
A Analysis

In this section, we present the proof of all theorems.

A.1 Proof of Theorem 1

First, from the updating rule in Algorithm 2, we can prove that the derivation satisfies

−µ ≤ xt ≤ U(n) + µ, ∀t ≥ 1. (33)

To see this, we first consider the upper bound in (33). Let k be any iteration such that xk ≤ U(n) and
xk+1 > U(n). Then, we must have xk+1 = ρxk + bk, because otherwise xk+1 = ρxk < U(n). As
a result,

xk+1 = ρxk + bk ≤ U(n) + µ.

Now, we consider the next derivation xk+2. Because xk+1 > U(n), according to the conservative
updating rule, we have

xk+2 =

{
ρxk+1 + bk+1, bk+1 < 0;
ρxk+1, otherwise.

which is always smaller than xk+1. Repeating the above argument, we conclude that the subsequent
derivations xk+2, xk+3, . . . keep decreasing until they become no bigger than U(n). As a result, it is
impossible for xt to exceed U(n) + µ.

The lower bound in (33) can be proved in a similar way. Let k be any iteration such that xk ≥ 0 and
xk+1 < 0. Then, we must have xk+1 = ρxk + bk, because otherwise xk+1 = ρxk ≥ 0. As a result,

xk+1 = ρxk + bk ≥ bk ≥ −µ.

Now, we consider the next derivation xk+2. Because xk+1 < 0, according to the conservative
updating rule, we have

xk+2 =

{
ρxk+1 + bk+1, bk+1 > 0;
ρxk+1, otherwise.

which is always bigger than xk+1. Repeating the above argument, we conclude that the subsequent de-
rivations xk+2, xk+3, . . . keep increasing until they become nonnegative. As a result, it is impossible
for xt to be smaller than −µ.

Next, we make use of Algorithm 1 to analyze the reward of Algorithm 2. Following Kapralov and
Panigrahy [2010], we construct the following bit sequence

b̃t =

{
bt, if Line 6 of Algorithm 2 is executed at round t;
0, otherwise.

It is easy to verify that the prediction g(xt), as well as the derivation xt, of Algorithm 2 over the
bit sequence b1, . . . , bT is exact the same as that of Algorithm 1 over the new sequence b̃1, . . . , b̃T .
Since Algorithm 1 is more simple, we will first establish the theoretical guarantee of Algorithm 1
over the new sequence, and then convert it to the reward of Algorithm 2 over the original sequence.
We have the following theorem for Algorithm 1 [Daniely and Mansour, 2019].

Theorem 5 Suppose Z ≤ 1
e and n ≥ max{8e, 16 log 1

Z }. For any bit sequence b1, . . . , bT such that
|bt| ≤ µ ≤ 1, the cumulative reward of Algorithm 1 over any interval [r, s] with length τ satisfies

s∑
t=r

(
g(xt)bt −

1

µ
|g(xt)− g(xt+1)|

)

≥max

(
0,

s∑
t=r

bt + xr −
τ

n
(U(n) + 2µ)− U(n)

)
−max(xr, 0)− Zτ

(34)

where U(n) is defined in (10). And the change of successive predictions satisfies

|g(xt)− g(xt+1)| ≤ µ
√

1

n
log

1

Z
+
Zµ

4
. (35)

16

Theorem 5 can be extracted from the proofs of Lemmas 21 and 23 of Daniely and Mansour [2019].
For the sake of completeness, we provide its analysis in Appendix A.10. We can see that the lower
bound in (34) depends on xr, which explains the necessity of controlling its value.

Notice that µ is also the upper bound of the absolute value of the new sequence b̃1, . . . , b̃T . According
to Theorem 5, we directly obtain (13) from (35). From (34), we have

s∑
t=r

(
g(xt)b̃t −

1

µ
|g(xt)− g(xt+1)|

)

≥max

(
0,

s∑
t=r

b̃t + xr −
τ

n
(U(n) + 2µ)− U(n)

)
−max(xr, 0)− Zτ.

