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A Algorithms for Experts

In this section, we provide the detail procedures of the two expert-algorithms in PAE and UMA.

A.1 The first expert-algorithm: the slave algorithm of MetaGrad

We use the slave algorithm of MetaGrad to minimize `ηt (·) during interval I .1 We provide the
procedure of expert EηI in Algorithm 3. The generalized projection ΠA

Ω(·) associated with a positive
semidefinite matrix A is defined as

ΠA
Ω(x) = argmin

w∈Ω
(w − x)>A−1(w − x)

which is used in Step 5 of Algorithm 3.

Algorithm 3 Expert EηI : Slave algorithm of MetaGrad
1: Input: Interval I = [r, s], η
2: Let wη

r,I be any point in Ω and Σηr = D2I ,
3: for t = r to s do
4: Update

Σηt+1 = Σηt −
2η2Σηt gtg

>
t Σηt

1 + 2η2g>t Σηt gt

where
gt = ∇ft(wt)

5: Calculate
wη
t+1,I = Π

Σηt+1

Ω

(
wη
t − ηΣηt+1gt

(
1 + 2ηg>t (wη

t −wt)
))

6: end for

A.2 The second expert-algorithm: Adaptive online gradient descent (AOGD)

It is easy to verify that the ˆ̀η
t (·) in (12) enjoys the following property [Wang et al., 2020, Lemma 3

and Lemma 4].

1It is easy to verify that the surrogate loss `ηt (·) in (6) is exp-concave [Wang et al., 2019], so we can also
apply online Newton step (ONS) [Hazan et al., 2007] as an alternative.
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Algorithm 4 Expert ÊηI : Adaptive Online Gradient Descent (AOGD)
1: Input: Interval I = [r, s], η
2: Let ŵη

r,I be any point in Ω
3: for t = r to s do
4: Update

ŵη
t+1,I = ΠΩ

(
ŵη
t,I −

1

αt
∇ˆ̀η

t (ŵη
t,I)

)
where

∇ˆ̀η
t (ŵη

t,I) =η∇ft(wt) + 2η2‖∇ft(wt)‖2(ŵη
t,I −wt)

αt =2η2G2 + 2η2
t∑
i=r

‖∇fi(wi)‖2

5: end for

Lemma 2 Under Assumptions 1 and 2, ˆ̀η
t (·) in (12) is 2η2‖∇ft(wt)‖2-strongly convex, and

max
w∈Ω
‖∇ˆ̀η

t (w)‖ ≤ 2η2‖∇ft(wt)‖2, ∀η ≤
1

5GD
.

Thus, although ˆ̀η
t (·) is strongly convex, the modulus of strong convexity, i.e., 2η2‖∇ft(wt)‖2 is

not fixed. So, we choose AOGD [Bartlett et al., 2008] instead of OGD [Hazan et al., 2007] as the
expert-algorithm to minimize ˆ̀η

t (·) during interval I . We provide the procedure of expert ÊηI in
Algorithm 4. The projection operator ΠΩ(·) is defined as

ΠΩ(x) = argmin
w∈Ω

‖w − x‖.

B Analysis

Here, we present proofs of main theorems.

B.1 Proof of Theorem 1

We start with the meta-regret of PAE over any interval in I.

Lemma 3 Under Assumptions 1 and 2, for any interval I = [r, s] ∈ I and any η ∈ S(s− r + 1),
the meta-regret of PAE with respect to EηI satisfies

s∑
t=r

`ηt (wt)−
s∑
t=r

`ηt (wη
t,I) = −

s∑
t=r

`ηt (wη
t,I) ≤ 2 log2(2s).

The proof of Lemma 3 could be found in Appendix B.1.1. Combining Lemma 3 with the regret
of expert EηI , which is just the regret bound of slave algorithm of MetaGrad over I , we establish a
second-order regret of PAE over any interval in I.

Lemma 4 Under Assumptions 1 and 2, for any interval I = [r, s] ∈ I and any w ∈ Ω, PAE satisfies

s∑
t=r

〈∇ft(wt),wt −w〉 ≤ 3

√√√√a(r, s)

s∑
t=r

〈∇ft(wt),wt −w〉2 + 10DGa(r, s) (18)

where a(·, ·) is defined in (10).

The detailed proof of Lemma 4 is in Appendix B.1.2. To proceed, we introduce the following property
of GC intervals [Daniely et al., 2015, Lemma 1.2].
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Lemma 5 For any interval [p, q] ⊆ [T ], it can be partitioned into two sequences of disjoint and
consecutive intervals, denoted by I−m, . . . , I0 ∈ I and I1, . . . , In ∈ I, such that

|I−i|/|I−i+1| ≤ 1/2, ∀i ≥ 1

and
|Ii|/|Ii−1| ≤ 1/2, ∀i ≥ 2.

