Péﬂ ﬁ {;{ X % Artificial Intelligence, cs, Nanjing University
K e Spring, 2018, Yang Yu

Lecture 8: Knowledge 2

Previously...

function HYBRID-WUMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze,glitter,bump,scream]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics”
t, a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
TELL the KB the temporal “physics” sentences for time ¢
safe —{[z,y] : ASK(KB,OK) = true}
if ASK(KB, Glitter') = true then
plan — [Grab] + PLAN-ROUTE(current,{[1,11}, safe) + [Climb]
if plan is empty then
unvisited «— {[z,y] : ASK(KB, Lgyy) = false forall ¢/ < t}
plan < PLAN-ROUTE(current, unvisited N safe, safe)
if plan is empty and ASK (KB, HaveArrow') = true then
possible_wumpus — {[z,y] : ASK(KB,—~ W, ,) = false}
plan < PLAN-SHOT(current, possible_wumpus, safe)
if plan is empty then // no choice but to take a risk
not_unsafe «— {[z,y] : ASK(KB,— OK;y) = false}
plan < PLAN-ROUTE(current, unvisited N not_unsafe, safe)
if plan is empty then
plan < PLAN-ROUTE(current, {[1, 1]}, safe) + [Climb]
action < POP(plan)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t—1t+1
return action

function PLAN-ROUTE(current,goals,allowed) returns an action sequence
inputs: current, the agent’s current position
goals, a set of squares; try to plan a route to one of them
allowed, a set of squares that can form part of the route

problem < ROUTE-PROBLEM(current, goals,allowed)
return A*-GRAPH-SEARCH(problem)

Pros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to facts

Propositional logic allows partial /disjunctive /negated information
(unlike most data structures and databases)

Propositional logic is compositional:
meaning of B A P, is derived from meaning of B and of P 5

Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power

(unlike natural language)

E.g., cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square

First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

e Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . ..

e Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, owns,
comes between, ...

e Functions: father of, best friend, third inning of, one more than, end of

Logics in general

Language Ontological Epistemological
Commitment Commitment
Propositional logic | facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times | true/false/unknown
Probability theory | facts degree of belief
Fuzzy logic facts + degree of truth known interval value

Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB, ...

Predicates Brother, >, ...
Functions Sqrt, LeftLeqOf, ...
Variables z, vy, a, 0, ...
Connectives A V = = &
Equality =

Quantifiers VYV 4

Atomic sentences

predicate(termy, ... termy,)
or termy = terms

Atomic sentence

Term = function(termq, ..., term,)
or constant or variable

E.g., Brother(KingJohn, RichardThelLionheart)
> (Length(LeftLegO f(Richard)), Length(Le ft LegO f(KingJohn)))

Complex sentences

Complex sentences are made from atomic sentences using connectives
_IS, Sl /N\ SQ, Sl V SQ, Sl — SQ, Sl — SQ

E.g. Sibling(KingJohn, Richard) = Sibling(Richard, KingJohn)
~(1,2) v <(L2)
>(1,2) A =>(1,2)

Truth in first-order logic

Sentences are true with respect to a model and an interpretation
Model contains > 1 objects (domain elements) and relations among them

Interpretation specifies referents for
constant symbols — objects
predicate symbols — relations
function symbols — functional relations

An atomic sentence predicate(termy, ..., term,,) is true
iIff the objects referred to by termq, ..., term,
are in the relation referred to by predicate

Models for FOL: Example

person
king

eft leg

eft leg

Consider the interpretation in which
Richard — Richard the Lionheart
John — the evil King John
Brother — the brotherhood relation

Under this interpretation, Brother(Richard, John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models
We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to oo
For each k-ary predicate P in the vocabulary
For each possible k-ary relation on n objects
For each constant symbol C' in the vocabulary
For each choice of referent for C' from n objects . ..

Computing entailment by enumerating FOL models is not easy!

Universal quantification

V (variables) (sentence)

Everyone at Berkeley is smart:
Va At(x, Berkeley) = Smart(x)

Va P s true in a model m iff P is true with x being
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

(At(KingJohn, Berkeley) = Smart(KingJohn))
A (At(Richard, Berkeley) = Smart(Richard))
N (At(Berkeley, Berkeley) = Smart(Berkeley))
A

A common mistake to avoid

Typically, =- is the main connective with V
Common mistake: using /\ as the main connective with V:

Va At(x, Berkeley) N Smart(x)

means “Everyone is at Berkeley and everyone is smart”

Existential quantification

3 (variables) (sentence)

Someone at Stanford is smart:

dx At(x, Stanford) N Smart(x)

Jx P is true in a model m iff P is true with = being
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

(At(KingJohn, Stan ford) N Smart(KingJohn))
V (At(Richard, Stanford) A Smart(Richard))
V (At(Stanford, Stanford) N Smart(Stanford))
V

Another common mistake to avoid

Typically, A is the main connective with -
Common mistake: using = as the main connective with 3

dx At(x, Stanford) = Smart(x)

is true if there is anyone who is not at Stanford!

