Lecture 6: Search 5
General Solution Space Search
& CSP

Greedy idea in continuous space

Suppose we want to site three airports in Romania:
— 6-D state space defined by (1, 12), (2, v2), (3, ¥3)
— objective function f(x1, v, T2, Y2, T3,Y3) =
sum of squared distances from each city to nearest airport

] Oradea

Neamt

87

] lasi

. 92
Sibiu Fa%M@
%0 T \ [JVaslui
Rimnicu Vilcea \

1
Pitesti 211
i \
] JHirsova
X 6

101 .y 82 —Urziceni
) 8

Bucharest

Dobreta
= 90 o

—Crajo a@ . Eforie
[]Giurgiu

Greedy idea in continuous space

discretize and use hill climbing

] Oradea
@ Neamt @
= 87
] lasi
T i 92
Sibiu , Fagaras
[Vaslui
80
T e Rimnicu Vilcea
]
142
70 - 98 T
) 85 _ _ Hirsova
[JMehadia 101 S Urziceni
® 56
= 138 Bucharest
Dobreta [120 T
Craiova Eforie

[]1Giurgiu

Hill climbing

function HillClimb_Step(double[] solution)
double value = Eval(solution)
List neighbors = Neighbors(solution)
double bestv = value
double[] bestc = none
for each candidate in neighbors do
double candivalue = eval(candidate)
if candivalue < bestv then
bestv = candivalue
bestc = candidate
end if
end for

return bestc

Greedy idea in continuous space
gradient decent

— 6-D state space defined by (1, 19), (22,12), (23,y3)
— objective function f(x1, Y2, T2, Yo, T3, Y3) =
sum of squared distances from each city to nearest airport

Gradient methods compute

of Of Of Of Of Of
0y’ Cf?’?h7 0z’ 8927 Ox3’ Y3

to increase/reduce f, e.g., by x <+ x + aV f(x)

V=

Greedy idea in continuous space
gradient decent

— 6-D state space defined by (1, 19), (22,12), (23,y3)
— objective function f(x1, Yo, To, 1o, T3, Y3) =
sum of squared distances from each city to nearest airport

Sometimes can solve for V f(x) = 0 exactly (e.g., with one city).
Newton—Raphson (1664, 1690) iterates x «— x — H;l(X>Vf<X>
to solve Vf(x) = 0, where H;; = 0% f /0x;0x;

Taylor’s series:

Greedy idea

1st and 2nd order methods may not find global
optimal solutions

they work for convex functions

Objectixe function ﬁlobal maximum

shoulder

local maximum

"flat" local maximum

»state space
current

state

Purely random search

function RandomSearch_Step(double[] solution)
double value = Eval(solution)
double[] rsol = RandomSolution()
double vr = Eval(rsol)
if vr < value then
return rsol
end if

return none

optimal after infinite steps! why?

can be more smart? replace RandomSolution

Hill climbing vs. Pure random search

function HillClimb_Step(double[] solution)
double value = Eval(solution)
List neighbors = Neighbors(solution)
double bestv = value
double[] bestc = none
for each candidate in neighbors do
double candivalue = eval(candidate)
if candivalue < bestv then
bestv = candivalue
bestc = candidate
end if
end for

return bestc

function RandomSearch_Step(double|[] solution)
double value = Eval(solution)
double[] rsol = RandomSolution()
double vr = Eval(rsol)
if vr < value then
return rsol
end if

return none

exploitation vs. exploration
locally optimal vs. globally optimal

Meta-heuristics

“problem independent
“black-box
“zeroth-order method

and usually inspired from nature phenomenon

Simulated annealing

temperature from high to low

when high temperature, form the shape
when low temperature, polish the detail

Simulated annealing

ldea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED- ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])

for t< 1 to oo do
T« schedule]t]
if T'= 0 then return current
next— a randomly selected successor of current the _neighl?orhOOd range
AFE«+ VALUE[nezt] — VALUE[current] shrinks with T

if AE > 0 then current«— next the probability of acceptir
else current <« next only with probability ¢® /T g bad solution decreases

—=r

with T

g

Simulated annealing

a demo

graphic from http://en.wikipedia.org/wiki/Simulated_annealing

http://en.wikipedia.org/wiki/Simulated_annealing

Local beam search

|dea: keep k states instead of 1; choose top k of all their successors

Not the same as £ searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all £ states end up on same local hill
|dea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

Genetic algorithm

a simulation of Darwin’s evolutionary theory

over-reproduction with diversity
nature selection

reproduction

random initialization

parent
population

offspring
solutions

evaluated
offspring
solutions

selection evaluation

Genetic algorithm

Encode a solution as a vector,

1: Pop < n randomly drawn solutions from X

2: for t=1,2,... do

3: Pop™ < {mutate(s) | Vs € Pop}, the mutated solutions
4: Pop® < {crossover(sy, s2) | 3s1, 52 € Pop™}, the recombined solutions
5 evaluate every solution in Pop® by f(s)(Vs € Pop®)

