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Previously...270 Chapter 7. Logical Agents

function HYBRID-WUMPUS-AGENT(percept ) returns an action
inputs: percept , a list, [stench,breeze,glitter ,bump,scream]
persistent: KB , a knowledge base, initially the atemporal “wumpus physics”

t , a counter, initially 0, indicating time
plan , an action sequence, initially empty

TELL(KB , MAKE-PERCEPT-SENTENCE(percept , t ))
TELL the KB the temporal “physics” sentences for time t
safe ← {[x , y] : ASK(KB ,OK t

x,y) = true}

if ASK(KB ,Glitter t
) = true then

plan ← [Grab] + PLAN-ROUTE(current ,{[1,1]}, safe) + [Climb]
if plan is empty then

unvisited ← {[x , y] : ASK(KB , L
t′
x,y) = false for all t

′ ≤ t}
plan ← PLAN-ROUTE(current ,unvisited ∩ safe , safe)

if plan is empty and ASK(KB ,HaveArrow t
) = true then

possible wumpus ← {[x , y] : ASK(KB ,¬ Wx,y) = false}
plan ← PLAN-SHOT(current ,possible wumpus, safe)

if plan is empty then // no choice but to take a risk
not unsafe ← {[x , y] : ASK(KB ,¬ OK t

x,y) = false}
plan ← PLAN-ROUTE(current ,unvisited ∩not unsafe, safe)

if plan is empty then
plan ← PLAN-ROUTE(current ,{[1, 1]}, safe) + [Climb]

action ← POP(plan)
TELL(KB , MAKE-ACTION-SENTENCE(action , t ))
t ← t + 1
return action

function PLAN-ROUTE(current ,goals ,allowed ) returns an action sequence
inputs: current , the agent’s current position

goals , a set of squares; try to plan a route to one of them
allowed , a set of squares that can form part of the route

problem ← ROUTE-PROBLEM(current , goals ,allowed )
return A*-GRAPH-SEARCH(problem)

Figure 7.20 A hybrid agent program for the wumpus world. It uses a propositional knowl-
edge base to infer the state of the world, and a combination of problem-solving search and
domain-specific code to decide what actions to take.

by a unique binary number, we would need numbers with log2(2
2n

)= 2n bits to label the
current belief state. That is, exact state estimation may require logical formulas whose size is
exponential in the number of symbols.

One very common and natural scheme for approximate state estimation is to represent
belief states as conjunctions of literals, that is, 1-CNF formulas. To do this, the agent program
simply tries to prove X

t and ¬X
t for each symbol X

t (as well as each atemporal symbol
whose truth value is not yet known), given the belief state at t − 1. The conjunction of



Pros and cons of propositional logic 
Pros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to facts

Propositional logic allows partial/disjunctive/negated information
(unlike most data structures and databases)

Propositional logic is compositional:
meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say “pits cause breezes in adjacent squares”

except by writing one sentence for each square
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First-order logic 

First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

• Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . . .

• Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, owns,
comes between, . . .

• Functions: father of, best friend, third inning of, one more than, end of
. . .
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Logics in general 

Logics in general

Language Ontological Epistemological
Commitment Commitment

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief
Fuzzy logic facts + degree of truth known interval value
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Syntax of FOL: Basic elements 
Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB, . . .
Predicates Brother, >, . . .
Functions Sqrt, LeftLegOf, . . .
Variables x, y, a, b, . . .
Connectives ∧ ∨ ¬ ⇒ ⇔
Equality =
Quantifiers ∀ ∃
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Atomic sentences  

Atomic sentences

Atomic sentence = predicate(term1, . . . , termn)
or term1 = term2

Term = function(term1, . . . , termn)
or constant or variable

E.g., Brother(KingJohn,RichardTheLionheart)
> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))
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Complex sentences  

Complex sentences

Complex sentences are made from atomic sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2

E.g. Sibling(KingJohn,Richard) ⇒ Sibling(Richard,KingJohn)
>(1, 2) ∨ ≤(1, 2)
>(1, 2) ∧ ¬>(1, 2)
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Truth in first-order logic  

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

An atomic sentence predicate(term1, . . . , termn) is true
iff the objects referred to by term1, . . . , termn

are in the relation referred to by predicate
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Models for FOL: Example 
Models for FOL: Example

R J$

left leg left leg

on headbrother

brother

person
person
king

crown

Chapter 8 10

Truth example

Consider the interpretation in which
Richard → Richard the Lionheart
John → the evil King John
Brother → the brotherhood relation

Under this interpretation, Brother(Richard, John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model

Chapter 8 11



Models for FOL: Lots!  

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞
For each k-ary predicate Pk in the vocabulary

For each possible k-ary relation on n objects
For each constant symbol C in the vocabulary

For each choice of referent for C from n objects . . .

Computing entailment by enumerating FOL models is not easy!
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Universal quantification  

Universal quantification

∀ 〈variables〉 〈sentence〉

Everyone at Berkeley is smart:
∀x At(x,Berkeley) ⇒ Smart(x)

∀x P is true in a model m iff P is true with x being
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

(At(KingJohn,Berkeley) ⇒ Smart(KingJohn))
∧ (At(Richard,Berkeley) ⇒ Smart(Richard))
∧ (At(Berkeley,Berkeley) ⇒ Smart(Berkeley))
∧ . . .

