
Lecture	5:	Search	4	
Bandits	and	MCTS

Previously...

Uninformed search

Informed search

Depth-first, breadth first, uniform-cost search

Best-first, A* search

Path-based search

Adversarial search

Alpha-Beta search

Beyond classical search

Bandit search

Tree search: Monte-Carlo Tree Search

Functions for pseudo-random numbers

in C++

in JAVA

import java.util.Random;
Random rnd = new Random(seed);
int r = rnd.nextInt(upper);

#include <stdlib.h>
srand(seed);
int r = rand(); 0~RAND_MAX

0~upper-1

Bandit

Multiple arms
Each arm has an expected reward,
 but unknown, with an unknown distribution

Maximize your award in fixed trials

Simplest strategies

Exploration-only:
for T trails and K arms, try each arm T/K times

Two simplest strategies

Exploitation-only:

1. try each arm once
2. try the observed best arm T-K times

problem?

problem?

waste on suboptimal arms

risk of wrong best arm

ε-greedy

Balance the exploration and exploitation:

with ε probability, try a random arm
with 1-ε probability, try the best arm

ε controls the balance

Softmax

Balance the exploration and exploitation:

Choose arm with probability

τ controls the balance

Q(k)

Upper-confidence bound

Balance the exploration and exploitation:

Choose arm with the largest value of

average reward + upper confidence bound

UCB

2.5%

Use bandit to search

Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Chapter 3 6

Use bandit to search

Abra

Z S T

Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Chapter 3 6

O

S

R

C

P

B

762 a roll-out

use many roll-outs to
estimate the average cost
of each arm

arm selection: UCB

O R

From bandit to tree

Abra

Z S T
grow a tree

update the values along
the path

z

O R

Monte-Carlo Tree Search
Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

also called Upper-Confidence Tree (UCT)

Monte-Carlo Tree Search

codes from http://mcts.ai/code/java.html

http://mcts.ai/code/java.html

Monte-Carlo Tree Search

Pic from https://en.wikipedia.org/wiki/Monte_Carlo_tree_search#cite_note-Kocsis-Szepesvari-5

Example:

rollout

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search#

Monte-Carlo Tree Search

optimal? Yes, after infinite tries

compare with alpha-beta pruning
 no need of heuristic function

Monte-Carlo Tree Search
Random phase � Roll-out policy

Monte-Carlo-based Brügman 93

1. Until the goban is filled,
add a stone (black or white in turn)
at a uniformly selected empty position

2. Compute r = Win(black)

3. The outcome of the tree-walk is r

Improvements ?

I Put stones randomly in the neighborhood of a previous stone

I Put stones matching patterns prior knowledge

I Put stones optimizing a value function Silver et al. 07

Improving random rollout

AlphaGo

A combination of tree search, deep neural networks
and reinforcement learning

4 8 6 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLERESEARCH

learning of convolutional networks, won 11% of games against Pachi23
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation,
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E()= | = ∼…v s z s s a p[,]p
t t t T

Ideally, we would like to know the optimal value function under
perfect play v*(s); in practice, we instead estimate the value function

ρv p for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ,

⁎()≈ ()≈ ()θ ρv s v s v sp . This neural network has a similar architecture
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to
minimize the mean squared error (MSE) between the predicted value
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ()
∂
(− ())θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that
successive positions are strongly correlated, differing by just one stone,
but the regression target is shared for the entire game. When trained
on the KGS data set in this way, the value network memorized the
game outcomes rather than generalizing to new positions, achieving a
minimum MSE of 0.37 on the test set, compared to 0.19 on the training
set. To mitigate this problem, we generated a new self-play data set
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and
itself until the game terminated. Training on this data set led to MSEs
of 0.226 and 0.234 on the training and test set respectively, indicating
minimal overfitting. Figure 2b shows the position evaluation accuracy
of the value network, compared to Monte Carlo rollouts using the fast
rollout policy pπ; the value function was consistently more accurate.
A single evaluation of vθ(s) also approached the accuracy of Monte
Carlo rollouts using the RL policy network pρ, but using 15,000 times
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a),
and prior probability P(s, a). The tree is traversed by simulation (that
is, descending the tree in complete games without backup), starting
from the root state. At each time step t of each simulation, an action at
is selected from state st

= (()+ ())a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

()∝
()
+ ()

