NJUA시 南京大人工智能学院

Lecture 9：Uncertainty

Previously...

Search

Path-based search
 Iterative improvement search

Logic
Propositional Logic First Order Logic (FOL)

Uncertainty

Let action $A_{t}=$ leave for airport t minutes before flight Will A_{t} get me there on time?

Problems:

1) partial observability (road state, other drivers' plans, etc.)
2) noisy sensors (KCBS traffic reports)
3) uncertainty in action outcomes (flat tire, etc.)
4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either

1) risks falsehood: " A_{25} will get me there on time"
or 2) leads to conclusions that are too weak for decision making:
" A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."
(A_{1440} might reasonably be said to get me there on time but l'd have to stay overnight in the airport ...)

Methods for handling uncertainty

Default or nonmonotonic logic:
Assume my car does not have a flat tire
Assume A_{25} works unless contradicted by evidence
Issues: What assumptions are reasonable? How to handle contradiction?
Rules with fudge factors:
$A_{25} \mapsto_{0.3}$ AtAirportOnTime
Sprinkler $\mapsto_{0.99}$ WetGrass
WetGrass $\mapsto_{0.7}$ Rain
Issues: Problems with combination, e.g., Sprinkler causes Rain??
Probability
Given the available evidence,
A_{25} will get me there on time with probability 0.04
Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

Probability

Probability

Probabilistic assertions summarize effects of laziness: failure to enumerate exceptions, qualifications, etc. ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:
Probabilities relate propositions to one's own state of knowledge

$$
\text { e.g., } P\left(A_{25} \mid \text { no reported accidents }\right)=0.06
$$

These are not claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence:

$$
\text { e.g., } P\left(A_{25} \mid \text { no reported accidents, } 5 \text { a.m. }\right)=0.15
$$

(Analogous to logical entailment status $K B \models \alpha$, not truth.)

Probability

car-goat-door guess

after your choice, I will open one from the rest doors that has goat

Will you change your choice?

Making decisions under uncertainty

Suppose I believe the following:

$$
\begin{aligned}
P\left(A_{25} \text { gets me there on time } \ldots\right) & =0.04 \\
P\left(A_{90} \text { gets me there on time } \ldots\right) & =0.70 \\
P\left(A_{120} \text { gets me there on time } \ldots\right) & =0.95 \\
P\left(A_{1440} \text { gets me there on time } \ldots\right) & =0.9999
\end{aligned}
$$

Which action to choose?
Depends on my preferences for missing flight vs. airport cuisine, etc.
Utility theory is used to represent and infer preferences
Decision theory $=$ utility theory + probability theory

Probability basics

Begin with a set Ω-the sample space
e.g., 6 possible rolls of a die.
$\omega \in \Omega$ is a sample point/possible world/atomic event
A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.

$$
\begin{aligned}
& 0 \leq P(\omega) \leq 1 \\
& \sum_{\omega} P(\omega)=1
\end{aligned}
$$

e.g., $P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6$.

An event A is any subset of Ω

$$
P(A)=\sum_{\{\omega \in A\}} P(\omega)
$$

E.g., $P($ die roll $<4)=P(1)+P(2)+P(3)=1 / 6+1 / 6+1 / 6=1 / 2$

Random variables

A random variable is a function from sample points to some range, e.g., the reals or Booleans
e.g., $O d d(1)=$ true.
P induces a probability distribution for any r.v. X :

$$
P\left(X=x_{i}\right)=\sum_{\left\{\omega: X(\omega)=x_{i}\right\}} P(\omega)
$$

e.g., $P(O d d=$ true $)=P(1)+P(3)+P(5)=1 / 6+1 / 6+1 / 6=1 / 2$

Propositions

Think of a proposition as the event (set of sample points) where the proposition is true

Given Boolean random variables A and B :

$$
\text { event } a=\text { set of sample points where } A(\omega)=\text { true }
$$

$$
\text { event } \neg a=\text { set of sample points where } A(\omega)=\text { false }
$$

$$
\text { event } a \wedge b=\text { points where } A(\omega)=\text { true and } B(\omega)=\text { true }
$$

Often in Al applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point $=$ propositional logic model

$$
\text { e.g., } A=\text { true, } B=\text { false, or } a \wedge \neg b \text {. }
$$

Proposition $=$ disjunction of atomic events in which it is true

$$
\begin{aligned}
& \text { e.g., }(a \vee b) \equiv(\neg a \wedge b) \vee(a \wedge \neg b) \vee(a \wedge b) \\
& \quad \Rightarrow P(a \vee b)=P(\neg a \wedge b)+P(a \wedge \neg b)+P(a \wedge b)
\end{aligned}
$$

Why use probability?