Properties of quantifiers

Vo Vy isthesameasVy Va (why??)
dx Jy isthesameas Jy dx (why??)
Jdxr Vy isnot the sameasVy dx

dx Vy Loves(x,y)
“There is a person who loves everyone in the world"

Vy dx Loves(x,y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

Va Likes(x,IceCream) —dx - Likes(x, [ceCream)

dx Likes(x, Broccoli) -V —Likes(x, Broccoli)

Fun with sentences

Brothers are siblings

Vax,y Brother(z,y) = Sibling(x,y).

“Sibling” is symmetric

Va,y Sibling(z,y) < Sibling(y,x).

One’s mother is one’s female parent

Va,y Mother(xz,y) < (Female(x) A Parent(x,y)).
A first cousin is a child of a parent’s sibling

Va,y FirstCousin(x,y) < dp,ps Parent(p,x) A Sibling(ps,p) A
Parent(ps,y)

Equality

termy = terms is true under a given interpretation
if and only if term; and terms refer to the same object

Eg, 1=2and Vo Xx(Sqrt(x),Sqrt(x)) = x are satisfiable
2 =2 is valid

E.g., definition of (full) Sibling in terms of Parent:
Va,y Sibling(z,y) < [=(x=y)AIm, [—(m=[)A
Parent(m,x) A Parent(f,x) A Parent(m,y) A Parent(f,y)]

Interacting with FOL KBS

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at ¢t = 5:

Tell(KB, Percept(|Smell, Breeze, Nonel, 5))
Ask(KB,da Action(a,b))

|.e., does K'B entail any particular actions at t = 57
Answer: Yes, {a/Shoot} «— substitution (binding list)

Given a sentence S and a substitution o,

So denotes the result of plugging o into S; e.g.,
S = Smarter(x,y)

o =A{x/Hillary,y/Bill}

So = Smarter(Hillary, Bill)

Ask(K B, S) returns some/all o such that KB = So

Knowledge base for the wumpus world

“Perception”
Vb,g,t Percept(|Smell,b, g|,t) = Smelt(t)
Vs,b,t Percept(|s,b,Glitter|,t) = AtGold(t)

Reflex: Vt AtGold(t) = Action(Grab,t)

Reflex with internal state: do we have the gold already?

Vit AtGold(t) N ~Holding(Gold,t) = Action(Grab,t)

Holding(Gold,t) cannot be observed
= keeping track of change is essential

Deducing hidden properties

Properties of locations:
Va,t At(Agent,z,t) A Smelt(t) = Smelly(z)
Va,t At(Agent,x,t) A\ Breeze(t) = Breezy(x)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
Vy Breezy(y) = dx Pit(x) A Adjacent(x,y)

Causal rule—infer effect from cause
Va,y Pit(x) A Adjacent(x,y) = Breezy(y)

Neither of these is complete—e.g., the causal rule doesn't say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
Vy Breezyly) < [z Pit(x) N Adjacent(x,y)]

Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function

Result(a, s) is the situation that results from doing a in s
~

SN
~
] P
Iy
T~ % Q
~ r
Y-
\\ SN
ﬁ\ S
\\E\
\\S Forward

0

Describing actions I

“Effect” axiom—describe changes due to action

Vs AtGold(s) = Holding(Gold, Result(Grab, s))

“Frame” axiom—describe non-changes due to action
Vs HaveArrow(s) = HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—
what if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, . ..

Describing actions II

Successor-state axioms solve the representational frame problem
Each axiom is “about” a predicate (not an action per se):

P true afterwards < [an action made P true
VP true already and no action made P false|

For holding the gold:
Va,s Holding(Gold, Result(a,s)) <
(a=Grab N\ AtGold(s))
V (Holding(Gold, s) A a # Release)

Making plans

Initial condition in KB:
At(Agentv [17 1}7 SO)
At(GOld, [1, 2], S())

Query: Ask(KB,ds Holding(Gold, s))
I.e., in what situation will | be holding the gold?