Based on the lemma above, we extend Lemma 4 to any interval [p, q] ⊆ [T ]. Specifically, from
Lemma 5, we conclude that n ≤ dlog2(q − p+ 2)e because otherwise

|I1|+ · · ·+ |In| ≥ 1 + 2 + . . .+ 2n−1 = 2n − 1 > q − p+ 1 = |I|.

Similarly, we have m+ 1 ≤ dlog2(q − p+ 2)e.
For any interval [p, q] ⊆ [T ], let I−m, . . . , I0 ∈ I and I1, . . . , In ∈ I be the partition described in
Lemma 5. Then, we have

q∑
t=p

〈∇ft(wt),wt −w〉 =

n∑
i=−m

∑
t∈Ii

〈∇ft(wt),wt −w〉. (19)

Combining with Lemma 4, we have
q∑
t=p

〈∇ft(wt),wt −w〉

≤
n∑

i=−m

3

√
a(p, q)

∑
t∈Ii

〈∇ft(wt),wt −w〉2 + 10DGa(p, q)


=10DG(m+ 1 + n)a(p, q) + 3

√
a(p, q)

n∑
i=−m

√∑
t∈Ii

〈∇ft(wt),wt −w〉2

≤10DG(m+ 1 + n)a(p, q) + 3
√

(m+ 1 + n)a(p, q)

√√√√ n∑
i=−m

∑
t∈Ii

〈∇ft(wt),wt −w〉2

=10DG(m+ 1 + n)a(p, q) + 3
√

(m+ 1 + n)a(p, q)

√√√√ q∑
t=p

〈∇ft(wt),wt −w〉2

≤10DGa(p, q)b(p, q) + 3
√
a(p, q)b(p, q)

√√√√ q∑
t=p

〈∇ft(wt),wt −w〉2.

(20)

When all the online functions are α-exp-concave, Lemma 1 implies
q∑
t=p

ft(wt)−
q∑
t=p

ft(w)

≤
q∑
t=p

〈∇ft(wt),wt −w〉 − β

2

q∑
t=p

〈∇ft(wt),wt −w〉2

(20)
≤ 10DGa(p, q)b(p, q) + 3

√
a(p, q)b(p, q)

√√√√ q∑
t=p

〈∇ft(wt),wt −w〉2

− β

2

q∑
t=p

〈∇ft(wt),wt −w〉2

≤
(

10DG+
9

2β

)
a(p, q)b(p, q).
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B.1.1 Proof of Lemma 3

This lemma is an extension of Lemma 4 of van Erven and Koolen [2016] to sleeping experts. We first
introduce the following inequality [Cesa-Bianchi et al., 2005, Lemma 1].

Lemma 6 For all z ≥ − 1
2 , ln(1 + z) ≥ z − z2.

For any w ∈ Ω and any η ≤ 1
5GD , we have

η〈∇ft(wt),wt −w〉 ≥ −η‖∇ft(wt)‖‖wt −w‖
(2),(3)
≥ −1

5
.

Then, according to Lemma 6, we have

exp (−`ηt (w)) = exp
(
η〈∇ft(wt),wt −w〉 − η2〈∇ft(wt),wt −w〉2

)
≤1 + η〈∇ft(wt),wt −w〉.

(21)

Recall that At is the set of active experts in round t, and Lηt,J is the cumulative loss of expert EηJ . We
have

∑
EηJ∈At

exp(−Lηt,J) =
∑

EηJ∈At

exp(−Lηt−1,J) exp
(
−`ηt (wη

t,J)
)

(21)
≤

∑
EηJ∈At

exp(−Lηt−1,J)
(

1 + η〈∇ft(wt),wt −wη
t,J〉
)

=
∑

EηJ∈At

exp(−Lηt−1,J) +

〈
∇ft(wt),

∑
EηJ∈At

exp(−Lηt−1,J)ηwt −
∑

EηJ∈At

exp(−Lηt−1,J)ηwη
t,J

〉
(9)
=
∑

EηJ∈At

exp(−Lηt−1,J).