The definitions imply that certain logically related events must have related probabilities
E.g., $P(a \vee b)=P(a)+P(b)-P(a \wedge b)$

True

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Syntax for propositions

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)

Cavity $=$ true is a proposition, also written cavity
Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny, rain, cloudy, snow〉

Weather = rain is a proposition
Values must be exhaustive and mutually exclusive
Continuous random variables (bounded or unbounded) e.g., $T e m p=21.6$; also allow, e.g., $T e m p<22.0$.

Arbitrary Boolean combinations of basic propositions

Prior probability

Prior or unconditional probabilities of propositions

$$
\text { e.g., } P(\text { Cavity }=\text { true })=0.1 \text { and } P(\text { Weather }=\text { sunny })=0.72
$$

correspond to belief prior to arrival of any (new) evidence
Probability distribution gives values for all possible assignments:
$\mathbf{P}($ Weather $)=\langle 0.72,0.1,0.08,0.1\rangle$ (normalized, i.e., sums to 1)
Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point)
$\mathbf{P}($ Weather, Cavity $)=\mathrm{a} 4 \times 2$ matrix of values:

| Weather $=$ | sunny | rain | cloudy | snow |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Cavity $=$ true | 0.144 | 0.02 | 0.016 | 0.02 |
| Cavity $=$ false | 0.576 | 0.08 | 0.064 | 0.08 |

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Conditional probability

Conditional or posterior probabilities
e.g., $P($ cavity \mid toothache $)=0.8$
i.e., given that toothache is all I know

NOT "if toothache then 80% chance of cavity"
(Notation for conditional distributions:
\mathbf{P} (Cavity \mid Toothache $)=2$-element vector of 2-element vectors)
If we know more, e.g., cavity is also given, then we have
$P($ cavity \mid toothache, cavity $)=1$
Note: the less specific belief remains valid after more evidence arrives, but is not always useful

New evidence may be irrelevant, allowing simplification, e.g., $P($ cavity \mid toothache, 49ersWin $)=P($ cavity \mid toothache $)=0.8$
This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

Definition of conditional probability:

$$
P(a \mid b)=\frac{P(a \wedge b)}{P(b)} \text { if } P(b) \neq 0
$$

Product rule gives an alternative formulation:

$$
P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)
$$

A general version holds for whole distributions, e.g.,
$\mathbf{P}($ Weather, Cavity $)=\mathbf{P}($ Weather \mid Cavity $) \mathbf{P}($ Cavity $)$
(View as a 4×2 set of equations, not matrix mult.)
Chain rule is derived by successive application of product rule:

$$
\begin{aligned}
\mathbf{P} & \left(X_{1}, \ldots, X_{n}\right)=\mathbf{P}\left(X_{1}, \ldots, X_{n-1}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\mathbf{P}\left(X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n_{1}} \mid X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\ldots \prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Inference by enumeration

Start with the joint distribution:

	toothache		ᄀ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:
$P(\phi)=\sum_{\omega: \omega \equiv \phi} P(\omega)$

Inference by enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true: $P(\phi)=\sum_{\omega: \omega \models \phi} P(\omega)$
$P($ toothache $)=0.108+0.012+0.016+0.064=0.2$

Inference by enumeration

Start with the joint distribution:

	toothache		ᄀ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:

$$
P(\phi)=\sum_{\omega: \omega \models \phi} P(\omega)
$$

$$
P(\text { cavity } \backslash \text { toothache })=0.108+0.012+0.072+0.008+0.016+0.064=0.28
$$

Inference by enumeration

Start with the joint distribution:

	toothache		ᄀ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
ᄀ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

