

# Standard O-Learning Standard O-Learning Recture 8 Lecture 8

# The Atari games



#### Deepmind Deep Q-learning on Atari

[Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540): 529-533, 2015]



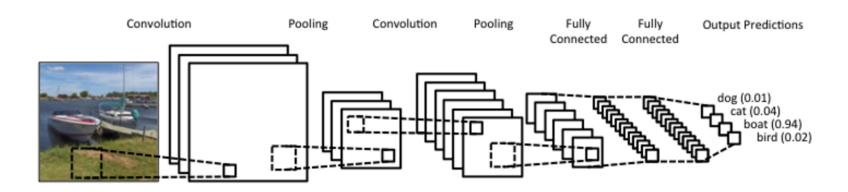


# Eye of agent: Deep learning



#### a powerful architecture for image analysis

differentiable require a lot of samples to train



# Deep reinforcement learning



= deep model + reinforcement learning: deep model as the function approximation / policy model

```
How to fit deep neural networks?
stability?
data?
network structure?
```

#### eep Q-Network



#### DQN

[Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540): 529-533, 2015]

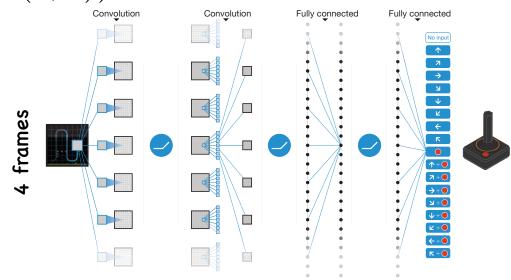
- using **c**-greedy policy
- store 1 million recent history (s,a,r,s') in replay memory D
- sample a mini-batch (32) from D
- calculate Q-learning target
- calculate Q-learning target  $\tilde{Q}$  update CNN by minimizing the Bellman error (delayed update)

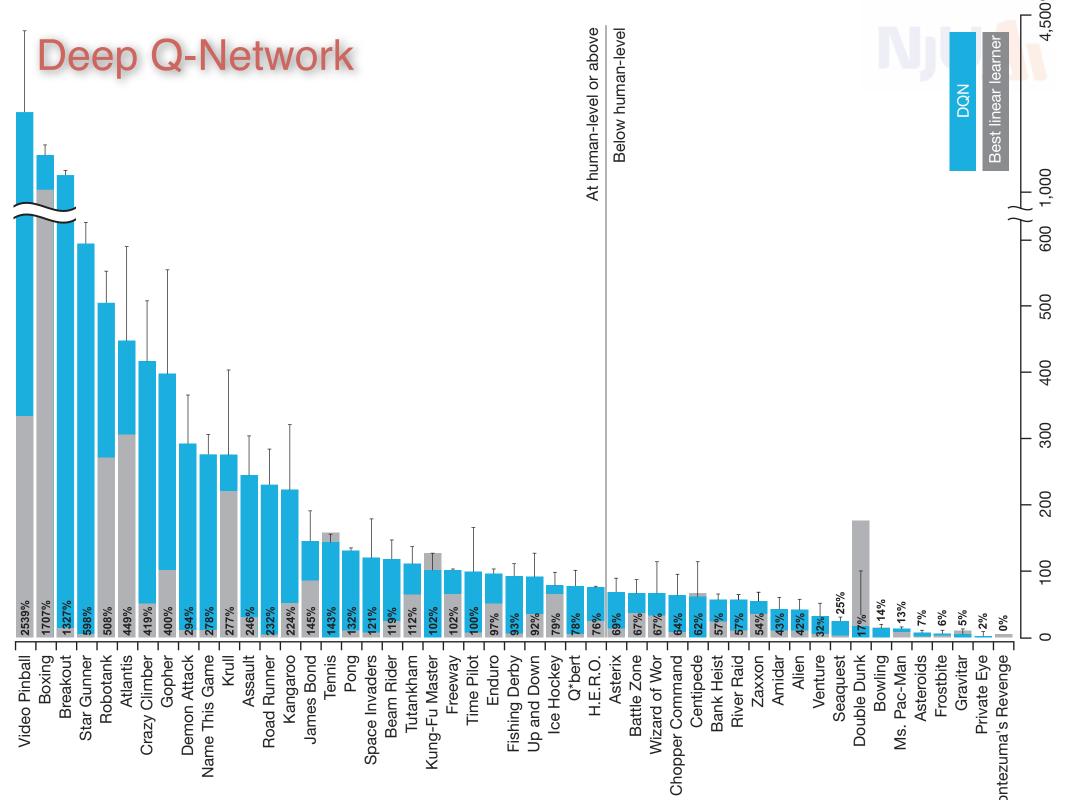
$$\sum (r + \gamma \max_{a'} \tilde{Q}(s', a') - Q_w(s, a))^2$$