(22)
Summing (22) over t = 1, . . . , s, we have

s∑
t=1

∑
EηJ∈At

exp(−Lηt,J) ≤
s∑
t=1

∑
EηJ∈At

exp(−Lηt−1,J)

which can be rewritten as∑
EηJ∈As

exp(−Lηs,J) +

s−1∑
t=1

 ∑
EηJ∈At\At+1

exp(−Lηt,J) +
∑

EηJ∈At∩At+1

exp(−Lηt,J)


≤
∑

EηJ∈A1

exp(−Lη0,J) +

s∑
t=2

 ∑
EηJ∈At\At−1

exp(−Lηt−1,J) +
∑

EηJ∈At∩At−1

exp(−Lηt−1,J)


implying ∑

EηJ∈As

exp(−Lηs,J) +

s−1∑
t=1

∑
EηJ∈At\At+1

exp(−Lηt,J)

≤
∑

EηJ∈A1

exp(−Lη0,J) +

s∑
t=2

∑
EηJ∈At\At−1

exp(−Lηt−1,J)

=
∑

EηJ∈A1

exp(0) +
s∑
t=2

∑
EηJ∈At\At−1

exp(0)

=|A1|+
s∑
t=2

|At \ At−1|.

(23)
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Note that |A1|+
∑s
t=2 |At \ At−1| is the total number of experts created until round s. From the

structure of GC intervals and (7), we have

|A1|+
s∑
t=2

|At \ At−1| ≤ s (blog2 sc+ 1)

(
1 +

⌈
1

2
log2 s

⌉)
≤ 4s2. (24)

From (23) and (24), we have∑
EηJ∈As

exp(−Lηs,J) +

s−1∑
t=1

∑
EηJ∈At\At+1

exp(−Lηt,J) ≤ 4s2.

Thus, for any interval I = [r, s] ∈ I, we have

exp(−Lηs,I) = exp

(
−

s∑
t=r

`ηt (wη
t,I)

)
≤ 4s2

which completes the proof.

B.1.2 Proof of Lemma 4

The analysis is similar to the proofs of Theorem 7 of van Erven and Koolen [2016] and Theorem 1 of
Wang et al. [2019].

From Lemma 5 of van Erven and Koolen [2016], we have the following expert-regret of EηI .

Lemma 7 Under Assumptions 1 and 2, for any interval I = [r, s] ∈ I, any w ∈ Ω and any
η ∈ S(s− r + 1), the expert-regret of EηI satisfies

s∑
t=r

`ηt (wη
t,I)−

s∑
t=r

`ηt (w) ≤
‖wη

r,I −w‖2

2D2
+

1

2
ln det

(
I + 2η2D2

s∑
t=r

Mt

)
,

where Mt = gtg
>
t and gt = ∇ft (wt). Based on Lemma 7, we have

s∑
t=r

`ηt (wη
t,I)−

s∑
t=r

`ηt (w)
(2)
≤1

2
+

1

2

d∑
i=1

ln

(
1 + 2η2D2λi

(
s∑
t=r

gtg
>
t

))

≤1

2
+
d

2
ln

(
1 +

2η2D2

d

d∑
i=1

λi

(
s∑
t=r

gtg
>
t

))

=
1

2
+
d

2
ln

(
1 +

2η2D2

d
tr

(
s∑
t=r

gtg
>
t

))

=
1

2
+
d

2
ln

(
1 +

2η2D2

d

s∑
t=r

‖gt‖22

)

≤1

2
+
d

2
ln

(
1 +

2

25d
(s− r + 1)

)
where the second inequality is by the concavity of the function lnx and Jensen’s inequality and the
last inequality is due to η ≤ 1

5DG . Combining the regret bounds in Lemmas 3 and 7, we have

−
s∑
t=r

`ηt (w) =η

s∑
t=r

〈∇ft(wt),wt −w〉 − η2
s∑
t=r

〈∇ft(wt),wt −w〉2

≤2 log2(2s) +
1

2
+
d

2
ln

(
1 +

2

25d
(s− r + 1)

)
for any η ∈ S(s− r + 1). Thus,
s∑
t=r

〈∇ft(wt),wt−w〉 ≤
2 log2(2s) + 1

2 + d
2 ln

(
1 + 2

25d (s− r + 1)
)

η
+η

s∑
t=r

〈∇ft(wt),wt−w〉2

(25)
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for any η ∈ S(s− r + 1).

Let a(r, s) = 2 log2(2s) + 1
2 + d

2 ln
(
1 + 2

25d (s− r + 1)
)
≥ 2. Note that the optimal η∗ that

minimizes the R.H.S. of (25) is

η∗ =

√
a(r, s)∑s

t=r〈∇ft(wt),wt −w〉2
≥

√
2

GD
√
s− r + 1

.

Recall that

S(s− r + 1) =

{
2−i

5DG

∣∣∣∣ i = 0, 1, . . . ,

⌈
1

2
log2(s− r + 1)

⌉}
.