Chapter 8 13



A common mistake to avoid  A common mistake to avoid

Typically, ⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective with ∀:

∀x At(x, Berkeley) ∧ Smart(x)

means “Everyone is at Berkeley and everyone is smart”
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Existential quantification  Existential quantification

∃ 〈variables〉 〈sentence〉

Someone at Stanford is smart:
∃x At(x, Stanford) ∧ Smart(x)

∃x P is true in a model m iff P is true with x being
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

(At(KingJohn, Stanford) ∧ Smart(KingJohn))
∨ (At(Richard, Stanford) ∧ Smart(Richard))
∨ (At(Stanford, Stanford) ∧ Smart(Stanford))
∨ . . .
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Another common mistake to avoid  

Another common mistake to avoid

Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main connective with ∃:

∃x At(x, Stanford) ⇒ Smart(x)

is true if there is anyone who is not at Stanford!
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Properties of quantifiers  Properties of quantifiers

∀x ∀ y is the same as ∀ y ∀ x (why??)

∃x ∃ y is the same as ∃ y ∃ x (why??)

∃x ∀ y is not the same as ∀ y ∃x

∃x ∀ y Loves(x, y)
“There is a person who loves everyone in the world”

∀ y ∃ x Loves(x, y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

∀x Likes(x, IceCream) ¬∃x ¬Likes(x, IceCream)

∃x Likes(x,Broccoli) ¬∀ x ¬Likes(x,Broccoli)
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Fun with sentences  
Fun with sentences

Brothers are siblings

∀x, y Brother(x, y) ⇒ Sibling(x, y).

“Sibling” is symmetric

∀x, y Sibling(x, y) ⇔ Sibling(y, x).

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y)).

A first cousin is a child of a parent’s sibling

∀x, y F irstCousin(x, y) ⇔ ∃ p, ps Parent(p, x) ∧ Sibling(ps, p) ∧
Parent(ps, y)
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Equality  
Equality

term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same object

E.g., 1 = 2 and ∀x ×(Sqrt(x), Sqrt(x)) = x are satisfiable
2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent:
∀x, y Sibling(x, y) ⇔ [¬(x = y) ∧ ∃m, f ¬(m = f) ∧

Parent(m,x) ∧ Parent(f, x) ∧ Parent(m, y) ∧ Parent(f, y)]
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Interacting with FOL KBs  Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB, Percept([Smell, Breeze, None], 5))
Ask(KB, ∃ a Action(a, 5))

I.e., does KB entail any particular actions at t = 5?

Answer: Y es, {a/Shoot} ← substitution (binding list)

Given a sentence S and a substitution σ,
Sσ denotes the result of plugging σ into S; e.g.,
S = Smarter(x, y)
σ = {x/Hillary, y/Bill}
Sσ = Smarter(Hillary,Bill)

Ask(KB, S) returns some/all σ such that KB |= Sσ
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Knowledge base for the wumpus world  
Knowledge base for the wumpus world

“Perception”
∀ b, g, t Percept([Smell, b, g], t) ⇒ Smelt(t)
∀ s, b, t Percept([s, b,Glitter], t) ⇒ AtGold(t)

Reflex: ∀ t AtGold(t) ⇒ Action(Grab, t)

Reflex with internal state: do we have the gold already?
∀ t AtGold(t) ∧ ¬Holding(Gold, t) ⇒ Action(Grab, t)

Holding(Gold, t) cannot be observed
⇒ keeping track of change is essential
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Deducing hidden properties  
Deducing hidden properties

Properties of locations:
∀x, t At(Agent, x, t) ∧ Smelt(t) ⇒ Smelly(x)
∀x, t At(Agent, x, t) ∧ Breeze(t) ⇒ Breezy(x)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
∀ y Breezy(y) ⇒ ∃ x Pit(x) ∧ Adjacent(x, y)

Causal rule—infer effect from cause
∀x, y P it(x) ∧ Adjacent(x, y) ⇒ Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
∀ y Breezy(y) ⇔ [∃ x Pit(x) ∧ Adjacent(x, y)]
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Keeping track of change  Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold,Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold,Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in s

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0
Forward

S1
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Describing actions I  
Describing actions I

“Effect” axiom—describe changes due to action
∀ s AtGold(s) ⇒ Holding(Gold,Result(Grab, s))

“Frame” axiom—describe non-changes due to action
∀ s HaveArrow(s) ⇒ HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—
what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, . . .
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Describing actions II  

Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is “about” a predicate (not an action per se):

P true afterwards ⇔ [an action made P true

∨ P true already and no action made P false]

For holding the gold:
∀ a, s Holding(Gold,Result(a, s)) ⇔

[(a = Grab ∧ AtGold(s))
∨ (Holding(Gold, s) ∧ a %= Release)]
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Making plans  
Making plans

Initial condition in KB:
At(Agent, [1, 1], S0)
At(Gold, [1, 2], S0)

Query: Ask(KB, ∃ s Holding(Gold, s))
i.e., in what situation will I be holding the gold?