(36)

On the other hand, the reward in terms of the original sequence is
s∑
t=r

(
g(xt)bt −

1

µ
|g(xt)− g(xt+1)|

)

=

s∑
t=r

g(xt)(bt − b̃t) +

s∑
t=r

(
g(xt)b̃t −

1

µ
|g(xt)− g(xt+1)|

)
.

(37)

So, we need to bound
∑s
t=r g(xt)(bt − b̃t). Let k be any iteration such that bk 6= b̃k, i.e., Line 8 of

Algorithm 2 is executed at round k, which also implies b̃k = 0. From the updating rule, we must have

xk < 0&bk ≤ 0 or xk > U(n)&bk ≥ 0.

If xk < 0&bk ≤ 0, we have

g(xk)(bk − b̃k) = g(xk)bk = 0 ≥ bk = bk − b̃k

since g(xk) = 0 and b̃k = 0. Otherwise if xk > U(n)&bk ≥ 0, we have

g(xk)(bk − b̃k) = bk = bk − b̃k ≥ 0

since g(xk) = 1 and b̃k = 0. So, we always have

g(xk)(bk − b̃k) ≥ max
(

0, bk − b̃k
)
, if bk 6= b̃k. (38)

As a result,
s∑
t=r

g(xt)(bt − b̃t) =
∑

t∈[r,s]&bt 6=b̃t

g(xt)(bt − b̃t)

(38)

≥ max

0,
∑

t∈[r,s]&bt 6=b̃t

(
bt − b̃t

) = max

(
0,

s∑
t=r

(
bt − b̃t

))
.

(39)

Combining (36), (37) and (39), we have
s∑
t=r

(
g(xt)bt −

1

µ
|g(xt)− g(xt+1)|

)

≥max

(
0,

s∑
t=r

b̃t + xr −
τ

n
(U(n) + 2µ)− U(n)

)
−max(xr, 0)− Zτ

+ max

(
0,

s∑
t=r

(
bt − b̃t

))

≥max

(
0,

s∑
t=r

bt + xr −
τ

n
(U(n) + 2µ)− U(n)

)
−max(xr, 0)− Zτ.

Then, we obtain (11) by using (33) to bound xr, and obtain (12) based on x1 = 0.

17

A.2 Proof of Corollary 2

Notice that the magnitude of the scaled bit sequence is upper bounded by µ = 1/max(
√
λ, 1). From

Theorem 1, we have
s∑
t=r

(
g(xt)

bt

max(
√
λ, 1)

−max(
√
λ, 1)|g(xt)− g(xt+1)|

)
(11)

≥ max

(
0,

s∑
t=r

bt

max(
√
λ, 1)

− τ

n

(
U(n) +

2

max(
√
λ, 1)

)
− U(n)− 1

max(
√
λ, 1)

)

− U(n)− 1

max(
√
λ, 1)

− Zτ.

(40)

Then, we can lower bound the cumulative reward as follows
s∑
t=r

(
g(xt)bt − λ|g(xt)− g(xt−1)|

)
≥max(

√
λ, 1)

s∑
t=r

(
g(xt)

bt

max(
√
λ, 1)

−max(
√
λ, 1)|g(xt)− g(xt+1)|

)
(40)

≥ max

(
0,

s∑
t=r

bt −max(
√
λ, 1)U(n)

(τ
n

+ 1
)
− 2τ

n
− 1

)
−max(

√
λ, 1)U(n)

− 1−max(
√
λ, 1)Zτ

which proves (15). The upper bound in (16) is a direct consequence of (13).

A.3 Proof of Theorem 3

First, we show that under our setting of parameters, all the preconditions in Corollary 2 and Lemma 1
are satisfied so that they can be exploited to analyze Bi, which invokes Algorithm 2 to combine Bi−1
and Ai. From (31), we know that Z = 1/T ≤ 1/e. From our definition of K, we have

n(i) ≥ T21−K
(32)

≥ 32 max(λ, 1) log
1

Z
≥ 32 log

1

Z
≥ 32 ≥ 8e, ∀i ∈ [K]. (41)

Thus, the conditions about Z and n in Corollary 2 are satisfied. Furthermore, our choice ofM ensures
that (23) in Lemma 1 is true. To this end, we prove the following lemma.