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with
repeated visits to encourage exploration. When the traversal reaches a
leaf node sL at step L, the leaf node may be expanded. The leaf position
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,
()= (|)σP s a p a s, . The leaf node is evaluated in two very different ways:

first, by the value network vθ(sL); and second, by the outcome zL of a
random rollout played out until terminal step T using the fast rollout
policy pπ; these evaluations are combined, using a mixing parameter
λ, into a leaf evaluation V(sL)

λ λ()= (−) ()+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all
traversed edges are updated. Each edge accumulates the visit count and
mean evaluation of all simulations passing through that edge

∑

∑

()= ()

()=
()

() ()

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i is the leaf node from the ith simulation, and 1(s, a, i) indicates

whether an edge (s, a) was traversed during the ith simulation. Once
the search is complete, the algorithm chooses the most visited move
from the root position.

It is worth noting that the SL policy network pσ performed better in
AlphaGo than the stronger RL policy network pρ, presumably because
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function
()≈ ()θ ρv s v sp derived from the stronger RL policy network performed

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation
traverses the tree by selecting the edge with maximum action value Q,
plus a bonus u(P) that depends on a stored prior probability P for that
edge. b, The leaf node may be expanded; the new node is processed once
by the policy network pσ and the output probabilities are stored as prior
probabilities P for each action. c, At the end of a simulation, the leaf node

is evaluated in two ways: using the value network vθ; and by running
a rollout to the end of the game with the fast rollout policy pπ, then
computing the winner with function r. d, Action values Q are updated to
track the mean value of all evaluations r(·) and vθ(·) in the subtree below
that action.

Selectiona b c dExpansion Evaluation Backup

pS

pV

Q + u(P)

Q + u(P)Q + u(P)

Q + u(P)

P P

P P

Q

Q

QQ

Q

rr r r

P

max

max

P

QT

QT

QT

QT

QT QT

© 2016 Macmillan Publishers Limited. All rights reserved

fast roll-out policy

policy network

value network

Different Environment Properties

Nondeterministic actions

134 Chapter 4. Beyond Classical Search

1 2

87

5 6

3 4

Figure 4.9 The eight possible states of the vacuum world; states 7 and 8 are goal states.

Now suppose that we introduce nondeterminism in the form of a powerful but erratic
vacuum cleaner. In the erratic vacuum world, the Suck action works as follows:ERRATIC VACUUM

WORLD

• When applied to a dirty square the action cleans the square and sometimes cleans up
dirt in an adjacent square, too.

• When applied to a clean square the action sometimes deposits dirt on the carpet.9

To provide a precise formulation of this problem, we need to generalize the notion of a tran-
sition model from Chapter 3. Instead of defining the transition model by a RESULT function
that returns a single state, we use a RESULTS function that returns a set of possible outcome
states. For example, in the erratic vacuum world, the Suck action in state 1 leads to a state in
the set {5, 7}—the dirt in the right-hand square may or may not be vacuumed up.

We also need to generalize the notion of a solution to the problem. For example, if we
start in state 1, there is no single sequence of actions that solves the problem. Instead, we
need a contingency plan such as the following:

[Suck, if State = 5 then [Right, Suck] else []] . (4.3)

Thus, solutions for nondeterministic problems can contain nested if–then–else statements;
this means that they are trees rather than sequences. This allows the selection of actions
based on contingencies arising during execution. Many problems in the real, physical world
are contingency problems because exact prediction is impossible. For this reason, many
people keep their eyes open while walking around or driving.

9 We assume that most readers face similar problems and can sympathize with our agent. We apologize to
owners of modern, efficient home appliances who cannot take advantage of this pedagogical device.

134 Chapter 4. Beyond Classical Search

1 2

87

5 6

3 4

Figure 4.9 The eight possible states of the vacuum world; states 7 and 8 are goal states.

Now suppose that we introduce nondeterminism in the form of a powerful but erratic
vacuum cleaner. In the erratic vacuum world, the Suck action works as follows:ERRATIC VACUUM

WORLD

• When applied to a dirty square the action cleans the square and sometimes cleans up
dirt in an adjacent square, too.