#### DQN on Atari

learn to play from pixels







# Deep Q-Network



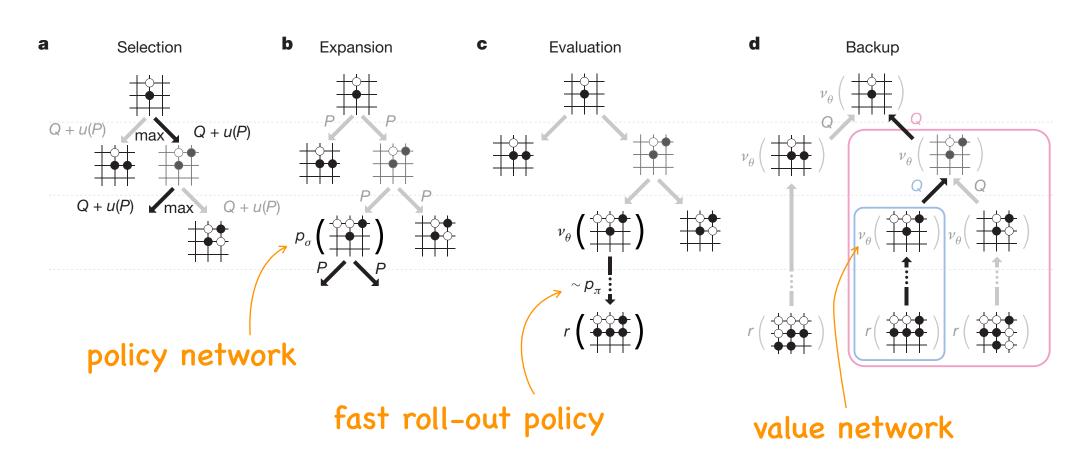
#### effectiveness

| Game           | With replay, with target Q | With replay,<br>without target Q | Without replay, with target Q | Without replay, without target Q |
|----------------|----------------------------|----------------------------------|-------------------------------|----------------------------------|
| Breakout       | 316.8                      | 240.7                            | 10.2                          | 3.2                              |
| Enduro         | 1006.3                     | 831.4                            | 141.9                         | 29.1                             |
| River Raid     | 7446.6                     | 4102.8                           | 2867.7                        | 1453.0                           |
| Seaquest       | 2894.4                     | 822.6                            | 1003.0                        | 275.8                            |
| Space Invaders | 1088.9                     | 826.3                            | 373.2                         | 302.0                            |