If η∗ ≤ 1
5DG , there must exist an η ∈ S(s− r + 1) such that

η ≤ η∗ ≤ 2η.

Then, (25) implies
s∑
t=r

〈∇ft(wt),wt −w〉 ≤2
a(r, s)

η∗
+ η∗

s∑
t=r

〈∇ft(wt),wt −w〉2

=3

√√√√a(r, s)
s∑
t=r

〈∇ft(wt),wt −w〉2.

(26)

On the other hand, if η∗ ≥ 1
5DG , we have
s∑
t=r

〈∇ft(wt),wt −w〉2 ≤ 25D2G2a(r, s).

Then, (25) with η = 1
5DG implies

s∑
t=r

〈∇ft(wt),wt −w〉 ≤ 5DGa(r, s) + 5DGa(r, s) = 10DGa(r, s). (27)

We complete the proof by combining (26) and (27).

B.2 Proof of Theorem 2

We first show the meta-regret of UMA, which is similar to Lemma 3 of PAE.

Lemma 8 Under Assumptions 1 and 2, for any interval I = [r, s] ∈ I and any η ∈ S(s− r + 1),
the meta-regret of UMA satisfies

s∑
t=r

`ηt (wt)−
s∑
t=r

`ηt (wη
t,I) = −

s∑
t=r

`ηt (wη
t,I) ≤ 2 log2(2s),

s∑
t=r

ˆ̀η
t (wt)−

s∑
t=r

ˆ̀η
t (ŵη

t,I) = −
s∑
t=r

ˆ̀η
t (ŵη

t,I) ≤ 2 log2(2s).

The proof of Lemma 8 is provided in Appendix B.2.1. Combining with the expert-regret of EηI and
ÊηI , we prove the following second-order regret of UMA over any interval in I, which is similar to
Lemma 4 of PAE.

Lemma 9 Under Assumptions 1 and 2, for any interval I = [r, s] ∈ I and any w ∈ Ω, UMA
satisfies

s∑
t=r

〈∇ft(wt),wt −w〉 ≤3

√√√√a(r, s)

s∑
t=r

〈∇ft(wt),wt −w〉2 + 10DGa(r, s), (28)

s∑
t=r

〈∇ft(wt),wt −w〉 ≤3G

√√√√â(r, s)

s∑
t=r

‖wt −w‖2 + 10DGâ(r, s) (29)

where a(·, ·) and â(·, ·) are defined in (10) and (17), respectively.
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The detailed proof of Lemma 9 is shown in B.2.2. Based on the property of GC intervals [Daniely
et al., 2015, Lemma 1.2], we extend Lemma 9 to any interval [p, q] ⊆ [T ], which implies Theorem 2.
Notice that (28) is the same as (18), so Theorem 1 also holds for UMA. In the following, we prove
(15) in a similar way. Combining (19) with (29), we have

q∑
t=p

〈∇ft(wt),wt −w〉

≤
n∑

i=−m

3G

√
â(p, q)

∑
t∈Ii

‖wt −w‖2 + 10DGâ(p, q)


=10DG(m+ 1 + n)â(p, q) + 3G

√
â(p, q)

n∑
i=−m

√∑
t∈Ii

‖wt −w‖2

≤10DG(m+ 1 + n)â(p, q) + 3G
√

(m+ 1 + n)â(p, q)

√√√√ n∑
i=−m

∑
t∈Ii

‖wt −w‖2

=10DG(m+ 1 + n)â(p, q) + 3G
√

(m+ 1 + n)â(p, q)

√√√√ q∑
t=p

‖wt −w‖2

≤10DGâ(p, q)b(p, q) + 3G
√
â(p, q)b(p, q)

√√√√ q∑
t=p

‖wt −w‖2.

(30)

We proceed to prove (16). If we upper bound
∑q
t=p ‖wt −w‖2 in (15) by D2(q − p+ 1), we arrive

at
q∑
t=p

〈∇ft(wt),wt −w〉 ≤ 10DGâ(p, q)b(p, q) + 3DG
√
â(p, q)b(p, q)

√
q − p+ 1

which is worse than (16) by a
√
b(p, q) factor. To avoid this factor, we use a different way to simplify

(30):

q∑
t=p

〈∇ft(wt),wt −w〉

≤
n∑

i=−m

3G

√
â(p, q)

∑
t∈Ii

‖wt −w‖2 + 10DGâ(p, q)


=10DG(m+ 1 + n)â(p, q) + 3G

√
â(p, q)

n∑
i=−m

√∑
t∈Ii

‖wt −w‖2

≤10â(p, q)b(p, q) + 3DG
√
â(p, q)

n∑
i=−m

√
|Ii|.