Normalization

	toothache		ᄀ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Denominator can be viewed as a normalization constant α

$$
\begin{aligned}
& \mathbf{P}(\text { Cavity } \mid \text { toothache })=\alpha \mathbf{P}(\text { Cavity, toothache }) \\
& \quad=\alpha[\mathbf{P}(\text { Cavity, toothache, catch })+\mathbf{P}(\text { Cavity, toothache }, \neg \text { catch })] \\
& \quad=\alpha[\langle 0.108,0.016\rangle+\langle 0.012,0.064\rangle] \\
& =\alpha\langle 0.12,0.08\rangle=\langle 0.6,0.4\rangle
\end{aligned}
$$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Inference by enumeration, contd.

Let X be all the variables. Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables \mathbf{E}

Let the hidden variables be $\mathrm{H}=\mathrm{X}-\mathrm{Y}-\mathrm{E}$
Then the required summation of joint entries is done by summing out the hidden variables:

$$
\mathbf{P}(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})=\alpha \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\alpha \Sigma_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}, \mathbf{H}=\mathbf{h})
$$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables

Obvious problems:

1) Worst-case time complexity $O\left(d^{n}\right)$ where d is the largest arity
2) Space complexity $O\left(d^{n}\right)$ to store the joint distribution
3) How to find the numbers for $O\left(d^{n}\right)$ entries???

Independence

A and B are independent iff
$\mathbf{P}(A \mid B)=\mathbf{P}(A) \quad$ or $\quad \mathbf{P}(B \mid A)=\mathbf{P}(B) \quad$ or $\quad \mathbf{P}(A, B)=\mathbf{P}(A) \mathbf{P}(B)$

\mathbf{P} (Toothache, Catch, Cavity, Weather)

$$
=\mathbf{P}(\text { Toothache }, \text { Catch }, \text { Cavity }) \mathbf{P}(\text { Weather })
$$

32 entries reduced to 12 ; for n independent biased coins, $2^{n} \rightarrow n$
Absolute independence powerful but rare
Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

$\mathbf{P}($ Toothache, Cavity, Catch $)$ has $2^{3}-1=7$ independent entries
If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$

The same independence holds if I haven't got a cavity:
(2) $P($ catch \mid toothache,\neg cavity $)=P($ catch $\mid \neg$ cavity $)$

Catch is conditionally independent of Toothache given Cavity:
$\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$
Equivalent statements:
$\mathbf{P}($ Toothache \mid Catch, Cavity $)=\mathbf{P}($ Toothache \mid Cavity $)$
$\mathbf{P}($ Toothache, Catch \mid Cavity $)=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $)$

Conditional independence

Write out full joint distribution using chain rule:

$$
\begin{aligned}
& \mathbf{P}(\text { Toothache }, \text { Catch, Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Catch, Cavity }) \mathbf{P}(\text { Catch, Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Catch, Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity })
\end{aligned}
$$

l.e., $2+2+1=5$ independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

Product rule $P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$

$$
\Rightarrow \text { Bayes' rule } P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

or in distribution form

$$
\mathbf{P}(Y \mid X)=\frac{\mathbf{P}(X \mid Y) \mathbf{P}(Y)}{\mathbf{P}(X)}=\alpha \mathbf{P}(X \mid Y) \mathbf{P}(Y)
$$

Useful for assessing diagnostic probability from causal probability:

$$
P(\text { Cause } \mid E f f e c t)=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

E.g., let M be meningitis, S be stiff neck:

$$
P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.1}=0.0008
$$

Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

$\mathbf{P}($ Cavity \mid toothache \wedge catch $)$
$=\alpha \mathbf{P}($ toothache \wedge catch \mid Cavity $) \mathbf{P}($ Cavity $)$
$=\alpha \mathbf{P}($ toothache \mid Cavity $) \mathbf{P}($ catch \mid Cavity $) \mathbf{P}($ Cavity $)$
This is an example of a naive Bayes model:

Total number of parameters is linear in n

Bayesian networks

Bayesian networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable a directed, acyclic graph (link \approx "directly influences")
a conditional distribution for each node given its parents:
$\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Example