Answer: {s/Result(Grab, Result(Forward, Sy))}
l.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S and that 5
is the only situation described in the KB

Making plans: A better way

Represent plans as action sequences |a1, as, . . ., a,)

PlanResult(p, s) is the result of executing p in s

Then the query Ask(KB,dp Holding(Gold, PlanResult(p, Sy)))
has the solution {p/|Forward, Grab|}

Definition of PlanResult in terms of Result:
Vs PlanResult(]],s) = s
Va,p,s PlanResult(|a|p|,s) = PlanResult(p, Result(a, s))

Planning systems are special-purpose reasoners designed to do this type of
inference more efficiently than a general-purpose reasoner

Summary

First-order logic:
— objects and relations are semantic primitives
— syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
— conventions for describing actions and change in FOL
— can formulate planning as inference on a situation calculus KB

A brief history of reasoning

450B.C.
322B.C.
1565
1847
1879
1922
1930
1930
1931
1960
1965

Stoics
Aristotle
Cardano
Boole

Frege
Wittgenstein
Godel
Herbrand
Godel

propositional logic, inference (maybe)

“syllogisms” (inference rules), quantifiers

probability theory (propositional logic + uncertainty)
propositional logic (again)

first-order logic

proof by truth tables

3 complete algorithm for FOL

complete algorithm for FOL (reduce to propositional)
—3 complete algorithm for arithmetic

Davis/Putnam “practical” algorithm for propositional logic

Robinson

“practical” algorithm for FOL—resolution

Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

Vv o
SuBST({v/g}, a)

for any variable v and ground term g

Eg, Vo King(x) N Greedy(x) = FEvil(x) yields

King(John) A Greedy(John) = FEuvil(John)
King(Richard) N Greedy(Richard) = FEvil(Richard)
King(Father(John)) A Greedy(Father(John)) = FEwvil(Father(John))

Existential instantiation (EI)

For any sentence «, variable v, and constant symbol &
that does not appear elsewhere in the knowledge base:

Jv «

SUuBST({v/k},)
Eg., dz Crown(x) N OnHead(x, John) yields

Crown(Cy) AN OnHead(Cy, John)
provided '} is a new constant symbol, called a Skolem constant
Another example: from 92 d(xY)/dy = 2 we obtain

d(e’)/dy = e’

provided e is a new constant symbol

Instantiation

Ul can be applied several times to add new sentences;
the new KB is logically equivalent to the old

El can be applied once to replace the existential sentence;

the new KB is not equivalent to the old,
but is satisfiable iff the old KB was satisfiable

Reduction to propositional inference

Suppose the KB contains just the following:

Vo King(x) A Greedy(x) = FEvil(x)
King(John)

Greedy(John)

Brother(Richard, John)

Instantiating the universal sentence in all possible ways, we have

King(John) N\ Greedy(John) = FEvil(John)
King(Richard) N\ Greedy(Richard) = FEwvil(Richard)
King(John)

Greedy(John)

Brother(Richard, John)

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard) etc.

Reduction to propositional inference

Claim: a ground sentence” is entailed by new KB iff entailed by original KB
Claim: every FOL KB can be propositionalized so as to preserve entailment
|dea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms,
e.g., Father(Father(Father(John)))

Theorem: Herbrand (1930). If a sentence « is entailed by an FOL KB,
it is entailed by a finite subset of the propositional KB

ldea: For n = 0 to oo do
create a propositional KB by instantiating with depth-n terms
see if v is entailed by this KB

Problem: works if « is entailed, loops if o is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.
E.g., from

Vo King(x) A Greedy(x) = FEvil(x)
King(John)

Vy Greedy(y)

Brother(Richard, John)

it seems obvious that Fwvil(John), but propositionalization produces lots of
facts such as Greedy(Richard) that are irrelevant

k

With p k-ary predicates and n constants, there are p - n" instantiations

With function symbols, it gets nuch much worse!

Unification

We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(z) match King(John) and Greedy(y)

0 ={x/John,y/John} works
UNIFY(a, 8) = 0 if af = (56

p q

0

Knows(John,) KnowS(John Jane)
Knows(John, x) | Knows(y, OJ)
Knows(John, x)| Knows(y, Mother(y))
Knows(John, z)| Knows(z,OJ)

{x/Jane}

{x/OJ,y/John}
{y/John,x/Mother(John)}
fazl

Standardizing apart eliminates overlap of variables, e.g., Knows(z17, OJ)

Generalized Modus Ponens (GMP)
(Hj)

plla p2/7 "'7pn/7 <p1/\p2/\/\pn:>Q>

where p;'0 = p,;0 for all ¢
qt

p1’ is King(John) p1is King(x)
po’ is Greedy(y) po is Greedy(x)
0 is {x/John,y/John} qis Evil(x)

q0 is Fvil(John)

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified

Soundness of GMP

Need to show that
pi's ooy iy (MUA APy = q) g0
provided that p,/0 = p;0 for all 7
Lemma: For any definite clause p, we have p = pf by Ul
L. (iAo App=qQ FEmA...Ap,=q)0=(p10 N ... \p,0 = qb)

2. pll, Ce e pn/):pl’/\.../\pn’):pl’é’/\.../\pn’é’