(31)

Let J = [p, q]. According to Lemma 5, we have [Daniely et al., 2015, Theorem 1]

n∑
i=−m

√
|Ii| ≤ 2

∞∑
i=0

√
2−i|J | ≤ 2

√
2√

2− 1

√
|J | ≤ 7

√
|J | = 7

√
q − p+ 1. (32)

We get (16) by combining (31) and (32).
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When all the online functions are λ-strongly convex, Definition 1 implies

q∑
t=p

ft(wt)−
q∑
t=p

ft(w)

≤
q∑
t=p

〈∇ft(wt),wt −w〉 − λ

2

q∑
t=p

‖wt −w‖2

(15)
≤ 10DGâ(p, q)b(p, q) + 3G

√
â(p, q)b(p, q)

√√√√ q∑
t=p

‖wt −w‖2 − λ

2

q∑
t=p

‖wt −w‖2

≤
(

10DG+
9G2

2λ

)
â(p, q)b(p, q).

B.2.1 Proof of Lemma 8

The analysis is similar to that of Lemma 3. We first demonstrate that (21) also holds for the new
surrogate loss ˆ̀η

t (·).

Notice that
〈∇ft(wt),wt −w〉2 ≤ ‖∇ft(wt)‖2‖wt −w‖2. (33)

As a result, we have

exp
(
−ˆ̀η

t (w)
)

= exp
(
η〈∇ft(wt),wt −w〉 − η2‖∇ft(wt)‖2‖wt −w‖2

)
(33)
≤ exp

(
η〈∇ft(wt),wt −w〉 − η2〈∇ft(wt),wt −w〉2

)
= exp (−`ηt (w))

(21)
≤ 1 + η〈∇ft(wt),wt −w〉

(34)

for any w ∈ Ω.

Then, we repeat the derivation of (22), and have∑
EηJ∈At

exp(−Lηt,J) +
∑

ÊηJ∈Ât

exp(−L̂ηt,J)

=
∑

EηJ∈At

exp(−Lηt−1,J) exp
(
−`ηt (wη

t,J)
)

+
∑

ÊηJ∈Ât

exp(−L̂ηt−1,J) exp
(
−ˆ̀η

t (ŵη
t,J)
)

(21),(34)
≤

∑
EηJ∈At

exp(−Lηt−1,J)
(

1 + η〈∇ft(wt),wt −wη
t,J〉
)

+
∑

ÊηJ∈Ât

exp(−L̂ηt−1,J)
(

1 + η〈∇ft(wt),wt − ŵη
t,J〉
)

=
∑

EηJ∈At

exp(−Lηt−1,J) +
∑

ÊηJ∈Ât

exp(−L̂ηt−1,J)

+

〈
∇ft(wt),

 ∑
EηJ∈At

exp(−Lηt−1,J)η +
∑

ÊηJ∈Ât

exp(−L̂ηt−1,J)η

wt

〉

−

〈
∇ft(wt),

∑
EηJ∈At

exp(−Lηt−1,J)ηwη
t,J +

∑
ÊηJ∈Ât

exp(−L̂ηt−1,J)ηŵη
t,J

〉
(14)
=

∑
EηJ∈At

exp(−Lηt−1,J) +
∑

ÊηJ∈Ât

exp(−L̂ηt−1,J).
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Following the derivation of (23) and (24), we have∑
EηJ∈As

exp(−Lηs,J) +

s−1∑
t=1

∑
EηJ∈At\At+1

exp(−Lηt,J)

+
∑

ÊηJ∈Âs

exp(−L̂ηs,J) +

s−1∑
t=1

∑
ÊηJ∈Ât\Ât+1

exp(−L̂ηt,J)

≤|A1|+
s∑
t=2

|At \ At−1|+ |Â1|+
s∑
t=2

|Ât \ Ât−1|

≤2s (blog2 sc+ 1)

(
1 +

⌈
1

2
log2 s

⌉)
≤ 4s2.

Thus, for any interval I = [r, s] ∈ I, we have

exp(−Lηs,I) = exp

(
−

s∑
t=r

`ηt (wη
t,I)

)
≤ 4s2 and exp(−L̂ηs,I) = exp

(
−

s∑
t=r

ˆ̀η
t (ŵη

t,I)

)
≤ 4s2

which completes the proof.

B.2.2 Proof of Lemma 9

First, (28) can be established by combining Lemmas 8 and 7, and following the proof of Lemma 4.
Next, we prove (29) in a similar way.

From Lemma 2 and the property of AOGD [Bartlett et al., 2008], we have the following expert-regret
of ÊηI [Wang et al., 2020, Theorem 2].

