
Reinforcement
Learning

Introduction

QQ：810862334

www.lamda.nju.edu.cn/IntroRL

前期知识

概率论

统计

算法

程序设计

机器学习、深度学习

参考材料

Richard S. Sutton and Andrew G. Barto
Reinforcement Learning: An Introduction

David Silver课程视频：Introduction to Reinforcement
Learning （10节课）
https://www.bilibili.com/video/BV17x411Z7Zo?zw

https://www.bilibili.com/video/BV17x411Z7Zo?zw

参考材料（进阶）

Berkeley CS285 2020课程

https://www.bilibili.com/video/BV1154y1k7ZE?
from=search&seid=12966764310094379808

Deepmind 2018课程

https://www.bilibili.com/video/BV16t411y7Gq?p=1

RLChina 2020课程

网址：https://rlchina.org/ 或直接点击下方链接

课程成绩

5次作业，每一次20分

作业1: 模仿学习：Dagger算法
作业2: 强化学习：Q-learning
作业3: 深度强化学习：DQN
作业4: model-based强化学习
作业5: offline RL算法

The intelligence of survival

Robotics

Robotics by RL

Comparison

Comparison with the real dog

Agent
Agents and environments

?

agent

percepts

sensors

actions
environment

actuators

Agents include humans, robots, softbots, thermostats, etc.

The agent function maps from percept histories to actions:

f : P∗ → A

The agent program runs on the physical architecture to produce f

Chapter 2 4

Section 2.1. Agents and Environments 35

Agent Sensors

Actuators

E
n
v
iro

n
m

en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

Sensors

Observation vs state

Actuators

Function / Policy
Section 2.1. Agents and Environments 35

Agent Sensors

Actuators

E
n
v
iro

n
m

en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

⇡(s) ! a
<latexit sha1_base64="KDn24Q/WLBDJc/5ZvOd//OdcnFQ=">AAACA3icbVA9SwNBEJ2LXzF+RS1tFoMQm3CngpZBG8sI5gNyR9jb7CVLdu+W3T0hHCn9C7ba24mtP8TWX+ImucIkPhh4vDfDzLxQcqaN6347hbX1jc2t4nZpZ3dv/6B8eNTSSaoIbZKEJ6oTYk05i2nTMMNpRyqKRchpOxzdTf32E1WaJfGjGUsaCDyIWcQINlbyfcmq+hz5JkG4V664NXcGtEq8nFQgR6NX/vH7CUkFjQ3hWOuu50oTZFgZRjidlPxUU4nJCA9o19IYC6qDbHbzBJ1ZpY+iRNmKDZqpfycyLLQei9B2CmyGetmbiv953dREN0HGYpkaGpP5oijlyL44DQD1maLE8LElmChmb0VkiBUmxsa0sCUUk5INxVuOYJW0LmreZc17uKrUb/N4inACp1AFD66hDvfQgCYQkPACr/DmPDvvzofzOW8tOPnMMSzA+foFF8GXdA==</latexit>

Policy: ⇡ : S ⇥A ! R,
X

a2A
⇡(a|s) = 1

Policy (deterministic): ⇡ : S ! A

Environment

Environment

environment is influenced by the actions

<latexit sha1_base64="bhM6+XFEBjU1aHyCK22jElcqXTs=">AAACFHicbVBNS8NAEN34WetX1JteFosgKCWRgh6LXjxWsLbQhrDZbtqlm03YnQglBPwT/gWvevcoXr179Ze4TXuwrQ92ebw3w8y8IBFcg+N8W0vLK6tr66WN8ubW9s6uvbf/oONUUdaksYhVOyCaCS5ZEzgI1k4UI1EgWCsY3oz91iNTmsfyHkYJ8yLSlzzklICRfPtQ+3COiQ+4CzFuFL/2Mzhzc9+uOFWnAF4k7pRU0BQN3/7p9mKaRkwCFUTrjusk4GVEAaeC5eVuqllC6JD0WcdQSSKmvay4IccnRunhMFbmScCF+rcjI5HWoygwlRGBgZ73xuJ/XieF8MrLuExSYJJOBoWpwObQcSC4xxWjIEaGEKq42RXTAVGEgoltZkoQ5WUTijsfwSJpXVTdWtV172qV+vU0nxI6QsfoFLnoEtXRLWqgJqLoCb2gV/RmPVvv1of1OSldsqY9B2gG1tcvNHOdPA==</latexit>

st, at ! P ! st+1

<latexit sha1_base64="N9HYaiKKhY41JOR41o3oFxO4zxo=">AAACD3icbVDLSsNAFJ3UV62vqLhyM1iEilISKeiy6MZlBWsLbQiT6aQdnEnCzI1QYv7BX3Cre5fi1k9w65c4fSxs64ELh3Pu5VxOkAiuwXG+rcLS8srqWnG9tLG5tb1j7+7d6zhVlDVpLGLVDohmgkesCRwEayeKERkI1goerkd+65EpzePoDoYJ8yTpRzzklICRfPugUdF+Bqdujp+w9uEMEx9OfLvsVJ0x8CJxp6SMpmj49k+3F9NUsgioIFp3XCcBLyMKOBUsL3VTzRJCH0ifdQyNiGTay8bv5/jYKD0cxspMBHis/r3IiNR6KAOzKQkM9Lw3Ev/zOimEl17GoyQFFtFJUJgKDDEedYF7XDEKYmgIoYqbXzEdEEUomMZmUgKZl0wp7nwFi6R1XnVrVde9rZXrV9N+iugQHaEKctEFqqMb1EBNRFGGXtArerOerXfrw/qcrBas6c0+moH19QtA0psZ</latexit>

P (st+1|st, at)

Agent

Section 2.1. Agents and Environments 35

Agent Sensors

Actuators

E
n
v
iro

n
m

en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

The intelligence of survival

Reinforcement learning

Agent Environment

action/decision

reward
state

Agent’s goal: learn a policy to maximize long-term total reward

discounted:T-step:

a way of programming agents

average:

<latexit sha1_base64="mGRtuUd/GyIWWDkju8hpoHULx5Y=">AAAB+XicbVBNSwMxEM3Wr1q/Vj16CRbBU9kVRS9C0YvHCv2Cdl2yadqGJtklmS2Upf/EiwdFvPpPvPlvTNs9aOuDgcd7M8zMixLBDXjet1NYW9/Y3Cpul3Z29/YP3MOjpolTTVmDxiLW7YgYJrhiDeAgWDvRjMhIsFY0up/5rTHThseqDpOEBZIMFO9zSsBKoet2TSrDDG696VMd6xBCt+xVvDnwKvFzUkY5aqH71e3FNJVMARXEmI7vJRBkRAOngk1L3dSwhNARGbCOpYpIZoJsfvkUn1mlh/uxtqUAz9XfExmRxkxkZDslgaFZ9mbif14nhf5NkHGVpMAUXSzqpwJDjGcx4B7XjIKYWEKo5vZWTIdEEwo2rJINwV9+eZU0Lyr+VcV7vCxX7/I4iugEnaJz5KNrVEUPqIYaiKIxekav6M3JnBfn3flYtBacfOYY/YHz+QMbApNP</latexit>

TX

t=0

rt

<latexit sha1_base64="Xaqq2ulyAR6bKNwm9HLJ+nZ5KxI=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBbBVUlE0Y1QdOOyQl/QxDCZTtqhkwczN0IJ2bjxV9y4UMSt/+DOv3HaZqGtBy4czrmXe+/xE8EVWNa3UVpaXlldK69XNja3tnfM3b22ilNJWYvGIpZdnygmeMRawEGwbiIZCX3BOv7oZuJ3HphUPI6aME6YG5JBxANOCWjJMw+dQBKa2XnWzLGj0tDL4MrK75tYeuCZVatmTYEXiV2QKirQ8Mwvpx/TNGQRUEGU6tlWAm5GJHAqWF5xUsUSQkdkwHqaRiRkys2mX+T4WCt9HMRSVwR4qv6eyEio1Dj0dWdIYKjmvYn4n9dLIbh0Mx4lKbCIzhYFqcAQ40kkuM8loyDGmhAqub4V0yHRsYAOrqJDsOdfXiTt05p9XrPuzqr16yKOMjpAR+gE2egC1dEtaqAWougRPaNX9GY8GS/Gu/Exay0Zxcw++gPj8wciLZhU</latexit>

1

T

TX

t=0

rt
<latexit sha1_base64="jwMZSYk6C3Ljw6aFOmNe9M0GptM=">AAACEnicbVC7SgNBFJ2NrxhfUUubwSBoE3ZF0UYI2lhGMA/IJsvsZDYZMjO7zNwVwpJvsPFXbCwUsbWy82+cPApNPHDhcM693HtPmAhuwHW/ndzS8srqWn69sLG5tb1T3N2rmzjVlNVoLGLdDIlhgitWAw6CNRPNiAwFa4SDm7HfeGDa8FjdwzBhbUl6ikecErBSUDzxTSp9FQsuOZgggyt31Ml8riIYjrDfI1KSDmAdQFAsuWV3ArxIvBkpoRmqQfHL78Y0lUwBFcSYlucm0M6IBk4FGxX81LCE0AHpsZalikhm2tnkpRE+skoXR7G2pQBP1N8TGZHGDGVoOyWBvpn3xuJ/XiuF6LKdcZWkwBSdLopSgSHG43xwl2tGQQwtIVRzeyumfaIJBZtiwYbgzb+8SOqnZe+87N6dlSrXszjy6AAdomPkoQtUQbeoimqIokf0jF7Rm/PkvDjvzse0NefMZvbRHzifP26ino8=</latexit>X1

t=0
�trt

Cart Pole

States: (pole angle, angular velocity)

Actions: move left, move right

Rewards:

0 stands, -1 failed

Video games

States: video

Actions: gamepad buttons

Rewards:

game score

Game of Go

States: board

Actions: (x,y)

Rewards:

0 win, -1 lose

Self-driving car

States: surrounding

Actions: steering wheel, accelerator, brake

Rewards:

+100 fast and safe, -100 collisions, …

Go vs self-driving car

• Known environment vs Unknown environment

• Discrete vs Continuous states/actions

• One goal vs many goals

• Simple reward vs rewards to be detected

• Safe vs killing

Notations

Machine Learning

Machine Learning

Supervised Learning Reinforcement Learning

Unsupervised Learning

Artificial Intelligence

Difference between RL and SL?

both learn a model ...