Answer: {s/Result(Grab, Result(Forward, S0))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S0 and that S0

is the only situation described in the KB

Chapter 8 30



Making plans: A better way  

Making plans: A better way

Represent plans as action sequences [a1, a2, . . . , an]

PlanResult(p, s) is the result of executing p in s

Then the query Ask(KB, ∃ p Holding(Gold, P lanResult(p, S0)))
has the solution {p/[Forward,Grab]}

Definition of PlanResult in terms of Result:
∀ s P lanResult([ ], s) = s
∀ a, p, s P lanResult([a|p], s) = PlanResult(p, Result(a, s))

Planning systems are special-purpose reasoners designed to do this type of
inference more efficiently than a general-purpose reasoner
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Summary

Summary

First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
– conventions for describing actions and change in FOL
– can formulate planning as inference on a situation calculus KB

Chapter 8 32



A brief history of reasoning  

A brief history of reasoning

450b.c. Stoics propositional logic, inference (maybe)
322b.c. Aristotle “syllogisms” (inference rules), quantifiers
1565 Cardano probability theory (propositional logic + uncertainty)
1847 Boole propositional logic (again)
1879 Frege first-order logic
1922 Wittgenstein proof by truth tables
1930 Gödel ∃ complete algorithm for FOL
1930 Herbrand complete algorithm for FOL (reduce to propositional)
1931 Gödel ¬∃ complete algorithm for arithmetic
1960 Davis/Putnam “practical” algorithm for propositional logic
1965 Robinson “practical” algorithm for FOL—resolution
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Universal instantiation (UI)  
Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

∀ v α

Subst({v/g},α)

for any variable v and ground term g

E.g., ∀ x King(x) ∧ Greedy(x) ⇒ Evil(x) yields

King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

...
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Existential instantiation (EI)  
Existential instantiation (EI)

For any sentence α, variable v, and constant symbol k
that does not appear elsewhere in the knowledge base:

∃ v α

Subst({v/k},α)

E.g., ∃ x Crown(x) ∧ OnHead(x, John) yields

Crown(C1) ∧ OnHead(C1, John)

provided C1 is a new constant symbol, called a Skolem constant

Another example: from ∃ x d(xy)/dy = xy we obtain

d(ey)/dy = ey

provided e is a new constant symbol
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Instantiation 

Existential instantiation contd.

UI can be applied several times to add new sentences;
the new KB is logically equivalent to the old

EI can be applied once to replace the existential sentence;
the new KB is not equivalent to the old,
but is satisfiable iff the old KB was satisfiable

Chapter 9 6



Reduction to propositional inference  Reduction to propositional inference

Suppose the KB contains just the following:

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)

Instantiating the universal sentence in all possible ways, we have

King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard, John)

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John),King(Richard) etc.
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Reduction to propositional inference  
Reduction contd.

Claim: a ground sentence∗ is entailed by new KB iff entailed by original KB

Claim: every FOL KB can be propositionalized so as to preserve entailment

Idea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms,
e.g., Father(Father(Father(John)))

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB,
it is entailed by a finite subset of the propositional KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-n terms
see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable
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Problems with propositionalization  
Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.
E.g., from

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
∀ y Greedy(y)
Brother(Richard, John)

it seems obvious that Evil(John), but propositionalization produces lots of
facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are p · nk instantiations

With function symbols, it gets nuch much worse!
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Unification  
Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John, y/John} works

Unify(α,β) = θ if αθ = βθ

p q θ
Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, OJ) {x/OJ, y/John}
Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x, OJ) fail

Standardizing apart eliminates overlap of variables, e.g., Knows(z17, OJ)
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Generalized Modus Ponens (GMP)  
  

Generalized Modus Ponens (GMP)

p1
′, p2

′, . . . , pn
′, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

qθ
where pi

′θ = piθ for all i

p1
′ is King(John) p1 is King(x)

p2
′ is Greedy(y) p2 is Greedy(x)

θ is {x/John, y/John} q is Evil(x)
qθ is Evil(John)

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified

Chapter 9 15

（前件推理）



Soundness of GMP  

Soundness of GMP

Need to show that

p1
′, . . . , pn

′, (p1 ∧ . . . ∧ pn ⇒ q) |= qθ

provided that pi
′θ = piθ for all i

Lemma: For any definite clause p, we have p |= pθ by UI

1. (p1 ∧ . . . ∧ pn ⇒ q) |= (p1 ∧ . . . ∧ pn ⇒ q)θ = (p1θ ∧ . . . ∧ pnθ ⇒ qθ)

2. p1
′, . . . , pn

′ |= p1
′ ∧ . . . ∧ pn

′ |= p1
′θ ∧ . . . ∧ pn

′θ

3. From 1 and 2, qθ follows by ordinary Modus Ponens
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Example knowledge base Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles, and
all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal

Chapter 9 17

Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(Nono, x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West
∀x Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as “hostile”:
Enemy(x, America) ⇒ Hostile(x)

West, who is American . . .
American(West)

The country Nono, an enemy of America . . .
Enemy(Nono, America)
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Forward chaining algorithm  
Forward chaining algorithm

function FOL-FC-Ask(KB,α) returns a substitution or false

repeat until new is empty
new← { }
for each sentence r in KB do

( p1 ∧ . . . ∧ pn ⇒ q)←Standardize-Apart(r)
for each θ such that (p1 ∧ . . . ∧ pn)θ = (p ′

1 ∧ . . . ∧ p ′
n)θ

for some p ′
1, . . . , p

′
n in KB

q ′←Subst(θ, q)
if q ′ is not a renaming of a sentence already in KB or new then do

add q ′ to new

φ←Unify(q ′,α)
if φ is not fail then return φ

add new to KB

return false
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Forward chaining proof  

Forward chaining proof

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)
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Properties of forward chaining  

Properties of forward chaining

Sound and complete for first-order definite clauses
(proof similar to propositional proof)

Datalog = first-order definite clauses + no functions (e.g., crime KB)
FC terminates for Datalog in poly iterations: at most p · nk literals

May not terminate in general if α is not entailed

This is unavoidable: entailment with definite clauses is semidecidable
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Efficiency of forward chaining  

Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k
if a premise wasn’t added on iteration k − 1

⇒ match each rule whose premise contains a newly added literal

Matching itself can be expensive

Database indexing allows O(1) retrieval of known facts
e.g., query Missile(x) retrieves Missile(M1)