# A combination of tree search, deep neural networks and reinforcement learning

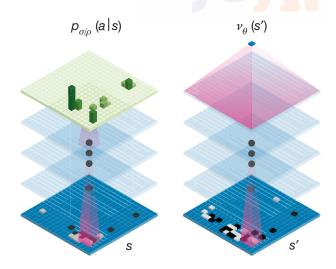






# haGo

# policy network: a CNN output $\pi(s,a)$ value network: a CNN output V(s)



| Feature              | # of planes         | Description                                                                    |
|----------------------|---------------------|--------------------------------------------------------------------------------|
| Stone colour         | 3                   | Player stone / opponent stone / empty                                          |
| Ones                 | 1                   | A constant plane filled with 1                                                 |
| Turns since          | 8                   | How many turns since a move was played  How many turns since a move was played |
| Liberties            | 8                   | Number of liberties (empty adjacent points)                                    |
| Capture size         | 8                   | How many opponent stones would be captured                                     |
| Self-atari size      | 8                   | How many of own stones would be captured                                       |
| Liberties after move | 8                   | Number of liberties after this move is played                                  |
| Ladder capture       | $\partial \log p$ ( | Whether a move at this point is a successful ladder capture                    |
| Ladder escape        | $\partial \sigma$   | Whether a move at this point is a successful ladder escape                     |
| Sensibleness         | 1                   | Whether a move is legal and does not fill its own eyes                         |
| Zeros                | 1                   | A constant plane filled with 0                                                 |
| Player color         | 1                   | Whether current player is black                                                |





# policy network: initialization supervised learning from human v.s. human data

|         | Architecture |          |                 |                  | Evaluation     |                   |                   |
|---------|--------------|----------|-----------------|------------------|----------------|-------------------|-------------------|
| Filters | Symmetries   | Features | Test accuracy % | Train accuracy % | Raw net wins % | AlphaGo<br>wins % | Forward time (ms) |
| 128     | 1            | 48       | 54.6            | 57.0             | 36             | 53                | 2.8               |
| 192     | 1            | 48       | 55.4            | 58.0             | 50             | 50                | 4.8               |
| 256     | 1            | 48       | 55.9            | 59.1             | 67             | 55                | 7.1               |
| 256     | 2            | 48       | 56.5            | 59.8             | 67             | 38                | 13.9              |
| 256     | 4            | 48       | 56.9            | 60.2             | 69             | 14                | 27.6              |
| 256     | 8            | 48       | 57.0            | 60.4             | 69             | 5                 | 55.3              |
| 192     | 1            | 4        | 47.6            | 51.4             | 25             | 15                | 4.8               |
| 192     | 1            | 12       | 54.7            | 57.1             | 30             | 34                | 4.8               |
| 192     | 1            | 20       | 54.7            | 57.2             | 38             | 40                | 4.8               |
| 192     | 8            | 4        | 49.2            | 53.2             | 24             | 2                 | 36.8              |
| 192     | 8            | 12       | 55.7            | 58.3             | 32             | 3                 | 36.8              |
| 192     | 8            | 20       | 55.8            | 58.4             | 42             | 3                 | 36.8              |

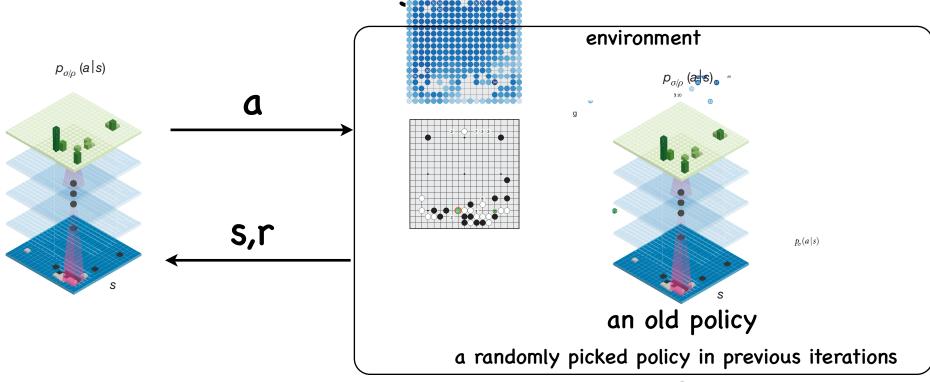
# AlphaGo



 $v_{\theta}(s) \approx v^{p}(s)$ 

#### policy network: further improvement

reinforcement learning



 $p_{\sigma}(a|s)$  reward:

+1 -- win at terminate state

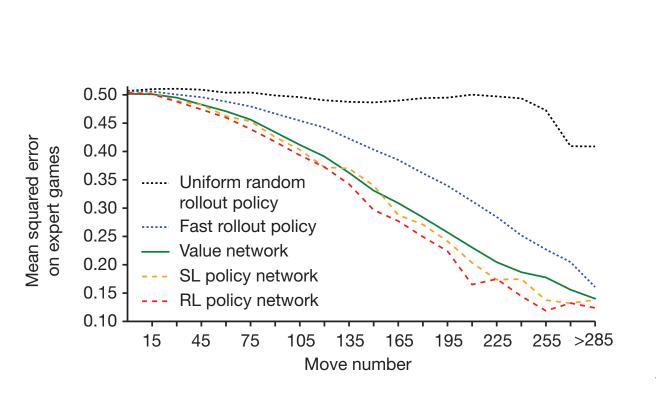
-1 -- loss at terminate state

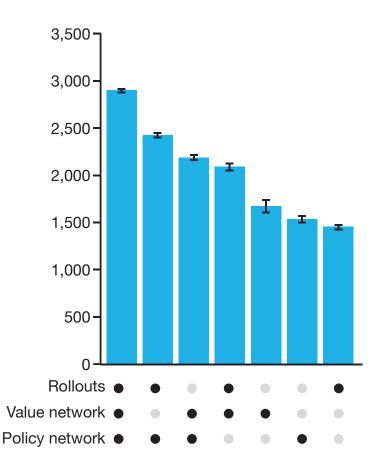
a.k.a. self-play  $p_{\sigma}(a|s)$  p(a|s)





#### value network: supervised learning from RL data

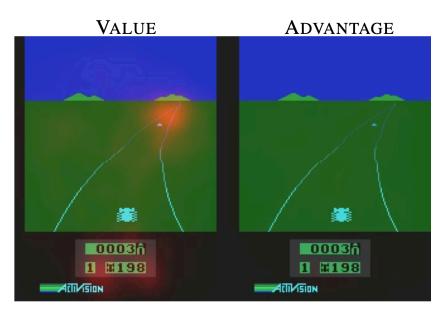


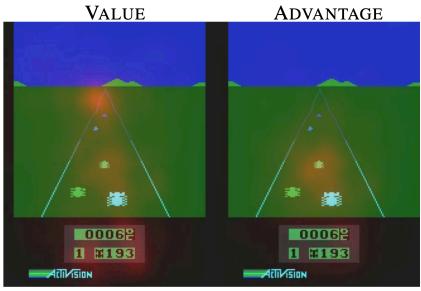


#### Dueling network architecture



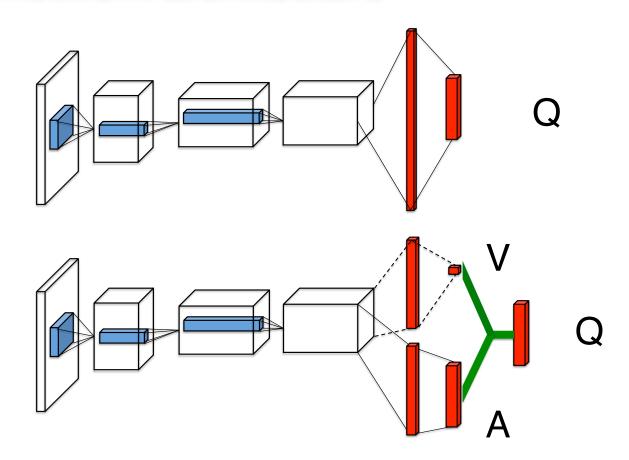
$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha)$$