• When applied to a clean square the action sometimes deposits dirt on the carpet.9

To provide a precise formulation of this problem, we need to generalize the notion of a tran-
sition model from Chapter 3. Instead of defining the transition model by a RESULT function
that returns a single state, we use a RESULTS function that returns a set of possible outcome
states. For example, in the erratic vacuum world, the Suck action in state 1 leads to a state in
the set {5, 7}—the dirt in the right-hand square may or may not be vacuumed up.

We also need to generalize the notion of a solution to the problem. For example, if we
start in state 1, there is no single sequence of actions that solves the problem. Instead, we
need a contingency plan such as the following:

[Suck, if State = 5 then [Right, Suck] else []] . (4.3)

Thus, solutions for nondeterministic problems can contain nested if–then–else statements;
this means that they are trees rather than sequences. This allows the selection of actions
based on contingencies arising during execution. Many problems in the real, physical world
are contingency problems because exact prediction is impossible. For this reason, many
people keep their eyes open while walking around or driving.

9 We assume that most readers face similar problems and can sympathize with our agent. We apologize to
owners of modern, efficient home appliances who cannot take advantage of this pedagogical device.

134 Chapter 4. Beyond Classical Search

1 2

87

5 6

3 4

Figure 4.9 The eight possible states of the vacuum world; states 7 and 8 are goal states.

Now suppose that we introduce nondeterminism in the form of a powerful but erratic
vacuum cleaner. In the erratic vacuum world, the Suck action works as follows:ERRATIC VACUUM

WORLD

• When applied to a dirty square the action cleans the square and sometimes cleans up
dirt in an adjacent square, too.

• When applied to a clean square the action sometimes deposits dirt on the carpet.9

To provide a precise formulation of this problem, we need to generalize the notion of a tran-
sition model from Chapter 3. Instead of defining the transition model by a RESULT function
that returns a single state, we use a RESULTS function that returns a set of possible outcome
states. For example, in the erratic vacuum world, the Suck action in state 1 leads to a state in
the set {5, 7}—the dirt in the right-hand square may or may not be vacuumed up.

We also need to generalize the notion of a solution to the problem. For example, if we
start in state 1, there is no single sequence of actions that solves the problem. Instead, we
need a contingency plan such as the following:

[Suck, if State = 5 then [Right, Suck] else []] . (4.3)

Thus, solutions for nondeterministic problems can contain nested if–then–else statements;
this means that they are trees rather than sequences. This allows the selection of actions
based on contingencies arising during execution. Many problems in the real, physical world
are contingency problems because exact prediction is impossible. For this reason, many
people keep their eyes open while walking around or driving.

9 We assume that most readers face similar problems and can sympathize with our agent. We apologize to
owners of modern, efficient home appliances who cannot take advantage of this pedagogical device.

almost all real-world problems are nondeterministic

how do you solve this problem?

AND-OR tree search

Section 4.3. Searching with Nondeterministic Actions 135

4.3.2 AND–OR search trees

The next question is how to find contingent solutions to nondeterministic problems. As in
Chapter 3, we begin by constructing search trees, but here the trees have a different character.
In a deterministic environment, the only branching is introduced by the agent’s own choices
in each state. We call these nodes OR nodes. In the vacuum world, for example, at an OROR NODE

node the agent chooses Left or Right or Suck. In a nondeterministic environment, branching
is also introduced by the environment’s choice of outcome for each action. We call these
nodes AND nodes. For example, the Suck action in state 1 leads to a state in the set {5, 7},AND NODE

so the agent would need to find a plan for state 5 and for state 7. These two kinds of nodes
alternate, leading to an AND–OR tree as illustrated in Figure 4.10.AND–OR TREE

A solution for an AND–OR search problem is a subtree that (1) has a goal node at every
leaf, (2) specifies one action at each of its OR nodes, and (3) includes every outcome branch
at each of its AND nodes. The solution is shown in bold lines in the figure; it corresponds
to the plan given in Equation (4.3). (The plan uses if–then–else notation to handle the AND

branches, but when there are more than two branches at a node, it might be better to use a case

LeftSuck

RightSuck

RightSuck

6

GOAL

8

GOAL

7

1

2 5

1

LOOP

5

LOOP

5

LOOP

Left Suck

1

LOOP GOAL

8 4

Figure 4.10 The first two levels of the search tree for the erratic vacuum world. State
nodes are OR nodes where some action must be chosen. At the AND nodes, shown as circles,
every outcome must be handled, as indicated by the arc linking the outgoing branches. The
solution found is shown in bold lines.