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables
Toothache and Catch are conditionally independent given Cavity

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example

Compactness

A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values

Each row requires one number p for $X_{i}=$ true (the number for $X_{i}=$ false is just $1-p$)

If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
I.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint distribution

For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)

Global semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$
\begin{aligned}
& \quad P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right) \\
& \text { e.g., } P(j \wedge m \wedge a \wedge \neg b \wedge \neg e) \\
& \quad=P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e) \\
& \quad=0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \\
& \quad \approx 0.00063
\end{aligned}
$$

Local semantics

Local semantics: each node is conditionally independent of its nondescendants given its parents

Theorem: Local semantics \Leftrightarrow global semantics

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Constructing Bayesian networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

1. Choose an ordering of variables X_{1}, \ldots, X_{n}
2. For $i=1$ to n
add X_{i} to the network
select parents from X_{1}, \ldots, X_{i-1} such that

$$
\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

This choice of parents guarantees the global semantics:

$$
\begin{aligned}
\mathbf{P}\left(X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \quad \text { (chain rule) } \\
& =\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right) \quad \text { (by construction) }
\end{aligned}
$$

Example

Suppose we choose the ordering M, J, A, B, E

$$
\begin{aligned}
& P(J \mid M)=P(J) ? ~ N o \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) \text { ? No } \\
& P(B \mid A, J, M)=P(B \mid A) \text { ? Yes } \\
& P(B \mid A, J, M)=P(B) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A, B) \text { ? Yes }
\end{aligned}
$$

Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), "broken, so fix it" variables (orange) Hidden variables (gray) ensure sparse structure, reduce parameters

Compact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child
Solution: canonical distributions that are defined compactly
Deterministic nodes are the simplest case:

$$
X=f(\text { Parents }(X)) \text { for some function } f
$$

E.g., Boolean functions

$$
\text { NorthAmerican } \Leftrightarrow \text { Canadian } \vee U S \vee \text { Mexican }
$$

E.g., numerical relationships among continuous variables

$$
\frac{\partial \text { Level }}{\partial t}=\text { inflow }+ \text { precipitation - outflow - evaporation }
$$

Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_{1} \ldots U_{k}$ include all causes (can add leak node)
2) Independent failure probability q_{i} for each cause alone

$$
\Rightarrow P\left(X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=1-\prod_{i=1}^{j} q_{i}
$$

Cold	Flu	Malaria	$P($ Fever $)$	$P(\neg$ Fever $)$
F	F	F	0.0	1.0
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	$0.02=0.2 \times 0.1$
T	F	F	0.4	0.6
T	F	T	0.94	$0.06=0.6 \times 0.1$
T	T	F	0.88	$0.12=0.6 \times 0.2$
T	T	T	0.988	$0.012=0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Inference in Bayesian networks

Inference tasks

Simple queries: compute posterior marginal $\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right)$

$$
\text { e.g., } P(\text { NoGas } \mid \text { Gauge }=\text { empty, Lights }=\text { on, Starts }=\text { false })
$$

Conjunctive queries: $\mathbf{P}\left(X_{i}, X_{j} \mid \mathbf{E}=\mathbf{e}\right)=\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right) \mathbf{P}\left(X_{j} \mid X_{i}, \mathbf{E}=\mathbf{e}\right)$
Optimal decisions: decision networks include utility information; probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?
Explanation: why do I need a new starter motor?

Exact inference

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:
$\mathbf{P}(B \mid j, m)$
$=\mathbf{P}(B, j, m) / P(j, m)$
$=\alpha \mathbf{P}(B, j, m)$
$=\alpha \Sigma_{e} \Sigma_{a} \mathbf{P}(B, e, a, j, m)$

Rewrite full joint entries using product of CPT entries:
$\mathbf{P}(B \mid j, m)$
$=\alpha \Sigma_{e} \Sigma_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
$=\alpha \mathbf{P}(B) \Sigma_{e} P(e) \Sigma_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
Recursive depth-first enumeration: $O(n)$ space, $O\left(d^{n}\right)$ time