#### Dueling network architecture





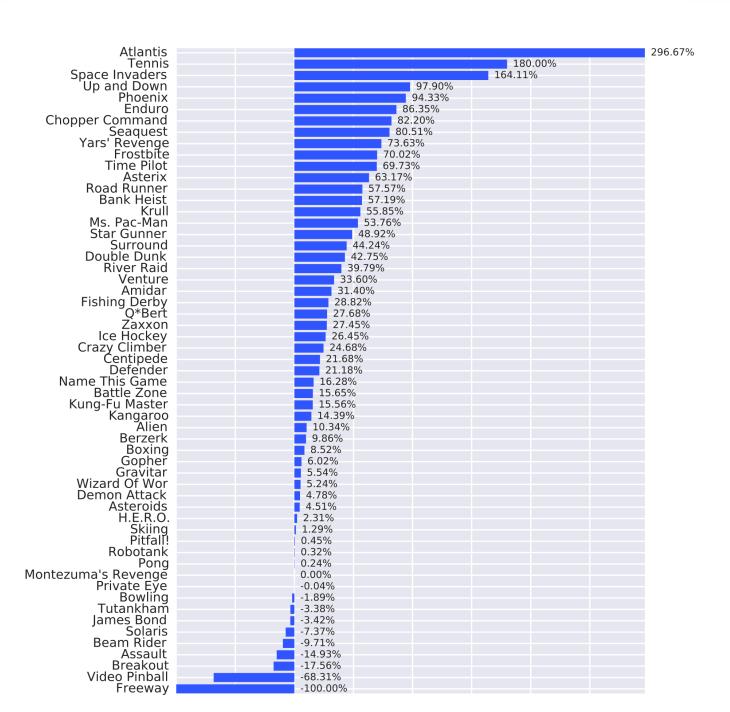
#### two versions of multi-solutions elimination:

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) +$$

$$\left(A(s, a; \theta, \alpha) - \max_{a' \in |\mathcal{A}|} A(s, a'; \theta, \alpha)\right) \qquad \left(A(s, a; \theta, \alpha) - \frac{1}{|\mathcal{A}|} \sum_{a'} A(s, a'; \theta, \alpha)\right)$$

#### Dueling network architecture





# The overestimation problem of Q-learning



|   | G |
|---|---|
|   |   |
| S |   |

Number of steps

5 steps reward: non-goal: -12 or +10 randomly goal: +5

Number of steps

#### The overestimation problem of Q-learning



$$Q^{\pi}(s, a) = E[\sum_{t=1}^{I} r_t | s, a]$$

$$Q_0=0$$
, initial state for  $i=0,\,1,\,...$   $a=\pi_\epsilon(s)$   $s',\,r=$  do action  $a$   $a'=\pi(s')$   $Q(s,a)+=\alpha(r+\gamma Q(s',a')-Q(s,a))$   $\pi(s)=\arg\max_a Q(s,a)$   $s=s'$  end for

 $Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \alpha_t(s_t, a_t) \left( r_t + \gamma \max_{a} Q_t(s_{t+1}, a) - Q_t(s_t, a_t) \right)$ 

# Single estimator



$$\mu_i(D) = \frac{1}{|D_i|} \sum_{d \in D_i} d$$

#### Example: 2-arm bandit

$$|D| = 2000, |D_1| = 1000, |D_2| = 1000, X_1, X_2 \sim \mathcal{N}(0, 1)$$

- $E\{X_1\} = 0, E\{X_2\} = 0 \Rightarrow \max_i E\{X_i\} = 0$
- If  $\mu_1(D) = 0.01$ ,  $\mu_2(D) = -0.01$ , then  $\max_i \mu_i(D) = 0.01 > 0$

average is an unbiased estimator of expectation but max is not

$$E\{\max_i \mu_i(D)\} \geq \max_i E\{X_i\}$$

#### Double estimator



- **Double estimator** divides the sample set D into two disjoint subsets,  $D^U$  and  $D^V$
- It uses

$$\mu_{a^*}^V(D)$$

to estimate  $\max_i E\{X_i\}$ , where  $a^* \in \arg\max_i \mu_i^U(D)$ 

#### Example: 2-arm bandit

$$\begin{aligned} |D| &= 2000, |D_1| = 1000, |D_2| = 1000, X_1 \sim \mathcal{N}(0.01, 1), X_2 \sim \mathcal{N}(0, 1) \\ |D_1^U| &= |D_1^V| = 500, |D_2^U| = |D_2^V| = 500 \end{aligned}$$

- If  $\mu_1^U(D) = -0.01$ ,  $\mu_2^U(D) = 0$ , then  $\max_i \mu_i^U(D) = 0$ ,  $a^* = 2$
- $\blacksquare E\{\mu_{a^*}^V(D)\} = E\{X_2\} < E\{X_1\}$
- $\blacksquare E\{\mu_{a^*}^V(D)\} \leq \max_i E\{X_i\}$  (underestimation)
  - Double estimator is unbiased when the variables are i.i.d.

#### **Double DQN**

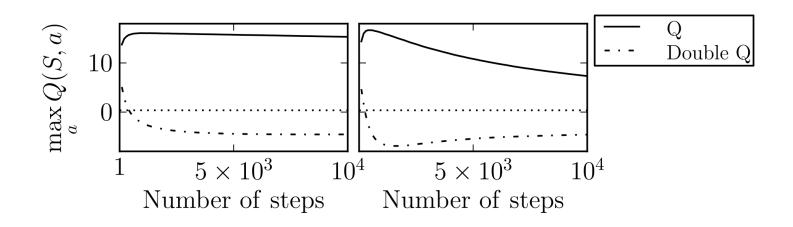


- It stores two Q functions,  $Q^U$  and  $Q^V$ , and uses two separate subsets of experience samples to learn them
- Update rule of  $Q^U$ :

$$Q^U(s, a) \leftarrow Q^U(s, a) + \alpha^U(s, a)[r + \gamma Q^V(s', a^*) - Q^U(s, a)]$$
  
where  $a^* \leftarrow \arg\max_a Q^U(s', a)$ 

Underestimation of action values:

$$E\{Q^{V}(s',a^{*})\} = E\{Q(s',a^{*})\} \leq \max_{a'} E\{Q(s',a')\}$$



#### **Variants**



Q-learning [Watkins, PhD Thesis 1989] Single estimator, overestimation

Double Q-learning [van Hasselt, NIPS 2010]

Double estimator, underestimation

Weighted double Q-learning [Zhang et al., IJCAI 2017]
Weighted double estimator, trade-off between overestimation and underestimation