6: Pop® <+ selected solutions from Pop and Pop°

7: Pop < Pop?®

8: terminate if meets a stopping criterion

9: end for

mutation: some kind of random changes
crossover: some kind of random exchanges
selection: some kind of quality related selection

24748552 | 24 31%
32752411::%§T§;;:
24415124.\;;7£i\‘
32543213 | 11 14%

Fitness Selection

GAs require states encoded as strings (GPs use programs)

Genetic algorithm

32752411

24748552

32752411

24415124

>~
>~

Pairs

32748552

3274412

24752411

24752411

32752124

320252124

24415411

Cross-Over

2441541[7]

Crossover helps iff substrings are meaningful components

-
-~

-t

et

——

‘-’”-‘

Properties of meta-heuristics

zeroth order

do not need differentiable functions

convergence

will find an optimal solution if P(x* | x)>0
or (x> x1->..>Xxk-> X)>0

Example

hard to apply traditional optimization methods
but easy to test a given solution

Representation:

parameterize

represented as a vector of parameters

> flw)

test by sitmulation/experiment

Fitness:

Example

Series 700

Technological overview of the neal generelion Shinkensen high-speed buin Seres N700

M. Usna', S. Usui', H. Tanaka', A. Watanate™
'Canted Japan Raiway Campany Tolyn, Japan, 2lke lapan Raiway Company, (saka, Janan

Abstract
In Mercy 2005 Cenus Japar ileay

- '

Company WR Cznliel] has complkelad prololyps

weves st ol msues relalec o eviroemenlal compalialile soch as exlemal oise. o
bzl his, a0 s doulde wing Dype Fas beer adophs: o case shape (Fig. 3). THS rose
shape, whidh bussts Thwe mos, aopropale aeodyner ¢ pedamancs, has boen now y dosdoped
Tor railweay celling stock wsdng the Gtes. arslylical tachnigoees (e geaatic algaithms) wed o
davelop the main wings of airplanes. The shaga resemblas a bird 1 flighs, sugoesting a faslirg

~ hnldnnas ane enesd

Or the Tokeldo S ~kersen !.‘r‘e. Earies NTOD cars save 19% enecy then Sedes 700 cews,

despile 3 30% inceacs in Uw oulpul of Lieir acton equipment "o higheo cosed oseralion (Fi
a3,

This is a result of adopling the asrodyranically excaller: 10se shape reducec nring
resistence thanks to the crastizslly smoothened car bedy end underdfloc - equipmern:, affecive

a

_

this nose ... has been newly developed ... using the latest
nalytical technique (i.e. genetic algorithms)

~_ - - - -0/
%
N700 cars save 19% energy ... 30% increase in the output... This is a
result of adopting the ... nose shape

J

Example

NASA ST5 satellite N R _n

- ~

QHAs(ATi%1T) 38% evolved antehnas resulted
efficiency in 93% efficiency)

Jason D. Loha Jat
Carnegie Meloe Usdversicy, Ml Scop 23-21, Modivn Faell, C

fuvgwest o 2o

335, USA

1derek S, Linden diindd emengincering.com
JEM Erygaveecing, 5683 Clierry Lane. Lourel, MO 20707, USA N p&uon Feld, CA 81035

[AREY

SINCE there are (wWo BNIENTAs ON 2ach SPACECralt, ang rot Just one, It 1S IMpPOrsm
o oemsure Bee overed] gao patere witl bwo enbeoaws mowed oo e speacrelt Fo
his, diffecen: comrbirations of the two evolved antennas and the QILA were tried or
he the 515 mock-up and maesures in an anechoe chambar, With mwo QHAS 385 effl
deney wons achueved usieg g OHA witdia evolv ed wodenne: sesudbed i 509 effcency
106, BEing Two evaives antennas resulted in 9%l ethclency, lere elfidency” means
10w much poveer 5 being radated versus now much povrer is being eaten up in resis-
anca, with greater etficiancy resulting onoa stronger signal anc greater range. T gnre 11

Constraint satistaction problems (CSPs)

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box"—any old data structure
that supports goal test, eval, successor

CSP:

state is defined by variables X; with values from domain D),

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

Example: Map-Coloring

Northern
Territory
Western Queensland
Australia
South
N \/\,—
Australia
New South Wales

ﬁﬁ?\

Tasmania

Variables WA, NT,), NSW,V,SA, T
Domains D; = {red, green, blue}

Constraints: adjacent regions must have different colors
e.g., WA # NT (if the language allows this), or
(WA, NT) € {(red, green), (red, blue), (green, red), (green, blue), . . .}

Example: Map-Coloring

-

-

Tasm.ia

Solutions are assignments satisfying all constraints, e.g.,
{WA=red, NT = green,QQ =red, NSW = green,V =red, SA="blue, T = green}

Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
¢ Initial state: the empty assignment, { }

> Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

> Goal test: the current assignment is complete

1) This is the same for all CSPs!

2) Every solution appears at depth n with n variables

= use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b= (n — 0)d at depth 7, hence n!d" leaves!!!!