Matching conjunctive premises against known facts is NP-hard

Forward chaining is widely used in deductive databases
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Hard matching example  

Hard matching example

Victoria

WA

NT

SA

Q

NSW

V

T

Diff(wa, nt) ∧ Diff(wa, sa) ∧

Diff(nt, q)Diff(nt, sa) ∧

Diff(q, nsw) ∧ Diff(q, sa) ∧

Diff(nsw, v) ∧ Diff(nsw, sa) ∧

Diff(v, sa) ⇒ Colorable()

Diff(Red, Blue) Diff(Red, Green)

Diff(Green,Red) Diff(Green,Blue)

Diff(Blue,Red) Diff(Blue,Green)

Colorable() is inferred iff the CSP has a solution
CSPs include 3SAT as a special case, hence matching is NP-hard
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Backward chaining algorithm  
Backward chaining algorithm

function FOL-BC-Ask(KB, goals,θ) returns a set of substitutions
inputs: KB, a knowledge base

goals, a list of conjuncts forming a query (θ already applied)
θ, the current substitution, initially the empty substitution { }

local variables: answers, a set of substitutions, initially empty

if goals is empty then return {θ}
q ′←Subst(θ,First(goals))
for each sentence r in KB

where Standardize-Apart(r) = ( p1 ∧ . . . ∧ pn ⇒ q)
and θ′←Unify(q, q ′) succeeds

new goals← [ p1, . . . , pn|Rest(goals)]
answers←FOL-BC-Ask(KB,new goals,Compose(θ′,θ)) ∪ answers

return answers
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Backward chaining example  
Backward chaining example

Criminal(West)

Weapon(y)American(x) Sells(x,y,z) Hostile(z)

{x/West}
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Backward chaining example  
Backward chaining example

Hostile(Nono)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{ }
Sells(x,y,z) Hostile(z)

{x/West}
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Backward chaining example  
Backward chaining example

Hostile(Nono)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{ }
Sells(x,y,z) Hostile(z)

 y/M1{ }

{x/West, y/M1}
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Backward chaining example  
Backward chaining example

Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

 y/M1{ }

{ } z/Nono{ }
Hostile(z)

{x/West, y/M1, z/Nono}

Chapter 9 37



Backward chaining example  
Backward chaining example

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

 y/M1{ } { }{ }{ }

{ } z/Nono{ }

{x/West, y/M1, z/Nono}
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Properties of backward chaining  

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops
⇒ fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)
⇒ fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming
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Logic programming  
Logic programming

Sound bite: computation as inference on logical KBs

Logic programming Ordinary programming
1. Identify problem Identify problem
2. Assemble information Assemble information
3. Tea break Figure out solution
4. Encode information in KB Program solution
5. Encode problem instance as facts Encode problem instance as data
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

Should be easier to debug Capital(NewY ork, US) than x := x + 2 !
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Prolog systems  
Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques ⇒ approaching a billion LIPS

Program = set of clauses = head :- literal1, . . . literaln.

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption (“negation as failure”)

e.g., given alive(X) :- not dead(X).
alive(joe) succeeds if dead(joe) fails
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Prolog examples

Depth-first search from a start state X:

dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).

No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

append([],Y,Y).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) ?
answers: A=[] B=[1,2]

A=[1] B=[2]
A=[1,2] B=[]
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Prolog example

Let’s try

male(di). 
male(jianbo). 
female(xin). 
female(yuan). 
female(yuqing). 
father(jianbo,di). 
father(di,yuqing). 
mother(xin,di). 
mother(yuan,yuqing). 
grandfather(X,Y):-father(X,Z),father(Z,Y). 
grandmother(X,Y):-mother(X,Z),father(Z,Y). 
daughter(X,Y):-father(X,Y),female(Y).

member(1,[1,2,3,4,5])

query: grandfather(X,yuqing)?



Prolog example



Resolution: brief summary  
Resolution: brief summary

Full first-order version:

!1 ∨ · · · ∨ !k, m1 ∨ · · · ∨ mn

(!1 ∨ · · · ∨ !i−1 ∨ !i+1 ∨ · · · ∨ !k ∨ m1 ∨ · · · ∨ mj−1 ∨ mj+1 ∨ · · · ∨ mn)θ

where Unify(!i,¬mj) = θ.

For example,

¬Rich(x) ∨ Unhappy(x)
Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}

Apply resolution steps to CNF (KB ∧ ¬α); complete for FOL
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Conversion to CNF

Everyone who loves all animals is loved by someone:
∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

1. Eliminate biconditionals and implications

∀x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)]

2. Move ¬ inwards: ¬∀x, p ≡ ∃ x ¬p, ¬∃x, p ≡ ∀x ¬p:

∀x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)]
∀x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]
∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]
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Conversion to CNF  
Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

∀x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

5. Drop universal quantifiers:

[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

6. Distribute ∧ over ∨:

[Animal(F (x)) ∨ Loves(G(x), x)] ∧ [¬Loves(x, F (x)) ∨ Loves(G(x), x)]
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Resolution proof: definite clauses

American(West)

Missile(M1)

Missile(M1)

Owns(Nono,M1)

Enemy(Nono,America) Enemy(Nono,America)

Criminal(x)Hostile(z)LSells(x,y,z)LWeapon(y)LAmerican(x)L > > > >

Weapon(x)Missile(x)L >

Sells(West,x,Nono)Missile(x)L Owns(Nono,x)L> >

Hostile(x)Enemy(x,America)L >

Sells(West,y,z)LWeapon(y)LAmerican(West)L > > Hostile(z)L>

Sells(West,y,z)LWeapon(y)L > Hostile(z)L>

Sells(West,y,z)L> Hostile(z)L>L Missile(y)

Hostile(z)L>L Sells(West,M1,z)
> > L Hostile(Nono)L Owns(Nono,M1)L Missile(M1)

> L Hostile(Nono)L Owns(Nono,M1)

L Hostile(Nono)

Criminal(West)L
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Previously...

Propositional Logic

First Order Logic (FOL)

PL-Forward chaining 
PL-Backward chaining 
PL-Resolution

Instantiation 
FOL-Forward chaining 
FOL-Backward chaining 
FOL-Resolution



x1, x2, . . . , xn

(x1 _ x2 _ x5) (¬x2 _ x3 _ ¬x7)

(x1 _ x2 _ x5) ^ (¬x2 _ x3 _ ¬x7) ^ . . .

SAT problems

Propositional logic, CNF

literals: 

clauses: 

problem: find an assignment to literals so that the 
conjunction of the clauses is true, or prove unsatisfiable

...

2SAT: every clause has at most 2 literals 
P-solvable 

3SAT: every clause has at most 3 literals 
NP-hard



SAT solvers

SAT problems have many important applications

many SAT solvers are ready for use

DPLL 

WalkSAT



DPLL
Section 7.6. Effective Propositional Model Checking 261

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s , a sentence in propositional logic

clauses ← the set of clauses in the CNF representation of s
symbols ← a list of the proposition symbols in s
return DPLL(clauses , symbols ,{ })

function DPLL(clauses , symbols ,model ) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P , value ← FIND-PURE-SYMBOL(symbols , clauses ,model )
if P is non-null then return DPLL(clauses , symbols – P ,model ∪ {P=value})
P , value ← FIND-UNIT-CLAUSE(clauses ,model )
if P is non-null then return DPLL(clauses , symbols – P ,model ∪ {P=value})
P ← FIRST(symbols); rest ← REST(symbols)
return DPLL(clauses , rest ,model ∪ {P=true}) or

DPLL(clauses , rest ,model ∪ {P=false}))

Figure 7.17 The DPLL algorithm for checking satisfiability of a sentence in propositional
logic. The ideas behind FIND-PURE-SYMBOL and FIND-UNIT-CLAUSE are described in
the text; each returns a symbol (or null) and the truth value to assign to that symbol. Like
TT-ENTAILS?, DPLL operates over partial models.

any attempt to prove (by refutation) a literal that is already in the knowledge base will
succeed immediately (Exercise 7.23). Notice also that assigning one unit clause can
create another unit clause—for example, when C is set to false , (C ∨ A) becomes a
unit clause, causing true to be assigned to A. This “cascade” of forced assignments
is called unit propagation. It resembles the process of forward chaining with definiteUNIT PROPAGATION

clauses, and indeed, if the CNF expression contains only definite clauses then DPLL
essentially replicates forward chaining. (See Exercise 7.24.)

The DPLL algorithm is shown in Figure 7.17, which gives the the essential skeleton of the
search process.

What Figure 7.17 does not show are the tricks that enable SAT solvers to scale up to
large problems. It is interesting that most of these tricks are in fact rather general, and we
have seen them before in other guises:

1. Component analysis (as seen with Tasmania in CSPs): As DPLL assigns truth values
to variables, the set of clauses may become separated into disjoint subsets, called com-
ponents, that share no unassigned variables. Given an efficient way to detect when this
occurs, a solver can gain considerable speed by working on each component separately.

2. Variable and value ordering (as seen in Section 6.3.1 for CSPs): Our simple imple-
mentation of DPLL uses an arbitrary variable ordering and always tries the value true
before false. The degree heuristic (see page 216) suggests choosing the variable that
appears most frequently over all remaining clauses.

Davis–Putnam–Logemann–Loveland algorithm

a deep-first search with heuristics



(A _ ¬B) ^ (¬B _ ¬C) ^ (C _A)

(A _ ¬B) with A = true

DPLL heuristics

Pure symbol heuristic: A pure symbol is a symbol that always appears 
with the same “sign” in all clauses.

Unit clause heuristic: A unit clause is a clause with just one literal.

A and B is pure, but not C

is a unit clause



Other tricks

Component analysis : find disjoint subsets 

Variable and value ordering : assign most frequent 
variable at first 

Intelligent backtracking : remember conflicts 

Random restart 

Clever indexing  



WalkSAT

Section 7.6. Effective Propositional Model Checking 263

function WALKSAT(clauses ,p,max flips) returns a satisfying model or failure
inputs: clauses , a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically around 0.5
max flips , number of flips allowed before giving up

model ← a random assignment of true/false to the symbols in clauses
for i = 1 to max flips do

if model satisfies clauses then return model
clause ← a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Figure 7.18 The WALKSAT algorithm for checking satisfiability by randomly flipping
the values of variables. Many versions of the algorithm exist.

upon the solution. Alas, if max flips is infinity and the sentence is unsatisfiable, then the
algorithm never terminates!

For this reason, WALKSAT is most useful when we expect a solution to exist—for ex-
ample, the problems discussed in Chapters 3 and 6 usually have solutions. On the other hand,
WALKSAT cannot always detect unsatisfiability, which is required for deciding entailment.
For example, an agent cannot reliably use WALKSAT to prove that a square is safe in the
wumpus world. Instead, it can say, “I thought about it for an hour and couldn’t come up with
a possible world in which the square isn’t safe.” This may be a good empirical indicator that
the square is safe, but it’s certainly not a proof.