Enumeration algorithm

function Enumeration- $\operatorname{Ask}(X, \mathbf{e}, b n)$ returns a distribution over X
inputs: X, the query variable
e, observed values for variables \mathbf{E}
$b n$, a Bayesian network with variables $\{X\} \cup \mathbf{E} \cup \mathbf{Y}$
$\mathbf{Q}(X) \leftarrow$ a distribution over X, initially empty
for each value x_{i} of X do
extend e with value x_{i} for X
$\mathbf{Q}\left(x_{i}\right) \leftarrow$ Enumerate-AlL (Vars $\left.[b n], \mathbf{e}\right)$
return Normalize $(\mathbf{Q}(X))$
function Enumerate-All(vars, e) returns a real number
if Empty?(vars) then return 1.0
$Y \leftarrow$ First (vars)
if Y has value y in e
then return $P(y \mid P a(Y)) \times$ Enumerate-All(Rest(vars), e)
else return $\Sigma_{y} P(y \mid P a(Y)) \times$ Enumerate-All(Rest(vars), \mathbf{e}_{y})
where \mathbf{e}_{y} is \mathbf{e} extended with $Y=y$

Evaluation tree

Enumeration is inefficient: repeated computation e.g., computes $P(j \mid a) P(m \mid a)$ for each value of e

Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation
$\mathbf{P}(B \mid j, m)$

$$
\begin{aligned}
& =\alpha \underbrace{\mathbf{P}(B)}_{B} \Sigma_{e} \underbrace{P(e)}_{E} \Sigma_{a} \underbrace{\mathbf{P}(a \mid B, e)}_{A} \underbrace{P(j \mid a)}_{J} \underbrace{P(m \mid a)}_{M} \\
& =\alpha \mathbf{P}(B) \Sigma_{e} P(e) \Sigma_{a} \mathbf{P}(a \mid B, e) P(j \mid a) f_{M}(a) \\
& =\alpha \mathbf{P}(B) \Sigma_{e} P(e) \Sigma_{a} \mathbf{P}(a \mid B, e) f_{J}(a) f_{M}(a) \\
& =\alpha \mathbf{P}(B) \Sigma_{e} P(e) \Sigma_{a} f_{A}(a, b, e) f_{J}(a) f_{M}(a) \\
& =\alpha \mathbf{P}(B) \Sigma_{e} P(e) f_{\bar{A} J M}(b, e)(\text { sum out } A) \\
& =\alpha \mathbf{P}(B) f_{\bar{E} \bar{A} J M}(b)(\text { sum out } E) \\
& =\alpha f_{B}(b) \times f_{\bar{E} \bar{A} J M}(b)
\end{aligned}
$$

Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation add up submatrices in pointwise product of remaining factors
$\Sigma_{x} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \Sigma_{x} f_{i+1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times f_{\bar{X}}$
assuming f_{1}, \ldots, f_{i} do not depend on X
Pointwise product of factors f_{1} and f_{2} :

$$
\begin{aligned}
& f_{1}\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}\right) \times f_{2}\left(y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right) \\
& \quad=f\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right)
\end{aligned}
$$

E.g., $f_{1}(a, b) \times f_{2}(b, c)=f(a, b, c)$

Variable elimination algorithm

```
function Elimination-Ask( }X,\mathbf{e},bn)\mathrm{ returns a distribution over }
    inputs: X, the query variable
        e, evidence specified as an event
        bn, a belief network specifying joint distribution P}\mathbf{P}(\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}
    factors }\leftarrow[]; vars \leftarrow~REVERSE(VARS[bn]
    for each var in vars do
        factors \leftarrow[MAKE-FACTOR(var, e)|factors]
        if var is a hidden variable then factors }\leftarrow\mathrm{ Sum-OuT(var,factors)
    return Normalize(Pointwise-Product(factors))
```


Irrelevant variables

Consider the query $P($ JohnCalls \mid Burglary $=$ true $)$

$$
P(J \mid b)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(J \mid a) \sum_{m} P(m \mid a)
$$

Sum over m is identically $1 ; M$ is irrelevant to the query

Thm 1: Y is irrelevant unless $Y \in$ Ancestors $(\{X\} \cup \mathbf{E})$
Here, $X=$ JohnCalls, $\mathbf{E}=\{$ Burglary $\}$, and Ancestors $(\{X\} \cup \mathbf{E})=\{$ Alarm, Earthquake $\}$ so MaryCalls is irrelevant
(Compare this to backward chaining from the query in Horn clause KBs)

Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows
Defn: A is m -separated from B by C iff separated by C in the moral graph
Thm 2: Y is irrelevant if m -separated from X by E

For $P($ JohnCalls \mid Alarm $=$ true $)$, both Burglary and Earthquake are irrelevant

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O\left(d^{k} n\right)$

Multiply connected networks:

- can reduce 3SAT to exact inference \Rightarrow NP-hard
- equivalent to counting 3SAT models \Rightarrow \#P-complete

1. $A \operatorname{v} v \mathrm{C}$
2. $C \vee D v \neg A$
3. $B \vee C \vee \neg D$

Approximate inference

Inference by stochastic simulation

Basic idea:

1) Draw N samples from a sampling distribution S
2) Compute an approximate posterior probability \hat{P}
3) Show this converges to the true probability P

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior

Sampling from an empty network

Sampling from an empty network

function Prior-Sample $(b n)$ returns an event sampled from $b n$ inputs: $b n$, a belief network specifying joint distribution $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$ $\mathbf{x} \leftarrow$ an event with n elements
for $i=1$ to n do
$x_{i} \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$ given the values of $\operatorname{Parents}\left(X_{i}\right)$ in x
return x

Sampling from an empty network contd.

Probability that PriorSample generates a particular event

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
$$

i.e., the true prior probability
E.g., $S_{P S}(t, f, t, t)=0.5 \times 0.9 \times 0.8 \times 0.9=0.324=P(t, f, t, t)$

Let $N_{P S}\left(x_{1} \ldots x_{n}\right)$ be the number of samples generated for event x_{1}, \ldots, x_{n}
Then we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N \\
& =S_{P S}\left(x_{1}, \ldots, x_{n}\right) \\
& =P\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

That is, estimates derived from PriorSample are consistent Shorthand: $\hat{P}\left(x_{1}, \ldots, x_{n}\right) \approx P\left(x_{1} \ldots x_{n}\right)$

Conditional Probability: Rejection sampling

$\hat{\mathbf{P}}(X \mid \mathbf{e})$ estimated from samples agreeing with \mathbf{e}

```
function Rejection-Sampling(X,e,bn,N) returns an estimate of P(X|\mathbf{e})
    local variables: N, a vector of counts over }X\mathrm{ , initially zero
    for }j=1\mathrm{ to }N\mathrm{ do
        x}\leftarrow\mathrm{ PRIOR-SAMPLE( }bn
        if }\textrm{x}\mathrm{ is consistent with e then
            N [x]}\leftarrow\mathbf{N}[x]+1\mathrm{ where }x\mathrm{ is the value of X in }\mathbf{x
return Normalize(N[X])
```

E.g., estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true $)$ using 100 samples

27 samples have Sprinkler $=$ true Of these, 8 have Rain $=$ true and 19 have Rain $=$ false.
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true $)=\operatorname{NormaLIZE}(\langle 8,19\rangle)=\langle 0.296,0.704\rangle$
Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

$$
\begin{aligned}
\hat{\mathbf{P}} & (X \mid \mathbf{e})=\alpha \mathbf{N}_{P S}(X, \mathbf{e}) \quad \text { (algorithm defn.) } \\
& \left.=\mathbf{N}_{P S}(X, \mathbf{e}) / N_{P S}(\mathbf{e}) \quad \text { (normalized by } N_{P S}(\mathbf{e})\right) \\
& \approx \mathbf{P}(X, \mathbf{e}) / P(\mathbf{e}) \quad \text { (property of PriorSAMPLE) } \\
& =\mathbf{P}(X \mid \mathbf{e}) \quad \text { (defn. of conditional probability) }
\end{aligned}
$$

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if $P(\mathbf{e})$ is small
$P($ e $)$ drops off exponentially with number of evidence variables!

