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Lecture 7/
Policy Gradient



Policy degradation in value function based methods

[Bartlett. An Introduction to Reinforcement Learning Theory: Value Function
Methods. Advanced Lectures on Machine Learning, LNAI 2600]

Y% optimal policy: red
r(1)=0 ” a r(2)=1 ) .
b(1)=2 @%@ bt V@>VH)>0

let V(s) = we(s), to ensure V(2) > V (1), w < 0

as value function based method minimizes || V-V I
resultsinw > 0

Policy Search




Policy search

| a l
9 3 [environment}
f S, T

recall in Lecture 3, we use black box search

we are to use the MDP structure



Policy space

for parameterized differentiable models, we
consider parameter space

for nonparametric / non-differentiable models,
we consider function space



Parameterized policy
parameterized model  f(s;0) - f

Discrete actions: Gibbs policy (logistic regression)

f(s;60) has |Al output heads  f(als;0)is the output of head a

exp(f(als;0))
> . exp(f(a’]s;0))

mg(als) =

Continuous action: Gaussian policy

f(5;0) has 2 output heads
. . 2
mo(als) = 1 = €XP ( (f(879)2 2 )
O

27 o



Direct objective function — Trajectory wise
episodic environments @/ \@

trajectory space:
all possible trajectories

S
S
S

S o000

ith actions

combinatio

>

probability of generating a trajectory by policy
trajectory T = Sp,Q1,81,02,...,8T
T

probability  pe(7) = p(so) | [ p(silas, si—1)me(ailsi—1)
1=1

expected total reward

7(0) = /T po(T)R(T) dr



From trajectories to stationary distribution

ignoring actions and consider 3 steps

“ g@ |£|> probability of all state s
d™ (s)

occupancy measure

=) ~'P(s; = s|m) note 7' =
t—0 =0 k

stationary distribution (state)

d"(s) = (1—=7) Y 7' P(s; = s|m)

stationary distribution (state, action) d" (s, a) ZytP sy = s|m)m(als)



Direct objective function — Stationary dist.

continuing environments: one-step MDPs

d"? is the stationary distribution

e.g. ignoring actions and consider 3 steps

| QC? I£l> probability of all state s
' "™ (s)

expected total reward

J(6) :dee(s)[qﬂg(a\s)r(s,a) ds da

assume ris stationary

VT(s) = E|d"(s,a)r(s,a)



Analytical optimization

VoJ(0)= | Vepe(r)R(7) dr logarithm trick

Tra

VoJ(0) = /T po(T)Vglogpe(T)R(T) dT Vopo = po Vo log pe

T
po(T) = p(so0) Hp(si\ai, s;i—1)mo(a;|s;—1) structure information
i=1

T

Vg logpe(T Z Vg logmg(a;|s;—1) + const
1=1



Analytical optimization

exp(0; ¢(s))
Zj eXp(9;¢(3))

Gibbs policy my(t|s) =

P(sisa;)(1 — molaglsi)), =17

Vg, log mg(ai|s;) = {—qﬁ(si,ai)ﬂe(@isi) 1 £ ]

1 T )2
Gaussian policy mg(als) = exp (_ (¢ ¢(S)2 a) >
2mo? o
o' —
Vo, log mo(ai]si) = ~2 &S —RS) o

0



Analytical optimization

T
gradient:  VoJ(6) = [ po(r) Y Valog mo(ailsio1) B(r) dr
Tra

1=1

— E[Z Vologmg(a;|si—1)r(s:,a:)]

1=1

use samples to estimate the gradient (unbiased estimation)



Analytical optimization: One-step MDPs
() = / 47 (s) / ro(als)r(s, a) ds da
S A
logarithm trick Vgmg = mg Vg log mg
VoJ(0) :/d”(s)/ mo(a|s)Vglogmg(als)r(s,a) ds da
S A

= FE|Vglogmg(als)r(s,a)]

T
equivalent to  E[Y  Velogmg(ai|s;)R(si,a;)]

1=1

use samples to estimate the gradient (unbiased estimation)



Nonparametric/nondifferential models

base model f(s;6)

N
aggregated model  F(s) = > _ fi(s)

a decision-tree model

Discrete actions: Gibbs policy (logistic regression)

(el = ER(als)
5. exp(F(a/]5))

Continuous action: Gaussian policy

mr(als) = ! exp <— (F(S)Q_ a)2>

vV 2mo? o



Nonparametric/nondifferential models

J(F) = /5 7 (s) /A wp(als)r(s,a) ds da

aggregated model  Fn(s)

functional gradient update rule

Fyi1 = Fy —FCYVFJ(F)
fN+1=VFpJ(F)

solve the next base model

solve mfmz |f(als) — VrJ(F(als))|?