7.6.3 The landscape of random SAT problems

Some SAT problems are harder than others. Easy problems can be solved by any old algo-
rithm, but because we know that SAT is NP-complete, at least some problem instances must
require exponential run time. In Chapter 6, we saw some surprising discoveries about certain
kinds of problems. For example, the n-queens problem—thought to be quite tricky for back-
tracking search algorithms—turned out to be trivially easy for local search methods, such as
min-conflicts. This is because solutions are very densely distributed in the space of assign-
ments, and any initial assignment is guaranteed to have a solution nearby. Thus, n-queens is
easy because it is underconstrained.UNDERCONSTRAINED

When we look at satisfiability problems in conjunctive normal form, an undercon-
strained problem is one with relatively few clauses constraining the variables. For example,
here is a randomly generated 3-CNF sentence with five symbols and five clauses:

(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨ ¬B ∨ E)

∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C) .

Sixteen of the 32 possible assignments are models of this sentence, so, on average, it would
take just two random guesses to find a model. This is an easy satisfiability problem, as are

a local search hill-climbing or others.

failure ≠ unsatisfiable
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most such underconstrained problems. On the other hand, an overconstrained problem has
many clauses relative to the number of variables and is likely to have no solutions.

To go beyond these basic intuitions, we must define exactly how random sentences
are generated. The notation CNFk(m,n) denotes a k-CNF sentence with m clauses and n

symbols, where the clauses are chosen uniformly, independently, and without replacement
from among all clauses with k different literals, which are positive or negative at random. (A
symbol may not appear twice in a clause, nor may a clause appear twice in a sentence.)

Given a source of random sentences, we can measure the probability of satisfiability.
Figure 7.19(a) plots the probability for CNF3(m, 50), that is, sentences with 50 variables
and 3 literals per clause, as a function of the clause/symbol ratio, m/n. As we expect, for
small m/n the probability of satisfiability is close to 1, and at large m/n the probability
is close to 0. The probability drops fairly sharply around m/n = 4.3. Empirically, we find
that the “cliff” stays in roughly the same place (for k = 3) and gets sharper and sharper as n

increases. Theoretically, the satisfiability threshold conjecture says that for every k ≥ 3,
SATISFIABILITY

THRESHOLD

CONJECTURE

there is a threshold ratio rk such that, as n goes to infinity, the probability that CNFk(n, rn)

is satisfiable becomes 1 for all values of r below the threshold, and 0 for all values above.
The conjecture remains unproven.
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Figure 7.19 (a) Graph showing the probability that a random 3-CNF sentence with n =50

symbols is satisfiable, as a function of the clause/symbol ratio m/n. (b) Graph of the median
run time (measured in number of recursive calls to DPLL, a good proxy) on random 3-CNF
sentences. The most difficult problems have a clause/symbol ratio of about 4.3.

Now that we have a good idea where the satisfiable and unsatisfiable problems are, the
next question is, where are the hard problems? It turns out that they are also often at the
threshold value. Figure 7.19(b) shows that 50-symbol problems at the threshold value of 4.3
are about 20 times more difficult to solve than those at a ratio of 3.3. The underconstrained
problems are easiest to solve (because it is so easy to guess a solution); the overconstrained
problems are not as easy as the underconstrained, but still are much easier than the ones right
at the threshold.

Not all SAT instances are hard 
under-constraint: a few clauses => easy to enumerate 
over-constraint: too many clauses => unsatisfiable
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In response to this, planning researchers have settled on a factored representation—
one in which a state of the world is represented by a collection of variables. We use a language
called PDDL, the Planning Domain Definition Language, that allows us to express all 4Tn

2
PDDL

actions with one action schema. There have been several versions of PDDL; we select a
simple version and alter its syntax to be consistent with the rest of the book.1 We now show
how PDDL describes the four things we need to define a search problem: the initial state, the
actions that are available in a state, the result of applying an action, and the goal test.

Each state is represented as a conjunction of fluents that are ground, functionless atoms.
For example, Poor ∧ Unknown might represent the state of a hapless agent, and a state
in a package delivery problem might be At(Truck1,Melbourne) ∧ At(Truck2,Sydney).
Database semantics is used: the closed-world assumption means that any fluents that are not
mentioned are false, and the unique names assumption means that Truck1 and Truck2 are
distinct. The following fluents are not allowed in a state: At(x, y) (because it is non-ground),
¬Poor (because it is a negation), and At(Father (Fred ),Sydney) (because it uses a function
symbol). The representation of states is carefully designed so that a state can be treated
either as a conjunction of fluents, which can be manipulated by logical inference, or as a set
of fluents, which can be manipulated with set operations. The set semantics is sometimesSET SEMANTICS

easier to deal with.
Actions are described by a set of action schemas that implicitly define the ACTIONS(s)

and RESULT(s, a) functions needed to do a problem-solving search. We saw in Chapter 7 that
any system for action description needs to solve the frame problem—to say what changes and
what stays the same as the result of the action. Classical planning concentrates on problems
where most actions leave most things unchanged. Think of a world consisting of a bunch of
objects on a flat surface. The action of nudging an object causes that object to change its lo-
cation by a vector ∆. A concise description of the action should mention only ∆; it shouldn’t
have to mention all the objects that stay in place. PDDL does that by specifying the result of
an action in terms of what changes; everything that stays the same is left unmentioned.