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence
function Likelinood-Weighting $(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$ local variables: W, a vector of weighted counts over X, initially zero for $j=1$ to N do
$\mathbf{x}, w \leftarrow$ Weighted-Sample $(b n)$
$\mathbf{W}[x] \leftarrow \mathbf{W}[x]+w$ where x is the value of X in \mathbf{x} return Normalize($\mathbf{W}[X]$)
function Weighted-Sample $(b n, \mathbf{e})$ returns an event and a weight $\mathbf{x} \leftarrow$ an event with n elements; $w \leftarrow 1$
for $i=1$ to n do
if X_{i} has a value x_{i} in e
then $w \leftarrow w \times P\left(X_{i}=x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
else $x_{i} \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
return \mathbf{x}, w

Likelihood weighting example

$$
w=1.0
$$

Likelihood weighting example

$$
w=1.0
$$

Likelihood weighting example

$$
w=1.0
$$

Likelihood weighting example

$$
w=1.0 \times 0.1
$$

Likelihood weighting example

$$
w=1.0 \times 0.1
$$

Likelihood weighting example

$$
w=1.0 \times 0.1 \times 0.99=0.099
$$

Likelihood weighting analysis

Sampling probability for WeightedSample is

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{l} P\left(z_{i} \mid \text { parents }\left(Z_{i}\right)\right)
$$

Note: pays attention to evidence in ancestors only \Rightarrow somewhere "in between" prior and posterior distribution

Weight for a given sample \mathbf{z}, \mathbf{e} is

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{parents}\left(E_{i}\right)\right)
$$

Weighted sampling probability is

$$
\begin{aligned}
& S_{W S}(\mathbf{z}, \mathbf{e}) w(\mathbf{z}, \mathbf{e}) \\
& \quad=\prod_{i=1}^{l} P\left(z_{i} \mid \text { parents }\left(Z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \text { parents }\left(E_{i}\right)\right) \\
& \quad=P(\mathbf{z}, \mathbf{e}) \text { (by standard global semantics of network) }
\end{aligned}
$$

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight

Approximate inference using MCMC

"State" of network = current assignment to all variables.
Generate next state by sampling one variable given Markov blanket Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask(X, e, bn,N) returns an estimate of P(X|\mathbf{e})
    local variables: }\mathbf{N}[X],\mathrm{ a vector of counts over }X\mathrm{ , initially zero
    Z}\mathrm{ , the nonevidence variables in bn
    x}\mathrm{ , the current state of the network, initially copied from e
    initialize x with random values for the variables in Y
    for }j=1\mathrm{ to }N\mathrm{ do
        for each }\mp@subsup{Z}{i}{}\mathrm{ in Z do
            sample the value of Z}\mp@subsup{Z}{i}{}\mathrm{ in x from }\mathbf{P}(\mp@subsup{Z}{i}{}|mb(\mp@subsup{Z}{i}{})
            given the values of MB(Z}\mp@subsup{|}{i}{})\mathrm{ in x
            N [x]\leftarrow\mathbf{N}[x]+1 where x is the value of X in \mathbf{x}
    return Normalize(N[X])
```

Can also choose a variable to sample at random each time

The Markov chain

With Sprinkler $=$ true, WetGrass $=$ true, there are four states:

Wander about for a while, average what you see

MCMC example contd.

Estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$
Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.
E.g., visit 100 states

31 have Rain =true, 69 have Rain $=$ false
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$
$=$ Normalize $(\langle 31,69\rangle)=\langle 0.31,0.69\rangle$
Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly proportional to its posterior probability

Markov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain
Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:

$$
P\left(x_{i}^{\prime} \mid m b\left(X_{i}\right)\right)=P\left(x_{i}^{\prime} \mid \operatorname{parents}\left(X_{i}\right)\right) \Pi_{Z_{j} \in C h i l d r e n\left(X_{i}\right)} P\left(z_{j} \mid \operatorname{parents}\left(Z_{j}\right)\right)
$$

Easily implemented in message-passing parallel systems, brains
Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large: $P\left(X_{i} \mid m b\left(X_{i}\right)\right)$ won't change much (law of large numbers)

Summary

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space $=$ time, very sensitive to topology

Approximate inference by LW, MCMC:

- LW does poorly when there is lots of (downstream) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables

