

SCHOOL OF ARTIFICIAL INTELLIGENCE, NANJING UNIVERSITY

QQ: 810862334

www.lamda.nju.edu.cn/IntroRL

Reinforcement Learning Introduction

扫一扫二维码,加入群聊

前期知识

概率论 统计 算法 程序设计 机器学习、深度学习

Richard S. Sutton and Andrew G. Barto Reinforcement Learning: An Introduction

David Silver课程视频: Introduction to Reinforcement Learning (10节课) <u>https://www.bilibili.com/video/BV17x411Z7Zo?zw</u>

Berkeley CS285 2020课程 https://www.bilibili.com/video/BV1154y1k7ZE? from=search&seid=12966764310094379808

Deepmind 2018课程 https://www.bilibili.com/video/BV16t411y7Gq?p=1

RLChina 2020课程 网址:https://rlchina.org/ 或直接点击下方链接

ŊIJĄ

5次作业,每一次20分

- 作业1: 模仿学习: Dagger算法
- 作业2: 强化学习: Q-learning
- 作业3: 深度强化学习: DQN
- 作业4: model-based强化学习
- 作业5: offline RL算法

The intelligence of survival

Robotics by RL

Comparison with the real dog

1000

不同于现在更先进的迷你猎豹机器狗

Agent

Agents include humans, robots, softbots, thermostats, etc.

The agent function maps from percept histories to actions:

$$f: \mathcal{P}^* \to \mathcal{A}$$

The agent program runs on the physical architecture to produce \boldsymbol{f}

Sensors

ŊJ

Observation vs state

ŊJ

Actuators

Function / Policy

$$\pi(s) \to a$$

Policy:
$$\pi : S \times A \to \mathbb{R}$$
, $\sum_{a \in A} \pi(a|s) = 1$
Policy (deterministic): $\pi : S \to A$

Environment

ŊJ

environment is influenced by the actions

 $s_t, a_t \to P \to s_{t+1}$

 $P(s_{t+1}|s_t, a_t)$

Agent

The intelligence of survival

Reinforcement learning

Agent's goal: learn a policy to maximize long-term total reward

T-step:
$$\sum_{t=0}^{T} r_t$$
 average: $\frac{1}{T} \sum_{t=0}^{T} r_t$ discounted: $\sum_{t=0}^{\infty} \gamma^t r_t$

a way of programming agents

Cart Pole

States: (pole angle, angular velocity) Actions: move left, move right Rewards:

0 stands, -1 failed

States: video Actions: gamepad buttons Rewards:

game score

Game of Go

States: board Actions: (x,y) Rewards:

0 win, -1 lose

Self-driving car

States: surrounding Actions: steering wheel, accelerator, brake Rewards:

+100 fast and safe, -100 collisions, ...

Go vs self-driving car

- Known environment vs Unknown environment
- Discrete vs Continuous states/actions
- One goal vs many goals
- Simple reward vs rewards to be detected
- Safe vs killing

Notations

Richard Bellman

actions a_t states S_t rewards r_t dynamics $p(s_{t+1} | s_t, a_t)$ observations o_t

Lev Pontryagin

actions u_t states x_t costs $c(x_t, u_t)$ dynamics $p(x_{t+1} | x_t, u_t)$

Machine Learning

Difference between RL and SL?

both learn a model ...

Prediction:

what is this? this is a tumor!

Decision-making:

how to cue?

turn-left, cut, ..., tumorremoved

Supervised learning process

Reinforcement learning process

Difference between RL and SL?

Supervised learning objective

 $\arg\min_{\theta} E_{\boldsymbol{x} \sim \mathcal{D}} \operatorname{loss}(f_{\theta}(\boldsymbol{x}), \boldsymbol{y}(\boldsymbol{x}))$

training distribution test distribution train/test data are sampled i.i.d.

future is the same as the past train on past data Reinforcement learning objective

 $\arg\max_{\theta} E_{s \sim \mathcal{D}^{\pi_{\theta}}} \operatorname{reward}(s, \pi_{\theta}(s))$

future is to be chosen train by trial-and-error