Lemma 10 Under Assumptions 1 and 2, for any interval I = [r, s] ∈ I and any η ∈ S(s− r + 1),
the expert-regret of ÊηI satisfies

s∑
t=r

ˆ̀η
t (ŵη

t,I)−
s∑
t=r

ˆ̀η
t (w) ≤ 1 + log(s− r + 2), ∀w ∈ Ω.

Combining the regret bound in Lemmas 8 and 10, we have

−
s∑
t=r

ˆ̀η
t (w) =η

s∑
t=r

〈∇ft(wt),wt −w〉 − η2‖ft(wt)‖2
s∑
t=r

‖wt −w‖2

≤1 + 2 log2(2s) + log(s− r + 2)

for any η ∈ S(s− r + 1). Thus,
s∑
t=r

〈∇ft(wt),wt −w〉 ≤1 + 2 log2(2s) + log(s− r + 2)

η
+ η‖∇ft(wt)‖2

s∑
t=r

‖wt −w‖2

(3)
≤1 + 2 log2(2s) + log(s− r + 2)

η
+ ηG2

s∑
t=r

‖wt −w‖2

(35)

for any η ∈ S(s− r + 1).

Let â(r, s) = 1 + 2 log2(2s) + log(s − r + 2) ≥ 3. Note that the optimal η∗ that minimizes the
R.H.S. of (25) is

η∗ =

√
â(r, s)

G2
∑s
t=r ‖wt −w‖2

≥
√

3

GD
√
s− r + 1

.

Recall that

S(s− r + 1) =

{
2−i

5DG

∣∣∣∣ i = 0, 1, . . . ,

⌈
1

2
log2(s− r + 1)

⌉}
.
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If η∗ ≤ 1
5DG , there must exist an η ∈ S(s− r + 1) such that

η ≤ η∗ ≤ 2η.

Then, (35) implies

s∑
t=r

〈∇ft(wt),wt−w〉 ≤ 2
â(r, s)

η∗
+ η∗G

2
s∑
t=r

‖wt−w‖2 = 3G

√√√√â(r, s)

s∑
t=r

‖wt −w‖2. (36)

On the other hand, if η∗ ≥ 1
5DG , we have

s∑
t=r

‖wt −w‖2 ≤ 25D2â(r, s).

Then, (35) with η = 1
5DG implies

s∑
t=r

〈∇ft(wt),wt −w〉 ≤ 5DGâ(r, s) + 5DGâ(r, s) = 10DGâ(r, s). (37)

We obtain (29) by combining (36) and (37).

C Full experiments

In this section, we present the details of the experiments.2

C.1 Experimental settings

First, we focus on exp-concave functions, and perform online classification on the ijcnn1 dataset
from LIBSVM Data [Chang and Lin, 2011, Prokhorov, 2001]. In each round, a batch of training
examples {(xt,1, yt,1), . . . , (xt,n, yt,n)} are sampled randomly from the dataset, where (xt,i, yt,i) ∈
[−1, 1]d × {−1, 1}, i = 1, . . . , n. The online learner aims to predict a linear model wt and then
suffers a logistic loss:

ft(wt) =
1

n

n∑
i=1

log
(
1 + exp(−yt,iw>t xt,i)

)
.

To simulate the changing environment, the labels of samples are flipped every 200 iterations. To
satisfy Assumption 1, we define the domain Ω as a d-dimensional ball with radius 10, i.e., Ω =
{w ∈ Rd|‖w‖ ≤ 10}. For this dataset, d = 22, and we set n = 512, D = 20, and G =

√
22.

As mentioned in Section 4, we compare UMA with FLH for exp-concave functions (abbr. FLHexp)
[Hazan and Seshadhri, 2007], ONS [Hazan et al., 2007], SCB [Jun et al., 2017a] and MetaGrad
[van Erven and Koolen, 2016]. Since both FLHexp and ONS need to know the modulus of exp-
concavity beforehand, we use grid search to determine this parameter. We search its value from
{1e2, 1e1, 1, 1e−1, 1e−2, 1e−3} and pick the best one for each algorithm.

For strongly convex functions, we follow the above setting but choose the regularized hinge loss:

ft(wt) =
1

n

n∑
i=1

max
(
0, 1− yt,iw>t xt,i

)
+
λ

2
‖wt‖2.