A set of ground (variable-free) actions can be represented by a single action schema.ACTION SCHEMA

The schema is a lifted representation—it lifts the level of reasoning from propositional logic
to a restricted subset of first-order logic. For example, here is an action schema for flying a
plane from one location to another:

Action(Fly(p, from , to),

PRECOND:At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

EFFECT:¬At(p, from) ∧ At(p, to))

The schema consists of the action name, a list of all the variables used in the schema, a
precondition and an effect. Although we haven’t said yet how the action schema convertsPRECONDITION

EFFECT into logical sentences, think of the variables as being universally quantified. We are free to
choose whatever values we want to instantiate the variables. For example, here is one ground

1 PDDL was derived from the original STRIPS planning language(Fikes and Nilsson, 1971). which is slightly
more restricted than PDDL: STRIPS preconditions and goals cannot contain negative literals.

There are many languages description the world 
Planning Domain Definition Language 
1.2, 2.1, 2.2, 3.0, 3.1 

state s 
Action(s) 
Result(s,a)
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action that results from substituting values for all the variables:

Action(Fly(P1,SFO , JFK ),

PRECOND:At(P1,SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK )

EFFECT:¬At(P1,SFO) ∧At(P1, JFK ))

The precondition and effect of an action are each conjunctions of literals (positive or negated
atomic sentences). The precondition defines the states in which the action can be executed,
and the effect defines the result of executing the action. An action a can be executed in state
s if s entails the precondition of a. Entailment can also be expressed with the set semantics:
s |= q iff every positive literal in q is in s and every negated literal in q is not. In formal
notation we say

(a ∈ ACTIONS(s)) ⇔ s |= PRECOND(a) ,

where any variables in a are universally quantified. For example,

∀ p, from, to (Fly(p, from , to) ∈ ACTIONS(s)) ⇔

s |= (At(p, from) ∧ Plane(p) ∧Airport(from) ∧ Airport(to))

We say that action a is applicable in state s if the preconditions are satisfied by s. WhenAPPLICABLE

an action schema a contains variables, it may have multiple applicable instantiations. For
example, with the initial state defined in Figure 10.1, the Fly action can be instantiated as
Fly(P1,SFO , JFK ) or as Fly(P2, JFK ,SFO), both of which are applicable in the initial
state. If an action a has v variables, then, in a domain with k unique names of objects, it takes
O(vk) time in the worst case to find the applicable ground actions.

Sometimes we want to propositionalize a PDDL problem—replace each action schemaPROPOSITIONALIZE

with a set of ground actions and then use a propositional solver such as SATPLAN to find a
solution. However, this is impractical when v and k are large.

The result of executing action a in state s is defined as a state s
′ which is represented

by the set of fluents formed by starting with s, removing the fluents that appear as negative
literals in the action’s effects (what we call the delete list or DEL(a)), and adding the fluentsDELETE LIST

that are positive literals in the action’s effects (what we call the add list or ADD(a)):ADD LIST

RESULT(s, a) = (s − DEL(a))∪ ADD(a) . (10.1)

For example, with the action Fly(P1,SFO , JFK ), we would remove At(P1,SFO) and add
At(P1, JFK ). It is a requirement of action schemas that any variable in the effect must also
appear in the precondition. That way, when the precondition is matched against the state s,
all the variables will be bound, and RESULT(s, a) will therefore have only ground atoms. In
other words, ground states are closed under the RESULT operation.

Also note that the fluents do not explicitly refer to time, as they did in Chapter 7. There
we needed superscripts for time, and successor-state axioms of the form

F
t+1 ⇔ ActionCausesF t ∨ (F

t ∧ ¬ActionCausesNotF t
) .

In PDDL the times and states are implicit in the action schemas: the precondition always
refers to time t and the effect to time t + 1.

A set of action schemas serves as a definition of a planning domain. A specific problem
within the domain is defined with the addition of an initial state and a goal. The initial



Precondition

368 Chapter 10. Classical Planning
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For example, with the action Fly(P1,SFO , JFK ), we would remove At(P1,SFO) and add
At(P1, JFK ). It is a requirement of action schemas that any variable in the effect must also
appear in the precondition. That way, when the precondition is matched against the state s,
all the variables will be bound, and RESULT(s, a) will therefore have only ground atoms. In
other words, ground states are closed under the RESULT operation.

Also note that the fluents do not explicitly refer to time, as they did in Chapter 7. There
we needed superscripts for time, and successor-state axioms of the form

F
t+1 ⇔ ActionCausesF t ∨ (F

t ∧ ¬ActionCausesNotF t
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For example, with the action Fly(P1,SFO , JFK ), we would remove At(P1,SFO) and add
At(P1, JFK ). It is a requirement of action schemas that any variable in the effect must also
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Init(On(A,Table) ∧ On(B,Table) ∧ On(C, A)

∧ Block (A) ∧ Block (B) ∧ Block (C) ∧ Clear (B) ∧ Clear (C))

Goal (On(A, B) ∧ On(B, C))

Action(Move(b, x, y),

PRECOND: On(b, x) ∧ Clear (b) ∧ Clear (y) ∧ Block (b) ∧ Block (y) ∧
(b "=x) ∧ (b "=y) ∧ (x"=y),

EFFECT: On(b, y) ∧ Clear (x) ∧ ¬On(b, x) ∧ ¬Clear (y))

Action(MoveToTable(b, x),

PRECOND: On(b, x) ∧ Clear (b) ∧ Block (b) ∧ (b "=x),
EFFECT: On(b,Table) ∧ Clear (x) ∧ ¬On(b, x))

Figure 10.3 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [MoveToTable(C, A),Move(B,Table , C),Move(A,Table , B)].

Start State Goal State

B A

C

A

B

C

Figure 10.4 Diagram of the blocks-world problem in Figure 10.3.

of what other blocks. For example, a goal might be to get block A on B and block B on C

(see Figure 10.4).
We use On(b, x) to indicate that block b is on x, where x is either another block or the

table. The action for moving block b from the top of x to the top of y will be Move(b, x, y).
Now, one of the preconditions on moving b is that no other block be on it. In first-order logic,
this would be ¬∃x On(x, b) or, alternatively, ∀x ¬On(x, b). Basic PDDL does not allow
quantifiers, so instead we introduce a predicate Clear(x) that is true when nothing is on x.
(The complete problem description is in Figure 10.3.)

The action Move moves a block b from x to y if both b and y are clear. After the move
is made, b is still clear but y is not. A first attempt at the Move schema is

Action(Move(b, x, y),

PRECOND:On(b, x) ∧ Clear(b) ∧ Clear(y),

EFFECT:On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y)) .

Unfortunately, this does not maintain Clear properly when x or y is the table. When x is the
Table , this action has the effect Clear(Table), but the table should not become clear; and
when y =Table , it has the precondition Clear(Table), but the table does not have to be clear
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Anything

AbstractObjects

Sets Numbers RepresentationalObjects Interval Places ProcessesPhysicalObjects

Humans

Categories Sentences Measurements Moments Things Stuff

Times Weights Animals Agents Solid Liquid Gas

GeneralizedEvents

Figure 12.1 The upper ontology of the world, showing the topics to be covered later in
the chapter. Each link indicates that the lower concept is a specialization of the upper one.
Specializations are not necessarily disjoint; a human is both an animal and an agent, for
example. We will see in Section 12.3.3 why physical objects come under generalized events.

use these to define more specific concepts like SpreadsheetWindow. The general framework
of concepts is called an upper ontology because of the convention of drawing graphs withUPPER ONTOLOGY

the general concepts at the top and the more specific concepts below them, as in Figure 12.1.
Before considering the ontology further, we should state one important caveat. We

have elected to use first-order logic to discuss the content and organization of knowledge,
although certain aspects of the real world are hard to capture in FOL. The principal difficulty
is that most generalizations have exceptions or hold only to a degree. For example, although
“tomatoes are red” is a useful rule, some tomatoes are green, yellow, or orange. Similar
exceptions can be found to almost all the rules in this chapter. The ability to handle exceptions
and uncertainty is extremely important, but is orthogonal to the task of understanding the
general ontology. For this reason, we delay the discussion of exceptions until Section 12.5 of
this chapter, and the more general topic of reasoning with uncertainty until Chapter 13.

Of what use is an upper ontology? Consider the ontology for circuits in Section 8.4.2.
It makes many simplifying assumptions: time is omitted completely; signals are fixed and do
not propagate; the structure of the circuit remains constant. A more general ontology would
consider signals at particular times, and would include the wire lengths and propagation de-
lays. This would allow us to simulate the timing properties of the circuit, and indeed such
simulations are often carried out by circuit designers. We could also introduce more inter-
esting classes of gates, for example, by describing the technology (TTL, CMOS, and so on)
as well as the input–output specification. If we wanted to discuss reliability or diagnosis, we
would include the possibility that the structure of the circuit or the properties of the gates
might change spontaneously. To account for stray capacitances, we would need to represent
where the wires are on the board.
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Mammals

JohnMary

Persons

Male

Persons

Female

Persons

1

2

SubsetOf

SubsetOfSubsetOf

MemberOf MemberOf

SisterOf Legs

LegsHasMother

Figure 12.5 A semantic network with four objects (John, Mary, 1, and 2) and four cate-
gories. Relations are denoted by labeled links.

MemberOf

FlyEvents

Fly17

Shankar NewYork NewDelhi Yesterday

Agent

Origin Destination

During

Figure 12.6 A fragment of a semantic network showing the representation of the logical
assertion Fly(Shankar ,NewYork ,NewDelhi ,Yesterday).

mechanism, compared with logical theorem proving, has been one of the main attractions of
semantic networks.

Inheritance becomes complicated when an object can belong to more than one category
or when a category can be a subset of more than one other category; this is called multiple in-
heritance. In such cases, the inheritance algorithm might find two or more conflicting valuesMULTIPLE

INHERITANCE

answering the query. For this reason, multiple inheritance is banned in some object-oriented
programming (OOP) languages, such as Java, that use inheritance in a class hierarchy. It is
usually allowed in semantic networks, but we defer discussion of that until Section 12.6.

The reader might have noticed an obvious drawback of semantic network notation, com-
pared to first-order logic: the fact that links between bubbles represent only binary relations.
For example, the sentence Fly(Shankar ,NewYork ,NewDelhi ,Yesterday) cannot be as-
serted directly in a semantic network. Nonetheless, we can obtain the effect of n-ary asser-
tions by reifying the proposition itself as an event belonging to an appropriate event category.
Figure 12.6 shows the semantic network structure for this particular event. Notice that the
restriction to binary relations forces the creation of a rich ontology of reified concepts.

Reification of propositions makes it possible to represent every ground, function-free
atomic sentence of first-order logic in the semantic network notation. Certain kinds of univer-
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Semantic web

An RDF graph

•handling complex and heterogeneous information resources 

•retrieving documents based on a set of relationships that are external to these documents  

•providing multiple search options for richer investigation 

•targeting and sifting results more efficiently 

•using authoritative information resources more effectively as guides to searching
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