3. From 1 and 2, ¢ follows by ordinary Modus Ponens

Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles, and
all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal

. it is a crime for an American to sell weapons to hostile nations:
American(x)A\Weapon(y)A\Sells(x,y, z) NHostile(z) = Criminal(x)
Nono ... has some missiles, i.e., 32 Owns(Nono,x) N Missile(x):
Owns(Nono, M) and Missile(M;)
... all of its missiles were sold to it by Colonel West
Va Missile(x) N Owns(Nono,x) = Sells(West, x, Nono)
Missiles are weapons:
Missile(x) = Weapon(x)
An enemy of America counts as “hostile”:
Enemy(x, America) = Hostile(x)
West, who is American . ..
American(West)
The country Nono, an enemy of America . ..
Enemy(Nono, America)

Forward chaining algorithm

function FOL-FC-Ask(KB, a) returns a substitution or false

repeat until new is empty
new<«—{ }
for each sentence rin KB do
(ptA...A p, = @)+ STANDARDIZE-APART(7)
for each 6 such that (py A ... A p,)d = (P A ... A p))b
for some p},...,pl in KB
q' <+ SuBST(0, q)
if ¢’ is not a renaming of a sentence already in KB or new then do
add ¢’ to new
¢ «— UNIFY(q¢',)
if ¢ is not fail then return ¢
add new to KB
return false

Forward chaining proof

American(West)

Criminal(West)
Weapon(M1) Sells(West,M1,Nono)
Missile(M1) Owns(Nono,M1)

Hostile(Nono)

Enemy(Nono,America)

Properties of forward chaining

Sound and complete for first-order definite clauses
(proof similar to propositional proof)

Datalog = first-order definite clauses + no functions (e.g., crime KB)
FC terminates for Datalog in poly iterations: at most p - n" literals

May not terminate in general if o is not entailed

This is unavoidable: entailment with definite clauses is semidecidable

Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k
if a premise wasn't added on iteration & — 1
= match each rule whose premise contains a newly added literal

Matching itself can be expensive

Database indexing allows O(1) retrieval of known facts
e.g., query Missile(x) retrieves Missile(M)

Matching conjunctive premises against known facts is NP-hard

Forward chaining is widely used in deductive databases

Hard matching example

Difflwa, nt) N Difflwa, sa) N
Diff(nt, q) Diff(nt, sa) A
Diff(q, nsw) N Difflq, sa) N
Diffinsw,v) A\ Diffinsw, sa) A
Difflv, sa) = Colorable()
Diff(Red, Blue) Diff(Red, Green)
Diff(Green, Red) Diff(Green, Blue)
Diff(Blue, Red) Diff(Blue, Green)

Colorable() is inferred iff the CSP has a solution
CSPs include 3SAT as a special case, hence matching is NP-hard

Backward chaining algorithm

function FOL-BC-ASk(KB, goals, f) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query (6 already applied)
6, the current substitution, initially the empty substitution { }
local variables: answers, a set of substitutions, initially empty

if goals is empty then return {6}
q' <+ SuBST(#, FIRST(g0als))
for each sentence 7in KB
where STANDARDIZE-APART(7) = (p1 A ... A Dp = q)
and 0’ — UNIFY(q, ¢') succeeds
new_goals<— | p1, ..., pu| REST(goals)]
answers «— FOL-BC-ASkK(KB, new_goals, COMPOSE(6’, #)) U answers
return answers

Backward chaining example

Criminal(West)

American(x)

Weapon(y)

Sells(x,y,z)

{x/West}

Hostile(z)

Backward chaining example

Criminal(West)

American(West)

Weapon(y)

17

Missile(y)

Sells(x,y,z)

{x/West}

Hostile(z)

Backward chaining example

Criminal(West)

American(West)

Weapon(y)

{1}

Missile(y)

{ yM1}

Sells(x,y,z)

{x/West, y/M1}

Hostile(z)

Backward chaining example

Criminal(West) {x/West, y/M1, z/Nono}
American(West) Weapon(y) Sells(West,M1,z) Hostile(z)
{} { z/Nono }

Missile(y) Missile(M1) Owns(Nono,M]1)
{yMm1}

Backward chaining example

Criminal(West)

{x/West, y/M1, z/Nono}

American(West) Weapon(y) Sells(West,M1 ,z) Hostile(Nono)
{} { z/Nono }
Missile(y) Missile(M1) Owns(Nono,M1) | | Enemy(Nono,America)
{yM1} {} i} {J

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops
= fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)
= fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming

Logic programming

Sound bite: computation as inference on logical KBs

Logic programming Ordinary programming
1. ldentify problem |dentify problem
2. Assemble information Assemble information
3. Tea break Figure out solution
4. Encode information in KB Program solution
5. Encode problem instance as facts Encode problem instance as data
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

Should be easier to debug Capital(NewY ork,US) than x .= x + 2|

Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques = approaching a billion LIPS

Program = set of clauses = head :- literal;, ... literal,.

criminal (X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption (“negation as failure”)
e.g., given alive(X) :- not dead(X).
alive(joe) succeeds if dead(joe) fails

Prolog examples

Depth-first search from a start state X:

dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).