In the experiments, we set λ = 0.001 and G = (
√

22 + 0.01). We then compare UMA with FLH for
strongly convex functions (abbr. FLHstr) [Zhang et al., 2018b], OGD [Shalev-Shwartz et al., 2007],
SCB and MetaGrad. Similarly, FLHstr and OGD require the modulus of strong convexity as their
input. We not only try the theoretically optimal value λ = 0.001, but also conduct grid search from
{1e−1, 1e−2, 1e−3, 1e−4, 1e−5, 1e−6}. We then pick the best parameter for FLHstr and OGD.

Finally, we investigate convex functions, and implement online linear regression on synthetic data.
In each round t, a batch of data points {(xt,1, yt,1), . . . , (xt,n, yt,n)} arrive, where xt,i ∈ Rd is

2The code is available from https://github.com/Dual-Adaptivity/code.
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Figure 4: Cumulative losses of different methods when the interval size is 500.
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Figure 5: Cumulative losses of different methods when the interval size is 50.

sampled randomly inside a d-dimensional ball with radius 10. The target value yt,i is generated by
yt,i = w>xt,i + ε where ε ∼ N (0, 0.01) is a zero-mean Gaussian noise with standard deviation
0.01. The unknown parameter w is sampled randomly from [0, 1]d and [−1, 0]d alternately every
200 rounds to evaluate the adaptivity of different methods. After predicting wt, the online learner
suffers the absolute loss:

ft (wt) =
1

n

n∑
i=1

∣∣w>t xt,i − yt,i∣∣ .
In the experiments, we set n = 512, d = 50, D = 20, and G = 10, and compare UMA with
SCB, OGD [Zinkevich, 2003] and MetaGrad. For OGD, we set the step size as c√

t
. To de-

cide the parameter c, we try the theoretically optimal c = D
G , together with grid search from

{1e2, 1e1, 1, 1e−1, 1e−2, 1e−3} × D
G , and use the one that leads to the best perfromance.

C.2 Experimental results

We repeat each experiment 100 times, plot the average cumulative loss in Fig. 2, and report the
average instantaneous loss in Fig. 3. We have the following observations.

• As can be seen, UMA can deal with different types of functions and performs nearly the
best in all cases. Specifically, UMA is better than FLHexp in Fig. 2(a) and Fig. 3(a), and
close to FLHstr in Fig. 2(b) and Fig. 3(b), which indicates that UMA can estimate the moduli
of exp-concavity and strong convexity automatically. So, UMA is adaptive to the type of
functions and the nature of environments simultaneously.

• When facing changing environments, the three adaptive methods (UMA, FLHexp and FLHstr)
perform better than the traditional algorithms (OGD, ONS and MetaGrad) designed for
static regret. In Fig. 2, we observe that although OGD, ONS and MetaGrad perform well at
the beginning, their cumulative losses increase rapidly when the optimal model changes. In
Fig. 3, we can see that the instantaneous losses of all methods jump at rounds 200, 400 and
600, but the losses of adaptive methods decrease more rapidly.
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Figure 6: Running times of different methods.

We also test the case that the environment changes more quickly or slowly. Fig. 4 and Fig. 5 show
the results when the underlying model changes every 500 rounds and 50 rounds, respectively. We
observe that UMA still performs nearly the best in all cases, indicating its performance is stable
across different interval sizes.

Finally, we record the running times of different methods in Fig. 6, which corresponds to the
experiment in Fig. 4(b), i.e., strongly convex functions with interval size 500. OGD has a constant
complexity per round, and its running time increases linearly. MetaGrad keeps O(log t) experts in
the t-th round, and thus its running time is higher than that of OGD. We note that the two adaptive
methods (SCB and FLHstr) not only maintain O(log t) experts, but also query the gradient O(log t)
times. To reveal the effect of gradient evaluations, we use the variant of SCB based on surrogate
losses [Wang et al., 2018], which only calculates the gradient once per round. As a result, the running
time of SCB is close to that of MetaGrad, but the running time of FLHstr is much longer than that of
MetaGrad. Our UMA algorithm creates O(log2 t) experts to ensure dual adaptivity, so it is slower
than MetaGrad and SCB. On the other hand, UMA is faster than FLHstr because it only evaluates the
gradient once in each iteration.

D Supporting Lemmas

For the sake of completeness, we provide the proofs of Lemmas 2 and 10, which can be found in the
full paper of Wang et al. [2020].

D.1 Proof of Lemma 2

First, we show that

ˆ̀η
t (y) ≥ ˆ̀η

t (x) + 〈∇ˆ̀η
t (x),y − x〉+

2η2‖∇ft(wt)‖2

2
‖y − x‖2

for any x,y ∈ Ω. When ‖∇ft(wt)‖ 6= 0, it is easy to verify that ˆ̀η
t (·) is 2η2‖∇ft(wt)‖2-strongly

convex, and the above inequality holds according to Definition 1. When ‖∇ft(wt)‖ = 0, then by the
definition of ˆ̀η

t (·) in (12), we have

ˆ̀η
t (w) = ∇ˆ̀η

t (w) = 2η2‖∇ft(wt)‖2 = 0

for any w ∈ Ω, and thus the inequality still holds.

