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Lecture 6
Value Function Approximation



Tabular presentation, so far

10
12

14
10

We need to store |S||A| number of cells

What if there are too many states ?

note: cells are independent and isolated

cannot generalize to similar states
What if there are infinite number of states (continuous)?
What if the action is continuous?



Feature vectors

MDP with state ID State feature vector

}A < ‘ g )’ : L
| =4
V{ J -J

[temperature, lightness,
humidity, rainfall]

rainy

0.2/2

0.3/1

feature vectors also relates the states
e.g. sunny is close to cloudy than rainy
allows generalization over states



Value function approximation

function approximation

as a supervised learning problem

function f data approximation h



Value function approximation

value function approximation

V value st —» @ — V(s

St —*>
Q value —> Q(s, a)

ar —»

commonly, we parameterize the approximation function
with parameter §

Vo(st), Qo(st,at)



What are the approximation models?

exactly the supervised learning models

— linear models

— linear models with kernels
— nearest neighbors

— decision trees

— neural networks

RL usually requires more complex models than SL



Approximation objective

learning a model that approximate the true value func.
2
J(w) = Bour (V7(5) = Vau(s) )

J(w) = Fs grr (Q”(s, a) — Qul(s, a))2

why mean square?
V and Q are expectations, mean square leads to unbiased approximation

Let u™ denote the stationary distribution of states following 7
2
Tw) = [ 156 (V) = Vals)) ds
S
2
J(w) = / ,u”(s)/ m(als) (Q”(s,a) — Qw(s,a)) da ds
S A



Solve the parameters

2
w* = argmin J(w) = argmin F g (Q”(s, a) — Qu(s, a))

for one state-action data sample
online environment: stochastic gradient on single sample

2
w* = argmin (Q(s,a) ~ Qu(s,a))

how to solve ? assume differentiable

8w'](w) — —Z(QW(S,Q) T Qw(sa a))vaw(Sv a)

update w towards negative derivative

Aw = a(Q7(s,a) — Qu(s,a))VyQuw(s,a)



Recall the Q update rules

Aw = a(Q7(s,a) — Qu(s,a))VyQuw(s, a)

Recall the errors:
MC update: Q(st, a,t)—l— = Oz(R — Q(Su at))

TD update:  Q(s¢, a¢)+ = a(rir1 + 7YQ(St41, ar41) — Q(S¢, ar))

- target model

replace Q table updates by parameter updates



Update with value function approximation

MC update:
A’U] — Oé(R o Qw(8t7 Clt))vaw(St, a't)

TD update:

Aw = a(rip1 + YQuw(St+1,0t41) — Qu(5t,01)) Vi Qu (8¢, at)



MC RL with function approximation

w = 0
for +=0, 1, ..., m
generate trajectory <sp, ap, 11, Si, ..., ST> by ¢
for t=0, 1, ..., T-1
R = sum of rewards from ¢ to 1" *]]
w=w+ (R — Qu(st,at))VQuw(st, az)
end for
update policy 7(s) = argmax Qu(s,a)

end for

-1 W(S%ai)

i=t+1 1,




Q-learning with function approximation

w = 0, initial state
for =0, 1, ...
s’, r = do action from policy 7,

J

o’ =m(s’)

w=w+ a(r + _ —-)Vwa(s, a)
m(s) = arg max Quw(s,a)

s=5s8,a=da

end for




Approximation model

Linear model

encode state-actions into one vector ¢(S, a)
Qw(sy a) — w—r¢(87 CL)
vw@w(sa a') — ¢(37 a')

the encoding is crucial

s H
S S
(s, a) a4 1—
a H
a
00—




Approximation model

Linear model

each action has a vector
Qu, (s) = w, B(s)
vwa Qwa (8) — ¢(S)

question: can we modify Q(s,a) or the policy easily?



Approximation model
Linear model with kernels

kernel trick brings nonlinearity into linear model

_HZE B yH )

example: K (z,y|width) = exp(width . o2

given a set of “training data” (s;, a,)
and a kernel function K

Qu(s,a) = Z w; K (P(s,a), p(si,a;))

Ve Quls,a) = [K(6(s,a), dls1,01)), K (6(5,), 6(52,02)), - K(6(5,0), S (5, )



Approximation model

Decision-tree model

decision-tree model can do regression

use regression to learn Q values

decision-tree model is not differentiable

model-update is a re-train

decision-tree model is more interpretable



Approximation model

Neural network model

(s, a)

2 &8 & B

parameters w

Neural network model is differentiable

w=w+a(r+7Qu(s’, a) — Qu(s,a)) VuQu(s,a)

follow the BP rule
to pass the gradient



Batch update

learning on single sample introduces large variance,
particularly for high-capacity models

Batch mode is straightforward:
collect trajectory and history data

D ={(s1,V{"), (52, V5 ), ..., (5m, V) }

solve batch least square objective

J(w) = Ep[(V™ = V(s))"]

linear function: closed form
neural networks: batch update/repeated stochastic update

LSMC, LSTD, LSTD())



Batch methods

Batch mode policy iteration: LSPI with linear model

()o = 0, initial state
for +=0, 1, ...
collect data D = {(s1,a1),(s2,a2),...}

m(s) = arg max Qu(s,a)

end for




More objectives

MSE: mean square error D

J(w) = Bor (V7 (s) - Vw(s)>2

MSBE: mean square Bellman error GTD (gradient TD)

J(w) = Eor (va(s) _ Vw(s))2

TVw(s) = Egp(s.n(s) (s, m(s), s") + V(8]

[Baird, L. C. Residual algorithms: Reinforcement learning with function approximation. In ICML’95]

[Baird, L. C. Reinforcement Learning Through Gradient Descent. PhD thesis, Carnegie-Mellon University, 1999]
[Hamid Reza Maei. Gradient Temporal-Difference Learning Algorithms. PhD thesis, University of Alberta, 2011.
https://era.library.ualberta.ca/items/fd55edcb-ce47-4f84-84e2-be281d27b16a/view/373459a7-72d1-4de2-
bcd5-5f51e2f745e9/Hamid_Maei_PhDThesis.pdf]



An example representation should be considered

MSBE: mean square Bellman error
2
J(w) = By (Twi(s) — w” ¢(s))

TUJ¢(S) — ES/NP(S,T('(S))[R(S 7T( ) )+7w ¢( /)]

can be out of the representation space of w

MSPBE: mean square projected Bellman error GTD2
2
J(w) = Eyr (ITwo(s) —w " 6(s) )
Twe(s)

wo(s) /\HTU@(S)

[Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba Szepesvari, Eric Wiewiora. Fast gradient-
descent methods for temporal-difference learning with linear function approximation. ICML 2009: 993-1000]