Backtracking search

Variable assignments are commutative, i.e.,

[WA=redthen NT = green] sameas [NT = greenthen WA =red]

Only need to consider assignments to a single variable at each node
= b=d and there are d" leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ~ 25

Backtracking search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var<«— SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS|csp| then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING (assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

Backtracking search example

Improving backtracking efficiency

backtracking is uninformed
make it more informed

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:

choose the variable with the most constraints on remaining variables

O

‘\.\

\\

K

—

\\

A

Least constraining value gen

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

“ | Allows 1 value for SA
1~ — e <
* Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

Forward checking

osin
NNNNNN

ldea: Keep track of remaining legal values for unassigned variables =
Terminate search when any variable has no legal values

- #‘_L: — ‘_L — ‘\—L‘:

-
WA NT Q NSW Vv SA T
ErE[ErEErE[ErE[E T E[E A E]E
I | I iren A
. | 1 [E[E i n] C
I | 1 L 1 [

—
N

Constraint propagation ' e

Wiesiern l Qurens bed

| South l. _
Ausirala By

| L Kow South Waks
-
.

| Vistora b

Tastnnip

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn't provide early detection for all failures:

SSE SE S

WA NT Q NSW v SA T
ENEENEENEENEENE|ENE|EYE
S| '"EEfEENE(EE| VEETE
I | Hjimw |l EErE| HENE

N'T and S A cannot both be bluel

Constraint propagation repeatedly enforces constraints locally

Arc consistency

| g, F——
| L:acw&o.ammm
lw;}}?'z
Simplest form of propagation makes each arc consistent
X — Y is consistent iff
for every value x of X there is some allowed 7
SN s e
e
WA NT Q NSW v SA T
I | 1 [H E[EN] EH[ENE

\{/

Arc consistency

| ot ——
| Lh\cwi-'.o.alhv.'a\ﬁ
lw;}}?".
Simplest form of propagation makes each arc consistent
X — Y is consistent iff
for every value x of X there is some allowed 7
SSI ey S
WA NT Q NSW v SA T
I | H] i _o-a1l A

\(

If X loses a value, neighbors of X need to be rechecked

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff Tosip
for every value x of X there is some allowed v

SV S e

WA NT Q

| m] IINSVEI:EI:VII SAjl:ll O
{

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Arc consistency

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X7, X5, ..., X,;}
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(X;, X,)«— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X; in NEIGHBORS[X|| do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X,) returns true iff succeeds
removed <+ false
for each z in DoMAIN[X;]| do
if no value y in DOMAIN[X] allows (z,y) to satisfy the constraint X; < X
then delete © from DOMAIN[X,|; removed « true
return removed

O(n*d®), can be reduced to O(n*d*) (but detecting all is NP-hard)

Problem Structure

O
Q

Tasmania and mainland are independent subproblems
|dentifiable as connected components of constraint graph

Suppose each subproblem has ¢ variables out of n total
Worst-case solution cost is n/c - d€, linear in n

Eg., n=80,d=2, c=20

2%V = 4 billion years at 10 million nodes/sec

4-2?Y = 0.4 seconds at 10 million nodes/sec

Tree-structured CSPs

(8)—0.
©)

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(n d?*) time

Compare to general CSPs, where worst-case time is O(d")

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

ge e§

2. For j from n down to 2, apply REMOVEINCONSISTENT(Parent(X,), X,)

3. For j from 1 to n, assign X, consistently with Parent(X))

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains
O—c O—@
o 1R @
=) (v}
O O

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d - (n — c¢)d?), very fast for small ¢

[terative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

Example: 4-Queens

States: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column
Goal test: no attacks

Evaluation: A(n) = number of attacks

N
AT o

h=5

-

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., » = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

number of constraints

R:

number of variables

CPU
time

L

|
critical
ratio

Varieties of CSPs

Discrete variables
finite domains; size d = O(d") complete assignments
{ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)
{ e.g., job scheduling, variables are start/end days for each job
> need a constraint language, e.g., StartJob, + 5 < StartJobs
{> linear constraints solvable, nonlinear undecidable

Continuous variables
{ e.g., start/end times for Hubble Telescope observations
> linear constraints solvable in poly time by LP methods

Varieties of CSPs

Unary constraints involve a single variable,
e.g., SA # green

Binary constraints involve pairs of variables,

eg., SAAWA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment
— constrained optimization problems

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

O
O

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!

Convert higher-order to binary

A higher-order constraint can be converted to binary
constraints with a hidden-variable

variable: A, B, C domain: {1,2,3} constraint: A+B=C

all possible assignments: (A,B,C) = (1,1,2), (1,2,3), (2,1,3)

'\\/'

hidden-variable: h with domain: {1,2,3}

(each value corresponds

_ to an assignment)
the constraint graph:

&)

Example: Cryptarithmetic

o4 H
cl=z=
0|0 O

M|+

%5 & %) ¢

Variables: F T U W R O X; X5 X;3
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints

alldifA B, T, U, W, R, O)

auxiliary variables
O+ 0 =R+10-X,, etc.

Summary of CSP

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time

lterative min-conflicts is usually effective in practice