$$Q^{U,WDE}(s',a^*) = \beta^U Q^U(s',a^*) + (1-\beta^U)Q^V(s',a^*)$$

where

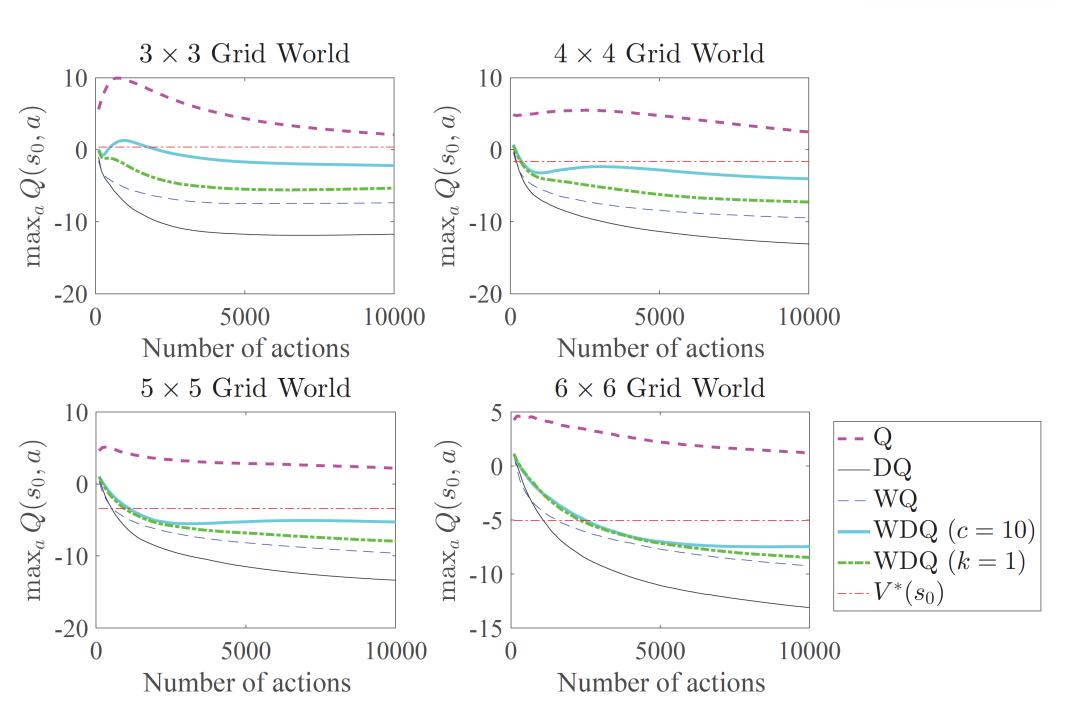
$$eta^U \leftarrow rac{|Q^V(s',a^*) - Q^V(s',a_L)|}{c + |Q^V(s',a^*) - Q^V(s',a_L)|}$$

Bias-corrected Q-learning [Lee and Powell, AAAI 2012] Single estimator - a bias correction term

Weighted Q-learning [D'Eramo et al., ICML 2016]
Weighted estimator, a weighted mean of all the sample means
(normal distributions)

#### Variants





#### A state-of-the-art: REDQ



#### Algorithm 1 Randomized Ensembled Double Q-learning (REDQ)

- 1: Initialize policy parameters  $\theta$ , N Q-function parameters  $\phi_i$ ,  $i=1,\ldots,N$ , empty replay buffer  $\mathcal{D}$ . Set target parameters  $\phi_{\text{targ},i} \leftarrow \phi_i$ , for  $i=1,2,\ldots,N$
- 2: repeat
- 3: Take one action  $a_t \sim \pi_{\theta}(\cdot|s_t)$ . Observe reward  $r_t$ , new state  $s_{t+1}$ .
- 4: Add data to buffer:  $\mathcal{D} \leftarrow \mathcal{D} \cup \{(s_t, a_t, r_t, s_{t+1})\}$
- 5: **for** G updates **do**
- 6: Sample a mini-batch  $B = \{(s, a, r, s')\}$  from  $\mathcal{D}$
- 7: Sample a set  $\mathcal{M}$  of M distinct indices from  $\{1, 2, ..., N\}$
- 8: Compute the Q target y (same for all of the N Q-functions):

$$y = r + \gamma \left( \min_{i \in \mathcal{M}} Q_{\phi_{ ext{targ}, i}} \left( s', \tilde{a}' 
ight) - lpha \log \pi_{ heta} \left( \tilde{a}' \mid s' 
ight) 
ight), \quad \tilde{a}' \sim \pi_{ heta} \left( \cdot \mid s' 
ight)$$

- 9: **for** i = 1, ..., N **do**
- 10: Update  $\phi_i$  with gradient descent using

$$\nabla_{\phi} \frac{1}{|B|} \sum_{(s,a,r,s') \in B} \left( Q_{\phi_i}(s,a) - y \right)^2$$

- 11: Update target networks with  $\phi_{\text{targ},i} \leftarrow \rho \phi_{\text{targ},i} + (1-\rho)\phi_i$
- 12: Update policy parameters  $\theta$  with gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} \left( \frac{1}{N} \sum_{i=1}^{N} Q_{\phi_i} \left( s, \tilde{a}_{\theta}(s) \right) - \alpha \log \pi_{\theta} \left( \tilde{a}_{\theta}(s) | s \right) \right), \quad \tilde{a}_{\theta}(s) \sim \pi_{\theta}(\cdot \mid s)$$