Nonparametric/nondifferential models

functional gradient
VrJ(F)=FE|Vgplognmp(a|s)r(s,a)l

Then for discrete action space, we have
Vyis,am(al|s)=mre(a|s)(l—-me(als))
and for continuous action space,

Vaew(a| s) = 2ru(a| )(a— ¥(s))/o".



Issue of policy gradient

supervised gradient

J(0) = /p(x)losse(a:) dx

x

policy gradient

sampling

J(0) = ZPG(H)R(T@)

VoJ(0) = Z Vo logmg(als)r(s,a)
(s,a)eD



Issue of policy gradient

policy gradient

J(0) = /T po(T)R(r) dr

black-box optimization with differentiable model

p, o = arg max Fg. nr(,,0)J (T9) = arg max/p(@;u,a2)J(7T9) d6
w,o H,0

policy gradient is more close to black-box optimization with a
differentiable model, only with an MDP structure



Reduce variance by critic: Actor-Critic

learn policy from trajectories high var. -- actor only
learn value functions low var. -- critic only

combine the two for the good of both:
use critic to stably estimate the return

action/decision

agenf [ actor j< ------ [ critic jz |
environment

N\
T ] reward

state

[Grondman, et al. Bartlett. A Survey of Actor-Critic Reinforcement Learning:Standard and Natural Policy Gradients. IEEE Trans. SMC-C, 2012]
[Konda & Tsitsiklis. Actor-Critic Algorithms. NIPS'97]



Reduce variance by critic: Actor-Critic

Maintain another parameter vector w

T
Qw(S, CL) — W ¢(37 CL) ~ QW(Sa a)

value-based function approximated methods to update Qs

MC, TD, TD()), LSPI

Multi-step MDPs: J(6) — /

S

d”(s)/Aﬂg(ab)Q”(s,a) ds da

VoJ(0) = EVglogmg(a|ls)Q™ (s, a)]

[Sutton et al. Policy gradient methods for reinforcement
learning with function approximation. NIPS’00]

Vo J(0) ~ E[Vglogmg(als)Qu(s,a)]
if w is a minimizer of E[(Q™ (s,a) — Qu(s,a))?]

Learn policy (actor) and Q-value (critic) simultaneously



Example

initial state s
for =0, 1, ...
a = m(s)
s’, r = do action a
a’ =7 (s")
0 =1+ vQu(s",a") — Qu(s,a)
0 =60+ Vylogmg(als)Quw(s,a)
w = w + adp(s,a)
s=58,a=da

end for




Control variance by introducing a bias term

for any bias term b(s)
/d”(s)Ve/ mo(als) b(s) dsda =0
S A
esradient with a bias term
Ve J(0) = E[Vglogmg(als)(Q" (s, a) — b(s))]

obtain the bias by minimizing variance
obtain the bias by V(s)

advantage function: A" (s,a) = Q" (s,a) — V™ (s)

VoJ(0) = E|Vglogmg(als)AT (s, a)l

learn policy, Q and V simultaneously



Policy search v.s. value function based

Policy search advantages:

effective in high-dimensional and continuous action space
learn stochastic policies directly
avoid policy degradation

disadvantages:

converge only to a local optimum
high variance



Example: Aliased gridworld

state PO cannot be distinguished
=> same action distribution

deterministic policy: stuck at one side

PO

PO

)

value function based policy is mostly deterministic

stochastic policy: either direction with prob. 0.5

policy search derives stochastic policies

adversarial games commonly require stochastic (mixed)

policy