Lemma 2 For all Ai’s and Bi’s created in Algorithm 4, their outputs satisfy the condition in (23)
with M = 2.

Based on above discussions, we conclude that Corollary 2 and Lemma 1 can be used in our analysis.

Next, we introduce the following theorem about the regret of OGD with switching cost over any
interval [r, s], which will be used to analyze the performance of Ai’s.

Theorem 6 Let wt be the outputs of OGD with step size η. Under Assumptions 1, 2 and 3, we have
s∑
t=r

(
ft(wt) + λG‖wt −wt+1‖ − ft(w)

)
≤ D2

2η
+

(1 + 2λ)η(s− r + 1)G2

2

for any w ∈ W .

Long Intervals We proceed to analyze the performance of Algorithm 4 over an interval [r, s], and
start with the case that the interval length

τ = s− r + 1 ≥ 32 max(λ, 1) log
1

Z
.

From our construction of n(i) in (30), there must exist a

k =

⌊
log2

T

τ

⌋
+ 1 ≤ K (42)

18

such that
n(k)

2
≤ τ ≤ n(k). (43)

Then, we divide the proof into two steps:

(i) We show that the algorithm Ak attains an optimal regret with switching cost over the interval
[r, s];

(ii) We demonstrate that the regret of BK w.r.t. Ak is under control.

Let wk
t be the output of Ak in the t-th iteration. From Theorem 6, we have

s∑
t=r

(
ft(w

k
t) + λG‖wk

t −wk
t+1‖ − ft(w)

)
≤ D2

2η(k)
+

(1 + 2λ)η(k)τG2

2

(29)
=

GD

2

√
(1 + 2λ)n(k) +

GD

2
τ

√
1 + 2λ

n(k)

(43)

≤ (
√

2 + 1)GD

2

√
(1 + 2λ)τ ≤ 2GD

√
(1 + λ)τ .

(44)

Let vit be the output of Bi in the t-th iteration. We establish the following lemma to bound the regret
of BK w.r.t. Ak.

Lemma 3 For any interval [r, s] with length τ ≤ cn(k), we have
s∑
t=r

(
ft(v

K
t) + λG‖vKt − vKt+1‖

)
−

s∑
t=r

(
ft(w

k
t) + λG‖wk

t −wk
t+1‖

)
≤GDmax(

√
λ, 1)

(
(12c+ 53)

√
n(k) log T + 9 + 6c+ 6(K − k)

)
.

(45)

Based on Lemma 3, we have
s∑
t=r

(
ft(v

K
t) + λG‖vKt − vKt+1‖

)
−

s∑
t=r

(
ft(w

k
t) + λG‖wk

t −wk
t+1‖

)
(43),(45)

≤ GDmax(
√
λ, 1)

(
65
√

2τ log T + 15
)

+ 6GDmax(
√
λ, 1)(K − k)

≤107GDmax(
√
λ, 1)

√
τ log T + 6GDmax(

√
λ, 1) log2 τ

log2 τ≤
√
τ log τ

≤ 113GDmax(
√
λ, 1)

√
τ log T

(46)

where in the penultimate step we make use of the following fact

K − k (32),(42)
=

⌊
log2

T

32 max(λ, 1) log 1/Z

⌋
−
⌊

log2

T

τ

⌋
≤ log2

τ

32 max(λ, 1) log 1/Z
+ 1 ≤ log2 τ.

Combining (44) and (46), we have
s∑
t=r

(
ft(w

K
t) + λG‖wK

t −wK
t+1‖ − ft(w)

)
≤2GD

√
(1 + λ)τ + 113GDmax(

√
λ, 1)

√
τ log T .

(47)

Short Intervals We study short intervals [r, s] such that

τ = s− r + 1 ≤ 32 max(λ, 1) log
1

Z
.

