

effectiveness

Game	With replay, with target Q	With replay, without target Q	Without replay, with target Q	Without replay, without target Q
Breakout	316.8	240.7	10.2	3.2
Enduro	1006.3	831.4	141.9	29.1
River Raid	7446.6	4102.8	2867.7	1453.0
Seaquest	2894.4	822.6	1003.0	275.8
Space Invaders	1088.9	826.3	373.2	302.0

A combination of tree search, deep neural networks and reinforcement learning

AlphaGo

fast roll-out policy: supervised learning from human v.s. human data

Feature	# of patterns	Description
Response	1	Whether move matches one or more response pattern features
Save atari	1	Move saves stone(s) from capture
Neighbour	8	Move is 8-connected to previous move
Nakade	8192	Move matches a <i>nakade</i> pattern at captured stone
Response pattern	32207	Move matches 12-point diamond pattern near previous move
Non-response pattern	69338	Move matches 3×3 pattern around move
Self-atari	1	Move allows stones to be captured
Last move distance	34	Manhattan distance to previous two moves
Non-response pattern	32207	Move matches 12-point diamond pattern centred around move

AlphaGo

policy network: a CNN output $\pi(s,a)$ value network: a CNN output V(s)

Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1 $f(a a) = f(a a)$
Turns since	8	How many turns since a move was played $p_{\sigma}^{(a s)}$
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	$\partial \log \mathbf{p}$ (a	Whether a move at this point is a successful ladder capture
Ladder escape	$\partial \sigma$	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0
Player color	1	Whether current player is black

policy network: initialization supervised learning from human v.s. human data

	Architecture				Evaluation		
Filters	Symmetries	Features	Test accu-racy %	Train accu- racy %	Raw net wins %	<i>AlphaGo</i> wins %	Forward time (ms)
128	1	48	54.6	57.0	36	53	2.8
192	1	48	55.4	58.0	50	50	4.8
256	1	48	55.9	59.1	67	55	7.1
256	2	48	56.5	59.8	67	38	13.9
256	4	48	56.9	60.2	69	14	27.6
256	8	48	57.0	60.4	69	5	55.3
192	1	4	47.6	51.4	25	15	4.8
192	1	12	54.7	57.1	30	34	4.8
192	1	20	54.7	57.2	38	40	4.8
192	8	4	49.2	53.2	24	2	36.8
192	8	12	55.7	58.3	32	3	36.8
192	8	20	55.8	58.4	42	3	36.8

 $v_{\theta}(s) \approx v^{p}(s)$

policy network: further improvement


```
\partial \log p(a|s)
```

$a_t \sim p(\cdot | s_t)$

AlphaGo

value network: supervised learning from RL data

本 地玩家 加到完成

_

Х

What is intelligence?

ŊJ

What is intelligence?

The uncertain about intelligence is a fundamental problem of AI

AI is a system that

think like humans

think rationally

act like humans

act rationally

human or non-human?

Thinking humanly: Cognitive Science

1960s "cognitive revolution": information-processing psychology replaced prevailing orthodoxy of behaviorism

Requires scientific theories of internal activities of the brain

- What level of abstraction? "Knowledge" or "circuits"?
- How to validate? Requires
 - 1) Predicting and testing behavior of human subjects (top-down)
 - or 2) Direct identification from neurological data (bottom-up)

Both approaches (roughly, Cognitive Science and Cognitive Neuroscience) are now distinct from AI

Both share with AI the following characteristic: the available theories do not explain (or engender) anything resembling human-level general intelligence

Hence, all three fields share one principal direction!

Acting humanly: The Turing test

Turing (1950) "Computing machinery and intelligence": \diamond "Can machines think?" \longrightarrow "Can machines behave intelligently?" \diamond Operational test for intelligent behavior: the Imitation Game

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- \diamond Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

Problem: Turing test is not reproducible, constructive, or amenable to mathematical analysis

Thinking rationally: Laws of Thought

Normative (or prescriptive) rather than descriptive

Aristotle: what are correct arguments/thought processes?

Several Greek schools developed various forms of logic: **notation** and **rules of derivation** for thoughts; may or may not have proceeded to the idea of mechanization

Direct line through mathematics and philosophy to modern AI

Problems:

1) Not all intelligent behavior is mediated by logical deliberation

2) What is the purpose of thinking? What thoughts **should** I have out of all the thoughts (logical or otherwise) that I **could** have?

Rational behavior: doing the right thing

The right thing: that which is expected to maximize goal achievement, given the available information

Doesn't necessarily involve thinking—e.g., blinking reflex—but thinking should be in the service of rational action

Aristotle (Nicomachean Ethics):

Every art and every inquiry, and similarly every action and pursuit, is thought to aim at some good

AI is a system that

human or non-human?

AI IS BLOOMING

HOPE YOU ENJOY

THANK YOU ALL!