No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

append([],Y,Y).
append ([X|L],Y, [X|Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) 7

answers: A=[] B=[1,2]
A=[1] B=[2]
A=[1,2] B=[]

Prolog example

Let’s try

member(1,[1,2,3,4,5])

query: grandfather(X,yuqging)?

male(di).

male(jianbo).

female(xin).

female(yuan).

female(yuqing).

father(jianbo,di).

father(di,yuqging).

mother(xin,di).

mother(yuan,yuqing).
grandfather(X,Y):-father(X,Z),father(Z,Y).
grandmother(X,Y):-mother(X,Z),father(Z,Y).
daughter(X,Y):-father(X,Y),female(Y).

Prolog example

eyounxRMBP15:AT17 yuy$ |

Resolution: brief summary

Full first-order version:
iV - N Ay, miV---Vm,
(€1V"°\/62'_1\/&“\/"'\/6]@1\/7711\/"'ij_lvmj+1V"'an)9

where UNIFY (/;, =m;) =0.
For example,

—Rich(z) VvV Unhappy(x)
Rich(Ken)
Unhappy(Ken)

with 0 = {x/Ken}

Apply resolution steps to C' N I'(K B N —«); complete for FOL

Conversion to CNF

Everyone who loves all animals is loved by someone:
Vo Vy Animal(y) = Loves(z,y)] = [y Loves(y,x)]

1. Eliminate biconditionals and implications
Vo [-Vy —Animal(y)V Loves(x,y)| V |dy Loves(y, x)]

2. Move — inwards: -V2,p =dz —-p, —-dx,p =Yz —p:

Vo [Fy —(=Animal(y) V Loves(x,y))| V |dy Loves(y, x)]
Vo [y ——Animal(y) A ~Loves(z,y)| V |3y Loves(y, x)|
Va [y Animal(y) A ~Loves(x,y)| V |3y Loves(y, x)]

Conversion to CNF

3. Standardize variables: each quantifier should use a different one
Va [y Animal(y) A —=Loves(x,y)| V |3z Loves(z,x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

Va [Animal(F(x)) AN —Loves(xz, F(x))| V Loves(G(x), x)
5. Drop universal quantifiers:

[Animal(F(x)) N ~Loves(x, F'(x))| V Loves(G(x), x)
6. Distribute A over V:

[Animal(F(z)) V Loves(G(x),x)| A |mLoves(z, F(x)) V Loves(G(x), x)]

Resolution proot: definite clauses

=1 American(x) v —1 Weapon(y) v = Sells(x,y,z) v —1 Hostile(z) v Criminal(x) =1 Criminal(West)

American(West) =1 American(West) v —1 Weapon(y) v =1 Sells(West,y,z)

=1 Missile(x) v Weapon(x)

=1 Weapon(y) v = Sells(West,y,z) v —1 Hostile(z)

v =1 Hostile(z)

Missile(M1) =1 Missile(y) v =1 Sells(West,y,z) v —1 Hostile(z)
=1 Missile(x) v —1 Owns(Nono,x) v Sells(West,x,Nono) = Sells(West,M1,z) v — Hostile(z)
Missile(M1) =1 Missile(M1) v — 0wns(N{n0,M]) v =1 Hostile(Nono)
Owns(Nono,M1) =1 Owns(Nono,M1) v/—l Hostile(Nono)

e

=1 Enemy(x,America) v Hostile(x)

=1 Hostile(Nono)

Enemy(Nono,America)

e

—1 Enemy(Nono,America)

D/

Previously...

Propositional Logic

P]
P]
p

_-Forward chaining
_-Backward chaining

[-Resolution

First Order Logic (FOL)

Instantiation
FOL-Forward chaining
FOL-Backward chaining
FOL-Resolution

SAT problems

Propositional logic, CNF

literals: x1,x2,...,%y
clauses: (r1 VxaVxs) (—a2VasV xy)

problem: find an assignment to literals so that the
conjunction of the clauses is true, or prove unsatisfiable

(x1 VaaVas)A(—xe VsV -xr)A...