From Lemma 2, we know that the output of BK moves slowly such that

‖wK
t −wK

t+1‖ ≤
2D

λ
. (48)

19

As a result, the regret of BK over [r, s] can be bounded by

s∑
t=r

(
ft(w

K
t) + λG‖wK

t −wK
t+1‖ − ft(w)

)
≤

s∑
t=r

(
ft(w

K
t) + λG‖wK

t −wK
t+1‖

)
(21),(48)

≤ 3τGD ≤ 3GD
√
τ · 32 max(λ, 1) log T ≤ 17GDmax(

√
λ, 1)

√
τ log T .

(49)

We complete the proof by combing (47) and (49).

A.4 Proof of Theorem 4

Since we focus on dynamic regret, so we need the following theorem regarding the dynamic regret of
OGD with switching cost over any interval [r, s].

Theorem 7 Under Assumptions 1, 2 and 3, we have

s∑
t=r

(
ft(wt)+λG‖wt−wt+1‖−ft(ut)

)
≤ D2

2η
+
D

η

s∑
t=r

‖ut−ut+1‖+
(1 + 2λ)η(s− r + 1)G2

2

for any comparator sequence ur, . . . ,us ∈ W .

The proof is similar to that of Theorem 3, and we consider two scenarios: long intervals and short
intervals. Here, we multiply the interval length τ by 1/(1 + 2Pr,s/D) to reflect the fact that the
comparator is changing.

Long Intervals First, we study the case that

τ

1 + 2Pr,s/D
≥ 32 max(λ, 1) log

1

Z
.

From our construction of n(i) in (30), there must exist a

k =

⌊
log2

T (1 + 2Pr,s/D)

τ

⌋
+ 1 ≤ K (50)

such that

n(k)

2
≤ τ

1 + 2Pr,s/D
≤ n(k). (51)

Next, we show that the dynamic regret ofAk with switching cost is almost optimal. From Theorem 7,
we have

s∑
t=r

(
ft(w

k
t) + λG‖wk

t −wk
t+1‖ − ft(ut)

)
≤ D2

2η(k)
+

D

η(k)
Pr,s +

(1 + 2λ)η(k)τG2

2

(29)
=
G(D + 2Pr,s)

2

√
(1 + 2λ)n(k) +

GDτ

2

√
1 + 2λ

n(k)

(51)

≤ (
√

2 + 1)GD

2

√
(1 + 2λ)τ(1 + 2Pr,s/D) ≤ 2GD

√
(1 + λ)τ(1 + 2Pr,s/D).

(52)

20

Then, we prove that the regret of BK w.r.t. Ak is roughly on the same order as (52). From Lemma 3,
we have

s∑
t=r

(
ft(v

K
t) + λG‖vKt − vKt+1‖

)
−

s∑
t=r

(
ft(w

k
t) + λG‖wk

t −wk
t+1‖

)
(51),(45)

≤ GDmax(
√
λ, 1)

(
(65 + 24Pr,s/D)

√
n(k) log T + 15 + 12Pr,s/D

)
+

6GDmax(
√
λ, 1)(K − k)

(51)

≤ GDmax(
√
λ, 1)

(
65
√

2τ(1 + 2Pr,s/D) log T + 15 + 12Pr,s/D

)
+ 6GDmax(

√
λ, 1)(K − k)

≤114GDmax(
√
λ, 1)

√
τ(1 + 2Pr,s/D) log T + 6GDmax(

√
λ, 1) log2 τ

log2 τ≤
√
τ log τ

≤ 120GDmax(
√
λ, 1)

√
τ(1 + 2Pr,s/D) log T

(53)

where in the penultimate step we use the following inequalities

15 + 12Pr,s/D
Pr,s≤τD
≤ 15 + 12

√
τPr,s/D

a+b≤
√
2a2+2b2

≤ 15
√

2τ(1 + 2Pr,s/D),

K − k (32),(50)
=

⌊
log2

T

32 max(λ, 1) log 1/Z

⌋
−
⌊

log2

T (1 + 2Pr,s/D)

τ

⌋
≤ log2 τ.

Combining (52) and (53), we can bound the dynamic regret of BK with switching cost by
s∑
t=r

(
ft(w

K
t) + λG‖wK

t −wK
t+1‖ − ft(ut)

)
≤2GD

√
(1 + λ)τ(1 + 2Pr,s/D) + 120GDmax(

√
λ, 1)

√
τ(1 + 2Pr,s/D) log T .