Supervised learning process

en
vi

ro
nm

en
t data

(x, y)
(x, y)
(x, y)

...

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

algorithm model
data

(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

data
s,a,r,s,a,r,s,
s,a,r,s,a,r,s,
s,a,r,s,a,r,s,

...en
vi

ro
nm

en
t

algorithm model

Reinforcement learning process

Prediction:

this is a tumor!

what is this?

turn-left, cut, …, tumor-
removed

Decision-making:
how to cue?

Difference between RL and SL?

Supervised learning objective Reinforcement learning objective

argmin
✓

Ex⇠D loss(f✓(x), y(x))
<latexit sha1_base64="1xDDF2NgKSjn1X59ZKKFTSSDkb4=">AAADbHicZVJNbxMxEHUTPsrylQK3CskiAiVSG+2GIq6toBLcWom0ldarldeZbFax1yvboYks/y5+CweucOM34GxDYZORbI3fvPdmLE1W8UKbMPy+02rfuXvv/u6D4OGjx0+edvaeXWg5VwxGTHKprjKqgRcljExhOFxVCqjIOFxmsw+r+uVXULqQ5RezrCARNC+LScGo8VDaOSdU5UQUZUrMFAzFp6klta1VMHYLoguBiaBmyijHHx3BxMDCWC61dr2JJ9cy11v0D/DS3/200w0HYR14O4nWSRet4yzda7XJWLK5gNIwTrWOo7AyiaXKFIyDC8hcQ0XZjOYQ+7SkAnRi6yEdfu2RMZ5I5U9pcI02FNV44idObK5oNS3YounHBCyi0DcTevXJRtHOjawK2sQ8US9FtgWuuusmujI0UnK9RTZT0cSyjTfluVSFp20O/K/igoDcdtBgrJ7Ka1nypYKJPlg9BC3nlBua6xW3hGsmhcfGlsCiAmZcPEzixAbYh629ssyeutR2IxeTGajyMBxE70DEuDvEyS1yBCJxtco1bdlf3yj5z6+HuxHub1BP3A1joujMnjgX+LWJNpdkO7kYDqK3g+H5Uff483qBdtE+eoV6KELv0TH6hM7QCDH0Df1AP9Gv1u/2i/Z+++UNtbWz1jxHjWi/+QNm5B5y</latexit>

training distribution test distribution
train/test data are sampled i.i.d.

future is the same as the past
train on past data

future is to be chosen
train by trial-and-error

<latexit sha1_base64="CARGDpSmZPQAb/WPAEL17NRsQEs=">AAADenicZVJNj9MwEPW2fCzlY7tw5GJthNSKpUqqAtddwUpwWyT2Q4pD5LjT1GocR7ZLW1n+efwIfgNXuHHA6ZaFtCNZmnnvzZuxNFlVcG3C8Pteq33n7r37+w86Dx89fnLQPXx6qeVcMbhgspDqOqMaCl7CheGmgOtKARVZAVfZ7F3NX30FpbksP5tVBYmgecknnFHjobSbEqpyIugyJWYKhuKz1JK1rVUwdppoLrDnzZTRAr//YknFN1LnCCYGlsYrF1SNXU8f45q2G76n+/20G4SDcB14N4k2SYA2cZ4ettpkLNlcQGlYQbWOo7AyiaXKcFaA65C5hoqyGc0h9mlJBejErld2+IVHxngilX+lwWu00VGNJ37lxOaKVlPOlk0/JmAZhX6Y0PWXG6SdG1lx2sS8UK9EtgPW03UTrQ2NlIXeEZupaGLZVk2LXCruZdsL/2Ncp0NuJ2gwVk/lQpbFSsFEH9eFoOWcFobmutaWsGBSeGxsCSwrYMbFwyRObAf7sGuvLLNnLrVB5GIyA1W+CgfRaxAxDoY4uUVGIBK37nJNW/bXN0r+8+vhIML9Lempu1FMFJ3ZU+c6/myi7SPZTS6Hg+jNYPRpFJx83BzQPnqOjlAPRegtOkEf0Dm6QAx9Qz/QT/Sr9bt91O63X95IW3ubnmeoEe3RH/L1JRs=</latexit>

argmax
✓

Es⇠D⇡✓ reward(s,⇡✓(s))