2SAT: every clause has at most 2 literals
P-solvable

3SAT: every clause has at most 3 literals
NP-hard

SAT solvers

SAT problems have many important applications

many SAT solvers are ready for use

DPLL

WalkSAT

DPLL

Davis—Putnam-Logemann—Loveland algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of s
symbols < a list of the proposition symbols in s
return DPLL(clauses, symbols,{ })

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value < FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols — P, model U { P=value})
P, value < FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols — P, model U { P=value})
P «— FIRST(symbols); rest «+— REST(symbols)
return DPLL(clauses, rest, model U { P=true}) or
DPLL(clauses, rest, model U { P=false}))

a deep-first search with heuristics

DPLL heuristics

Pure symbol heuristic: A pure symbol is a symbol that always appears
with the same “sign” in all clauses.

(AV-B)A(-BV-C)N(CVA)
A and B is pure, but not C

Unit clause heuristic: A unit clause is a clause with just one literal.

(AV —B) with A = true

is a unit clause

Other tricks

Component analysis : find disjoint subsets

Variable and value ordering : assign most frequent
variable at first

Intelligent backtracking : remember contlicts
Random restart

Clever indexing

WalkSAT

a local search hill-climbing or others.

function WALKS AT (clauses, p, maz _flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move, typically around 0.5
max_flips, number of flips allowed before giving up

model < a random assignment of true/false to the symbols in clauses
for i = 1 to max_flips do
if model satisfies clauses then return model
clause «— a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

failure = unsatisfiable

The landscape of random SAT problems

Not all SAT instances are hard
under-constraint: a few clauses => easy to enumerate
over-constraint: too many clauses => unsatistfiable

1 { +———+——+—+—+ 2000 -
1800 1 DPLL —+—
0.8 1600 { WalkSAT ---3¢---
- 1400 1
g 0.6 2 1200
RZ 2 1000 -
3 04 & 800
= 600 1
0.2 1 400 A
200 -
(U S — — — — —_— 0 A === T T T T 4
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 71 8
Clause/symbol ratio m/n Clause/symbol ratio m/n
(a) (b)

Figure 7.19 (a) Graph showing the probability that a random 3-CNF sentence with n = 50
symbols is satisfiable, as a function of the clause/symbol ratio m /n. (b) Graph of the median
run time (measured in number of recursive calls to DPLL, a good proxy) on random 3-CNF
sentences. The most difficult problems have a clause/symbol ratio of about 4.3.

Planning

Language

There are many languages description the world
Planning Domain Definition Language
1.2, 2.1, 2.2, 3.0, 3.1

state s
Action(s)
Result(s,a)

Action(Fly(p, from, to),
PRECOND: At(p, from) N\ Plane(p) N\ Airport(from) N\ Airport(to)

EFFECT: —~At(p, from) N At(p, to))

Action(Fly(Py, SFO, JFK),
PRECOND: At(Py, SFO) A Plane(P1) N Airport(SFO) A Airport(JFK)

EFFECT: = At(Py, SFO) N\ At(Py, JFK))

Precondition

action a is applicable in state S if the preconditions are
satisfied by S

(a € ACTIONS(s)) < s = PRECOND(a)

Vp, from,to (Fly(p,from,to) € ACTIONS(s)) <
s = (At(p, from) A Plane(p) A Airport(from) A Airport(to))

Result

removing the fluents that appear as negative literals in the action’s effects
(what we call the delete list or DEL(a)), and adding the fluents that are
positive literals in the action’s effects (what we call the add list or
ADD(a))

RESULT(s,a) = (s — DEL(a)) U ADD(a) .

Action(Fly(Py1, SFO, JFK),
PRECOND: At(Py, SFO) N Plane(Py) N\ Airport(SFO) N Airport(JFK)
EFFECT:—At(Py, SFO) N At(Py, JFK))

Example

Init(On(A, Table) N On(B, Table) N On(C, A)

N Block(A) N Block(B) N Block(C) A Clear(B) A Clear(C))
Goal(On(A,B) N On(B,(C))
Action(Move(b, z,y),

PRECOND: On(b,x) A Clear(b) N Clear(y) A Block(b) N Block(y) A

(b#2) A (by) A (57y),

EFFECT: On(b,y) A Clear(x) N —=On(b,x) N —Clear(y))
Action(MoveToTable (b, x),

PRECOND: On(b,x) A Clear(b) N Block(b) N (b#x),

EFFECT: On(b, Table) N Clear(z) N —~On(b,x))

Figure 10.3 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [MoveToTable(C, A), Move (B, Table, C'), Move(A, Table, B)].

@
Inw:>

E]A
LA

Start State Goal State

Figure 10.4 Diagram of the blocks-world problem in Figure 10.3.

Ontology and Semantic Web

Up ontology

Anything
/\
AbstractObjects GeneralizedEvents

/\ /\

Sets Numbers RepresentationalObjects Interval Places PhysicalObjects Processes
/\ /\
Categories Sentences Measurements Moments Things Stuff

N\ N\ AN

Times Weights Animals Agents Solid Liquid Gas

N/

Humans

Domain ontology

SubsetOf

MemberOf

SisterOf

Figure 12.5 A semantic network with four objects (John, Mary, 1, and 2) and four cate-
gories. Relations are denoted by labeled links.

MemberOf

During

Destination

Figure 12.6 A fragment of a semantic network showing the representation of the logical
assertion Fly(Shankar, NewYork, NewDelhi, Yesterday).

Example: Wordnet

Hamburger

- Hamburger (an inhabitant of Hamburg)
- direct hypernym:
- German (a person of German nationality)
- sister term
- German (a person of German nationality)
- East German (a native/inhabitant of the former GDR)
- Bavarian (a native/inhabitant of Bavaria)
- derivationally related form
- Hamburg (a port city in northern Germany on the Elbe
River that was founded by Chalemagne in the...)

[from wikipedia]

Semantic web

. handling complex and heterogeneous information resources

retrieving documents based on a set of relationships that are external to these documents
providing multiple search options for richer investigation

targeting and sifting results more efficiently

using authoritative information resources more effectively as guides to searching

Person “Adam’'s Howe page”

“Adam”
rdf:type A:label Itc.t:labl-
/ do:creator
recsonl = htopi//wuw hys.com/hcos, htinl
m=8==:7/ \bornln rastype

“1/1/n000*~ Loocar o0 | Howepag= I

N\

r:l::r.7 Y!:Label

Garden “Eden”

An RDF graph

URI/IRI Unicode

Freebase

Frewlase AP (Deprecaleg) Q #s RArE RS
May Sere! Ave you maybe lcodag fer Drshase nitced”
n:
- Data Dumps wtuse Trcsin
Fowbnse Deleted eples
[SPeNY F oebnse ek data
Bl et A T Frechame 451 wil beCompleely SIE-60WD OF AU 31 01 €. THIS PAge proTHes 3C0ess J0the st araikbe 0ata JUTp. Roppings
Eeassh Cobboion Exgmone Lemie
Ceanh Oupra Cuiny
Teasch Matancherra Daca Cumpi a0 a downleadadle varsion cf the data in Frocbasa Thay mensituta a snagenot o’ ha Sats dtsed n
Teaach Wibgpt Froebeso anc the Schoma tha stauctnes 1 and are Diovidec under the save CTBY heenie. The Fradbase/Wikidata

Mapngs are provided under the C20 keonvie

Fraabase Trigles
Thic datacet cortaing every fact ourrently in Faadl wiplen: 1.8 Micn
nduse. Ipdeted. Werhy
2383 Forma: 1N 1ok
T

The S0F dats 13 serabzod using the N.Tsglks fermar, ascoded as |
or

chetp/fedf froobase com'nefg Hivitynas bt/ 'rd” £4
chegpa/ rdl freetore. com/'ms g, biviilym> <huip: //ref.f
AUy 1/ edf frechate con/m g Hivietynmr <hitp//edf . f
chetp /edf froobasn com'nei¢ Hivirtyras <hiip:/frdf
chagpa/ rdl freebme, com'me'g biviilyme> <huip:, /aws. %

W 1 youlve weting your s codeto porss e BOF dersge ity ofies m
@ aitng hae da o liy 80 han procesiing The uneomwone oot

b jests spradicatys cobjacts

Mote inFepbise copcts yave MIDs that oo e /M1 2riage. 0
Froehase schama lite 'comsos topse 2re wit'on as cossan . 13p)

The sublest ic thy € of a Freodacs sbject, It can be 3 Froebasze M
reachible D (ex asmman . tepis | for echema,

T predicale is slhovars @ laruereedebn 10 ' 3 Swvbae propa

FOFS Farbesr lavign ey seimspeces ey alyo snd o3 wv‘ium !’ 02wk up bays by ramesgancs,

22668 g0 .
2R

TVP8: Taracn I

sk,
-~

2 DOWNLOWE

'.‘;M'l

-

i
caunilry ol birth

The abtgect eld may contan aFreedase NID for ar olyec! or afumas-ieadabie 1D for schama Ton Fiesbase or ot e’
HOF vecabulanes. Itmay a 52 inchade [teral valses bice striags tookears and nuran= /alues.