Next, we upper bound the gradient of ˆ̀η
t (·) as follows:

‖∇ˆ̀η
t (w)‖2 =

〈
η∇ft(wt) + 2η2‖∇ft(wt)‖2(w −wt), η∇ft(wt) + 2η2‖∇ft(wt)‖2(w −wt)

〉
=η2‖∇ft(wt)‖2 + 4η3‖∇ft(wt)‖2〈∇ft(wt),w −wt〉+ 4η4‖∇ft(wt)‖4‖w −wt‖2

(2),(3)
≤ η2‖∇ft(wt)‖2 +

4

5
η2‖∇ft(wt)‖2 +

4

25
η2‖∇ft(wt)‖2

≤2η2‖∇ft(wt)‖2.
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D.2 Proof of Lemma 10

Let ŵη′

t+1,I = ŵη
t,I −

1
αt
∇ˆ̀η

t (ŵη
t,I). By Lemma 2, we have

ˆ̀η
t (ŵη

t,I)− ˆ̀η
t (w) ≤ 〈∇ˆ̀η

t (ŵη
t,I), ŵ

η
t,I −w〉 − 2η2‖∇ft(wt)‖2

2
‖ŵη

t,I −w‖2

= αt〈ŵη
t,I − ŵη′

t+1,I , ŵ
η
t,I −w〉 − 2η2‖∇ft(wt)‖2

2
‖ŵη

t,I −w‖2

for any w ∈ Ω. For the first term, we have

〈ŵη
t,I − ŵη′

t+1,I , ŵ
η
t,I −w〉

=‖ŵη
t,I −w‖2 + 〈w − ŵη′

t+1,I , ŵ
η
t,I −w〉

=‖ŵη
t,I −w‖2 − ‖ŵη′

t+1,I −w‖2 − 〈ŵη
t,I − ŵη′

t+1,I , ŵ
η′

t+1,I −w〉

=‖ŵη
t,I −w‖2 − ‖ŵη′

t+1,I −w‖2 + ‖ŵη′

t+1,I − ŵη
t,I‖

2 + 〈ŵη′

t+1,I − ŵη
t,I , ŵ

η
t,I −w〉

which implies that

〈ŵη
t,I − ŵη′

t+1,I , ŵ
η
t,I −w〉 =

1

2

(
‖ŵη

t,I −w‖2 − ‖ŵη′

t+1,I −w‖2 + ‖ŵη
t,I − ŵη′

t+1,I‖
2
)

and thus

ˆ̀η
t (ŵη

t,I)− ˆ̀η
t (w) ≤αt

2
(‖ŵη

t,I −w‖2 − ‖ŵη′

t+1,I −w‖2)

+
1

2αt
‖∇ˆ̀η

t (ŵη
t,I)‖

2 − 2η2‖∇ft(wt)‖2

2
‖ŵη

t,I −w‖2.

Summing up over t = r to s, we have
s∑
t=r

ˆ̀η
t (ŵη

t,I)−
s∑
t=r

ˆ̀(w)

≤αr
2
‖ŵη

r,I −w‖2 +

s∑
t=r

(
αt − αt−1 − 2η2‖∇ft(wt)‖2

) ‖ŵη
t,I −w‖2

2
+

1

2

s∑
t=r

1

αt
‖∇ˆ̀η

t (ŵη
r,I)‖

2

≤1 +
1

2

s∑
t=r

1

αt
‖∇ˆ̀η

t (ŵη
r,I)‖

2 ≤ 1 +
1

2

s∑
t=r

‖∇ft(wt)‖2

G2 +
∑t
i=r ‖∇ft(wt)‖2

≤ 1 + log(r − s+ 1)

where the second inequality is due to the fact that αt − αt−1 − 2η2‖∇ft(wt)‖2 = 0 and η ≤ 1
5DG ,

the third inequality is derived from Lemma 2, and the last inequality is due to the following lemma
(when d = 1) [Hazan et al., 2007, Lemma 11].

Lemma 11 For t = 1, . . . , T , let ut ∈ Rd be a sequence of vectors such that for some r > 0,
‖ut‖ ≤ r. Define Vt =

∑T
t=1 utu

>
t + εI . Then

T∑
t=1

‖ut‖2V −1
t
≤ d log

(
r2T

ε
+ 1

)
.
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