# Prioritized experience replay



In DQN, replay memory is key to stabilize training many transitions have small errors, a few have large errors

Prioritizing with TD-error

$$P(i) = \frac{p_i^{\alpha}}{\sum_k p_k^{\alpha}}$$

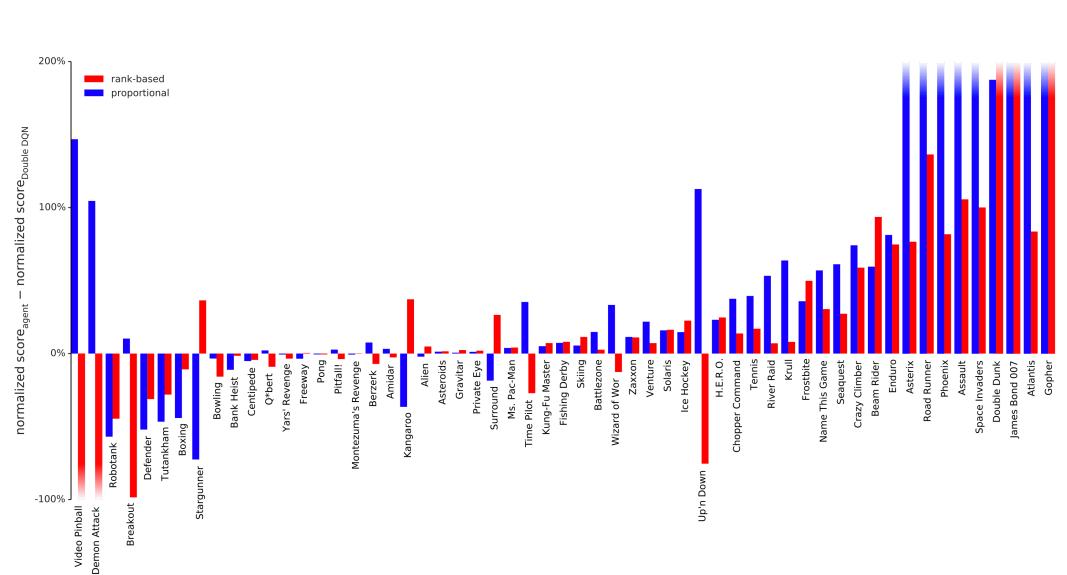
where  $p_i$  is the TD-error or its variants on sample i

Annealing weight on TD-error:

$$w_i = \left(rac{1}{N} \cdot rac{1}{P(i)}
ight)^eta$$
 with beta approaching 1 from 0

# Prioritized experience replay





#### A solution to the prioritized exp. replay



$$\min_{w_k} \qquad \qquad \eta(\pi^*) - \eta(\pi_k)$$

s.t. 
$$Q_k = \underset{Q \in \mathcal{Q}}{\operatorname{argmin}} \ \mathbb{E}_{\mu}[w_k(s, a) \cdot (Q - \mathcal{B}^* Q_{k-1})^2(s, a)]$$

$$w_k(s,a) = \underbrace{\frac{1}{Z^*}}_{(a)} \left( \underbrace{\frac{d^{\pi_k}(s,a)}{\mu(s,a)}}_{(b)} \underbrace{(2 - \pi_k(a|s))}_{(c)} \underbrace{\exp\left(-|Q_k - Q^*|(s,a)\right)}_{(d)} \underbrace{|Q_k - \mathcal{B}^*Q_{k-1}|(s,a)}_{(e)} + \underbrace{\epsilon_k(s,a)}_{(f)} \right)$$

- (a): Normalization term.
- (b): Importance sampling term [Sinha et al., 2020].
- (c): Less action probability.

- (d): Closer value estimation to oracle [Kumar et al., 2020].
- (e): Higher hindsight Bellman error [Kumar et al., 2020].
- (f): Error term.