OR node: different actions (as usual)
AND node: different transitions

a solution is not a path
but a tree

Depth-first AND-OR tree search
136 Chapter 4. Beyond Classical Search

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
OR-SEARCH(problem .INITIAL-STATE,problem , [])

function OR-SEARCH(state,problem ,path) returns a conditional plan, or failure
if problem .GOAL-TEST(state) then return the empty plan
if state is on path then return failure
for each action in problem .ACTIONS(state) do

plan ←AND-SEARCH(RESULTS(state,action),problem , [state | path])
if plan ̸= failure then return [action | plan]

return failure

function AND-SEARCH(states ,problem ,path) returns a conditional plan, or failure
for each si in states do

plan i ← OR-SEARCH(si,problem ,path)
if plan i = failure then return failure

return [if s1 then plan1 else if s2 then plan2 else . . . if sn−1 then plann−1 else plann]

Figure 4.11 An algorithm for searching AND–OR graphs generated by nondeterministic
environments. It returns a conditional plan that reaches a goal state in all circumstances. (The
notation [x | l] refers to the list formed by adding object x to the front of list l.)

construct.) Modifying the basic problem-solving agent shown in Figure 3.1 to execute con-
tingent solutions of this kind is straightforward. One may also consider a somewhat different
agent design, in which the agent can act before it has found a guaranteed plan and deals with
some contingencies only as they arise during execution. This type of interleaving of searchINTERLEAVING

and execution is also useful for exploration problems (see Section 4.5) and for game playing
(see Chapter 5).

Figure 4.11 gives a recursive, depth-first algorithm for AND–OR graph search. One
key aspect of the algorithm is the way in which it deals with cycles, which often arise in
nondeterministic problems (e.g., if an action sometimes has no effect or if an unintended
effect can be corrected). If the current state is identical to a state on the path from the root,
then it returns with failure. This doesn’t mean that there is no solution from the current state;
it simply means that if there is a noncyclic solution, it must be reachable from the earlier
incarnation of the current state, so the new incarnation can be discarded. With this check, we
ensure that the algorithm terminates in every finite state space, because every path must reach
a goal, a dead end, or a repeated state. Notice that the algorithm does not check whether the
current state is a repetition of a state on some other path from the root, which is important for
efficiency. Exercise 4.5 investigates this issue.

AND–OR graphs can also be explored by breadth-first or best-first methods. The concept
of a heuristic function must be modified to estimate the cost of a contingent solution rather
than a sequence, but the notion of admissibility carries over and there is an analog of the A∗

algorithm for finding optimal solutions. Pointers are given in the bibliographical notes at the
end of the chapter.

Search with no observations

Section 4.4. Searching with Partial Observations 141

L

R

S

L

R

S

L R

S

LR

S
L

R

S

L R

S
L

R

S

11 3

5 7

2 4

6 8

2 3

4 5 6

7 8

4 5

7 8

5 3

7

6 4

8

4

8

5

7

6

8

8 7

3

7

Figure 4.14 The reachable portion of the belief-state space for the deterministic, sensor-
less vacuum world. Each shaded box corresponds to a single belief state. At any given point,
the agent is in a particular belief state but does not know which physical state it is in. The
initial belief state (complete ignorance) is the top center box. Actions are represented by
labeled links. Self-loops are omitted for clarity.

inside the belief states and develop incremental belief-state search algorithms that build up
INCREMENTAL

BELIEF-STATE

SEARCH

the solution one physical state at a time. For example, in the sensorless vacuum world, the
initial belief state is {1, 2, 3, 4, 5, 6, 7, 8}, and we have to find an action sequence that works
in all 8 states. We can do this by first finding a solution that works for state 1; then we check
if it works for state 2; if not, go back and find a different solution for state 1, and so on. Just
as an AND–OR search has to find a solution for every branch at an AND node, this algorithm
has to find a solution for every state in the belief state; the difference is that AND–OR search
can find a different solution for each branch, whereas an incremental belief-state search has
to find one solution that works for all the states.

The main advantage of the incremental approach is that it is typically able to detect
failure quickly—when a belief state is unsolvable, it is usually the case that a small subset of
the belief state, consisting of the first few states examined, is also unsolvable. In some cases,

search in belief (in agent’s mind)