WikiData

WIKIDATA

N Dage
Surrimm dy gl
Ao ot
CONEn @ YW sem
Aecent chargee
ancon e
ey Sewvue

VRO W YRR TR 1T WA WWTWOWWTW O WS——

Man Fage Dncamen Hedd THwSNLICH View Mgty | Sewrs Wikice s <
\\\\ ‘ /' \\ 'l,/'l' '| /‘/ 7 s || _.- :;_;_.(_,\\h' Daket \\ ,/'//
\ ¥ A l" ' .',) " _”- - - .\ \ ,A"
- -// \‘\ \ ,//i__ ——
/AN Welcome to Wikidata A

/ \ \\ N, [

i froe nowhecgo bace with 47,001,663 cala torre that anvyono can pdt, N

/ \ N /
!/ o uu-ﬁ _: INUCALCION * Frojact LNat = Comewrity Fanal « hep NS
/'/ - "\‘
N / \ v, i “ . <) - e
~ \ s ™~
R, T L N L7 Want 85 selp tranelnts? Traneinte the mirsing mosesges ~ ~
o — ~— \] ——— A

Wicdela 0 a oo and cpor newlodge bosa that can ¢ roed and Now %0 he wendeddiwodd of danad Jrvelop end rrpeove your cele

label b I ’Ouglas Adams (\;_’) M:ﬁﬁiv{:«’wmm. Meracy Peough content dotignec b get vau up B Eposc and loaing
Wiitials s ot HUTEGS & FUStaeE dete o b aeeeliotiabionmiih Buh danchuinoala la s e
English writer andhumonst WhiTadls 3w prajvey brchain g Wikgake, Whovoyege, Wikhou or,
s ot e
description Al P
> Inm o Wicdata a0 Diovides SLOCT IC Nany ol s 2nd servians
POV st WIsnecks DR The Coroent of WIIOE2 s avaiaoe
S BTN @ feae Tense &, PR S ST OTRaDS. and Zan Do
la[el“(’l“s Pl oy B vl v Jele sobs 0 T ko defle wels,
property {educaedat] - [S XFn's Cdege | P n-:-nu.w.:w
Academi mmot Enghith Merahure .
academi deyw Bachuor ofAns qual “'lsl £ Widchate
stwt dme 1971
= What b Aicchta? Nend =w Wikidets nirecucton,
ramk v ! releim o Empbon Whadala by ooy el @ foelen sy o meuase e n ol e
‘ . 200 R Tewrris von stk (U910
stwed in Encychpadia Brtarnica Onine Dovglas Acamed’. . vin (0
« Gt larod wih Wikican o BRLACL quiry serdes. o X006 G cellASpanane 10510 15
reerence UPL NEp Pvwww Nd b 1ompeopleT 310000 2264 3 roven ‘ + Ldoa-Basicone-_oe far Women 218
' 10 WD
erginal langsage ol wort English references Oa1Nen
statemam rMrved T Decamber 201) « Loow 10 o Widdeta) olow he ivterase o SEeN A U-Saarnad ICIMIS0TE
group pLbiisher NIoh = Work sith ofer velurtoos on & oubject hat inorests sou ol » o MUPSUBNte HOUMere K351 24596
ww Oougas Adams Toghstg WikiPrjort " KaNgeYan (1%)
* add melenance « ek and ottt did d> Sivdib . o Samaan HOle BOTONE 000086 1 EX)
Howr Y VWG commanity

« Brenwood Schod

« Vit the conmanity sartal or atead 3 Wickdats svart
o Croate 5 Lar aceount

Volicad b aia

collaps

Discover

i

* add (stalrment

ord ime 1870
stwt dme 1559 L
|
> fererce
[|

relerence

Example application

(O]
K —_
BaiMEE #

AR A MNE M &k BEE O SH BB O XF ESs

L
TRRY: HEHN. Q&N . SAKE
: Wi 7 (7 -2214) |, PEW, GHFR (ST IEARETE
- ' HH) AX, ZHINMBALH. AEKREOUR, K .
B, ARy FRRft Dby ZRWE KEssy FSoo
EWE VERHISTIES
@ ik baid ooy 2014-10-72

EﬁT ﬁmm}# *ERIN

Image. hakiu com - - SRR ANKE

g A s¥
O Is - Riojt[H: 20° 2904 FE1 =
RieFE EHPLEH S R, WEARNESLSANE REALENAN. 852 L=
BEBAER R AT CE—THAREARNESTE, S8R
vdanbaidi anfiok?.. -80S F

KMPLE LA 1070 0130717
EE - AN P LU ML S 2003-04-"

B % SEHRK >
efl 12

FwoES: 2224 A BRUHEN: 10F

SR> TEAY

A2

ALKET Ni#

magl.com

Magz|i)

ATo
no AL
M

R AT BR e

WAy ANRY "a

Nargirg Linkheecity L)

TN rm IR "L Ay

ENRNRUEaEA<EIA RESRIESIEEN

RES ns n

Y B B

BTN nes

ne 8

o

TR HENY

o

AR BRIy

BOREAY BOoSRAY

T AR Sne
X w3 -
2 W Al i () 1

nre

ARNE

http://magi.com

