II

Lecture 2: Search 1

Search problem: example 1

7 2 4 1 2
5 6 4 5
8 3 1 7 8

Start State Goal State

Search problem: example 2

] Oradea
Neamt
- 87
75 .
] lasi
Arad
Sibi 92
IDIU 99 Fagaras
118 .
JVaslui
80
Timisoara Rimnicu Vilcea
]
142
Il] Lugoj Pitesti 211
70 = 98 .
_ 35 : : Hirsova
[JMehadia 101 . Urziceni
Q 36
[E 138 Bucharest
Dobreta [120 %
ICraiova Eforie

[]Giurgiu

Key parts

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Search problems
A search problem is defined by 5 components:

initial state
possible actions (and state associated actions)

transition model
taking an action will cause a state change

goal test
judge if the goal state is found

path cost
constitute the cost of a solution

Problems

] Oradea
71 N
eamt
]
u i 87
Zerind
75 151 _
] lasi
AradT
L 140 Sibi 9
IDIU 99 Fagaras
118 JVaslui
80
Timisoara lemcu Vilcea
142
. . 211
111 Lugoj Pitesti
]
70 .
35 98 Hirsova
[dMehadia 101 . Urziceni
Q 36
5 138 Bucharest
Dobreta [120 %
ICraiova Eforie

[]1Giurgiu

Problems

initial state e.g., “at Arad”

successor function S(x) = set of action—state pairs

e.g., S(Arad) = {(Arad — Zerind, Zerind), ...}

goal test, can be
explicit, e.g., * = "at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be > (

A solution is a sequence of actions
leading from the initial state to a goal state

Problems
we assume

observable states (a seen state is accurate)
In partial observable case, states are not accurate

discrete states
there are also continuous state spaces

deterministic transition
there could be stochastic transitions

Example: vacuum world

CER R E I
Y& P : e

states?7: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Example: 8-puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test?7: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard|

Agent that searches

can simple reflex agents do the search?

What the world
is like now
— : What action |
Condition—action rules should do now

Agent that searches

can reflex agents with state do the search?

A
-
\
I
|
I
|
/

~
N Sensors =

Y
(How the world evoIv@—» ivsvnfétr?gwworld

@hat my actions do

JUSWIUOJIAUT

|
— : What action |
(Condition—-action ruIeE—» should do now

Actuators

Agent

.

consider goal-based agents

-

p—
— —

¥ =~
N Sensors =
\
What the world

Q—Iow the world evolves

is like now

CWhat my actions do

What it will be like
if | do action A

kAgent

What action |
@ ™1 should do now

i

Actuators

JUSWUOJIAUT

consider goal-based agents

— —
— —

¥ =~
N Sensors =

Zer
75 >

:

Ara \\

@ow the world evolves ysvnsé trr:(()awworld
¥ m
110 y :
- What it will be like <
(What my actions do if | do action A =
71l 21| 4 o
3

5 6
®
8 3 1 Wh y | l?l-
() at action
—— Goals should do now

3

kAgent Actuators -

predefined

ossibl
possible goal

movements

Start State

transition model by world rules

Y 7~ D

N\ Sensors =
Ara (__Qtate = \\ l 71l 21l & 1 W2 1 3
6 6
How the world evoIv S Ivsvnsétrr]‘gwworld 5 4[| 5
¥ m 8 3 1 7 8
110 : Y . :
@V hat my actions do V\Ilfhlaéc';f ;\gllic?r? kke é Start State Gont Stae
70 2|l & S
: ‘ [Oradea N
o ol I
S 3 @ What action | =
at action
Start State Goals should do now
kAgent Actuators >
: redefined
possible P |
Oa
movements 9

Extra knowledge

number of key operations

time complexity:
number of key bits stored

space complexity:

nl2mnn2
1007

the big O representation: ol
O(1) O(nn) O(M) OM) = |

o@") O(nn) %

20
10 s SEIBIBBRIS P2 e o i l6g327"
2

00 10 20 30 40 50 60 70 80 90 100
n

[from wikipedia: “Big O”]

NP-hardness and NP-completness

Search Algorithms on Graphs

Tree structure

root
| node
Encyclopaedia
subtree
Science Culture
leaf branch
Art Craft

[from wikipedia: “Tree structure”]

binary tree: each node has at most two branches

search tree: a tree data structure for search

State v.s. node

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!
parent, action
A

State || 5 ||| 4 Node depth =6
g=6
6 1 8
= ale
7l 3|l 2 st

The EXPAND function creates new nodes, filling in the various fields and
using the SUCCESSORF'N of the problem to create the corresponding states.

What the world
How the world evolves

: What it will be like
What my actions do if | do action A

the search does NOT
change the world!

What action |
should do now

only actions change
the world

evolves in a tree structure:
use tree search to find the goal

Tree search

1. start from the initial state (root)
2. expand the current state

essence of search: following up one option now and putting
the others aside

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

all search algorithms share this tree search structure
they vary primarily according to how they choose which state
to expand --- the so-called search strategy

Storage data structure

Insert remove

>

(

Push

Back Front

Dequeue
Enqueue

[images from https://stackoverflow.com/questions/10974922/what-is-the-
basic-difference-between-stack-and-queue]

i
m

stack gqueue

GGeneral tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node «+— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return node
fringe < INSERTALL(EXPAND(node, problem), fringe)

note the time pf goal-
test: expanding time
not generating time

function EXPAND(node, problem) returns a set of nodes

successors <— the empty set

for each action, result in SUCCESSOR-FN(problem, STATE[node]) do
s<—a new NODE
PARENT-NODE[s] «+— node; ACTION[s] «— action; STATE[s] < result
PATH-COST[s] «— PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] «— DEPTH[node] + 1
add s to successors

return successors

Example

- N T ——
—— N ——
/// N T

/‘—/\/ /'L-\ \/\—-\

_ Sibiu_ Timisoara _Zerind D
—7N ~ /N /N

-~ N T~ / AN / AN

- / N T~ / \ / N\
= _ L I N ~a _ L N L N

_ Arad) /F agaras) ¢ Oradea /Fhmmcuvnceab _ Arad N LUQOJ/W _ Arad) /Oradeaﬁ
RN /K\ /K\ .7 ~. .7 ~. //\\ .7 ~. VRN

[]Vaslui

[JHirsova
86

Dobreta []
Eforie

Example

Dobreta []
Eforie

Example

[]Oradea

[JMehadia

Dobreta []
Eforie

Example

[]Oradea

Arad[]

118

[JMehadia

Dobreta []
Eforie

Graph search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return node
fringe < INSERTALL(EXPAND(node, problem), fringe)

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node «<— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)
end

Graph separation property

the frontier (expandable leaf nodes) separates the visited
and the unexplored nodes

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated /expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be co)

Uninformed Search Strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search

lterative deepening search

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

/ N
/ AN
— 4 \\/-
(B) ()
/\ /\

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(4)
(B G
>O ® ©® ©

Properties

Complete?? Yes (if b is finite)

Time?? 14+b+0>+b03+ ...+ 0+ b(b? —1) = O(b*1), i.e., exp. in d
Space?? O(b%) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB /sec
so 24hrs = 8640GB.

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

20)

P yd N
e N
(B) Q)
g \? be
[4
ORERONEEG IR
/ \ / \ / \ / \
) (1) () K) L) M) N) (0)

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
(A)
>(B) o
/7 \ /7 \
OEERCEERGENRG
/ \ / \ / \ / \

GRORORORORORORQ

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

/ '\
GEERC
P N O S
H) 1)) & L) M)))

Depth-first search

Implementation:
fringe = LIFO queue, i.e., put successors at front

/7 \
ORERC
AN AN A
{OXORORORORURONG

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

/ N\
GERC
/\ /\ /\
OROEORURORQ

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

/7 \

GG
P S TPy
() K) L) M) N) (0)

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

/ N\
OEERO
ANA

ORORGORCO)

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

/ N\

OEERC

ANA
© @ M ©)

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(4)
10

Properties

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces with repeated states avoid

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear spacel!

Optimal?? No

Uniform-cost search

Breadth-first search: First In First Out queue
Depth-first search: Last In First Out queue (stack)
Uniform-cost search: Priority queue (least cost out)

part of the map

Sibiu Fagaras

Rimnicu Vilcea

Pitesti

Bucharest

Uniform-cost search

Breadth-first search: First In First Out queue
Depth-first search: Last In First Out queue (stack)
Uniform-cost search: Priority queue (least cost out)

part of the map

... cost=99
Sibiu 99 Fagaras

cost=80 \ 80
Rimnicu Vilcea

Pitesti

Bucharest

Uniform-cost search

Breadth-first search: First In First Out queue
Depth-first search: Last In First Out queue (stack)
Uniform-cost search: Priority queue (least cost out)

part of the map

... cost=99
Sibiu 99 Fagaras

cost=80 \ 80
Rimnicu Vilcea

97 Pitesti

cost=177

Bucharest

Uniform-cost search

Breadth-first search: First In First Out queue
Depth-first search: Last In First Out queue (stack)
Uniform-cost search: Priority queue (least cost out)

part of the map

... cost=99
Sibiu 99 Fagaras

cost=80 \ 80

Rimnicu Vilcea
cost=310

97 Pitesti

cost=177

Bucharest

Uniform-cost search

Breadth-first search: First In First Out queue
Depth-first search: Last In First Out queue (stack)
Uniform-cost search: Priority queue (least cost out)

part of the map

... cost=99
Sibiu 99 Fagaras

cost=80 \ 80

Rimnicu Vilcea
cost=310

97 Pitesti

cost=177

101
cost=278

Bucharest

Uniform-cost search

Breadth-first search: First In First Out queue

Depth-first search: Last In First Out queue (stack)

Uniform-cost search: Priority queue (least cost out)
Equivalent to breadth-first if step costs all equal

part of the map

... cost=99
Sibiu Fagaras

cost=80

cost=310

101
cost=278

Bucharest

best path from Sibiu to Bucharest

Properties

Complete?? Yes, if step cost > ¢

Time?? # of nodes with ¢ < cost of optimal solution, O(bm*/d)
where C” is the cost of the optimal solution

Space?? # of nodes with ¢ < cost of optimal solution, O(b(c*/d)

Optimal?? Yes—

Question: why it is optimal?

Breadth-first v.s. depth-first

Breadth-first: faster, larger memory
Depth-first: less memory, slower

Question: how to better balance time and space?

Depth-limited search

limit the maximum depth of the depth-first search

1.e., nodes at depth [have no successors

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln /fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE([problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? «+— false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH|[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result < RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? « true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

lterative deepening search

try depth-limited search with increasing limit

restart the search at each time

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
inputs: problem, a problem

for depth«+— 0 to co do
result «—— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

end

Example

Limit=0 ;@ N o
Limit=1) />@ - (4)
By e >(5) ©
Limit = 3 //3@\\\ (A)
Q Q '@ ©
VRN VERN /N /N
R OEENG RO R OGO EIRC

/ '\ \
Ve >
@0

Aty G &
L WP D

/ \}
f a >
OEERG

A by a6 ¢
L WP Y

Properties

Complete?? Yes

Time?? (d+)b + db' + (d — 1)b* + ... + b? = O(b?)
Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50+ 400 + 3,000 + 20,000 + 100, 000 = 123, 450
N(BFS) = 10+ 100 4 1,000 + 10, 000 + 100, 000 4+ 999,990 = 1,111, 100

IDS does better because other nodes at depth d are not expanded

BFS can be modified to apply goal test when a node is generated

Summary

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, if | > d Yes
Time bt plC /el b bl b
Space b+l plC /el bm bl bd
Optimal? Yes* Yes No No Yes*

HW1

YEMl/ &

(JEHEA: 9H28H23:59