(54)

Short Intervals We consider short intervals [r, s] such that
τ

1 + 2Pr,s/D
≥ 32 max(λ, 1) log

1

Z
.

Following the analysis of Theorem 3, the dynamic regret of BK over [r, s] can be bounded by
s∑
t=r

(
ft(w

K
t) + λG‖wK

t −wK
t+1‖ − ft(ut)

)
≤3τGD ≤ 3GD

√
τ · 32 max(λ, 1) log T · (1 + 2Pr,s/D)

≤17GDmax(
√
λ, 1)

√
τ(1 + 2Pr,s/D) log T .

(55)

We complete the proof by combing (54) and (55).

A.5 Proof of Theorem 6

From the standard analysis of OGD [Zinkevich, 2003], we have the following regret bound
s∑
t=r

(
ft(wt)− ft(w)

)
≤ D2

2η
+
η(s− r + 1)G2

2
. (56)

To bound the switching cost, we have
s∑
t=r

‖wt −wt+1‖ =

s∑
t=r

∥∥wt −ΠW
[
wt − η∇ft(wt)

]∥∥
≤

s∑
t=r

‖−η∇ft(wt)‖ = η

s∑
t=r

‖∇ft(wt)‖
(19)

≤ η(s− r + 1)G.

(57)

21

From (56) and (57), we have

s∑
t=r

(
ft(wt) + λG‖wt −wt+1‖ − ft(w)

)
≤ D2

2η
+
η(s− r + 1)G2

2
+ λη(s− r + 1)G2.

A.6 Proof of Theorem 7

From the dynamic regret of OGD [Zinkevich, 2003], in particular Theorem 6 of Zhang et al. [2018b],
we have

s∑
t=r

(
ft(wt)− ft(ut)

)
≤ D2

2η
+
D

η

s∑
t=r

‖ut − ut+1‖+
η(s− r + 1)

2
G2.

We complete the proof by combining the above inequality with (57).

A.7 Proof of Lemma 1

Similar to the analysis of Daniely and Mansour [2019, Theorem 22], we decompose the weighted
sum of hitting cost and switching cost as

ft(wt) + λG‖wt −wt+1‖
=ft

(
(1− wt)w1

t + wtw
2
t

)
+ λG

∥∥(1− wt)w1
t + wtw

2
t − (1− wt+1)w1

t+1 − wt+1w
2
t+1

∥∥
≤(1− wt)ft(w1

t) + wtft(w
2
t) + λG

∥∥(1− wt)(w1
t −w1

t+1)
∥∥+ λG

∥∥wt(w2
t −w2

t+1)
∥∥

+ λG
∥∥(1− wt)w1

t+1 − (1− wt+1)w1
t+1 + wtw

2
t+1 − wt+1w

2
t+1

∥∥
=(1− wt)

(
ft(w

1
t) + λG‖w1

t −w1
t+1‖

)
+ wt

(
ft(w

2
t) + λG‖w2

t −w2
t+1‖

)
+ λG

∥∥(wt − wt+1)(w1
t+1 −w2

t+1)
∥∥

(20)

≤ (1− wt)
(
ft(w

1
t) + λG‖w1

t −w1
t+1‖

)
+ wt

(
ft(w

2
t) + λG‖w2

t −w2
t+1‖

)
+ λGD|wt − wt+1|.

(58)

Then, the regret of A w.r.t. A1 over any interval [r, s] can be upper bounded in the following way:

s∑
t=r

(
ft(wt) + λG‖wt −wt+1‖

)
−

s∑
t=r

(
ft(w

1
t) + λG‖w1

t −w1
t+1‖

)
(58)

≤
s∑
t=r

(
wt
[(
ft(w

2
t) + λG‖w2

t −w2
t+1‖

)
−
(
ft(w

1
t) + λG‖w1

t −w1
t+1‖

)]
+ λGD|wt − wt+1|

)
(26),(27)

=

s∑
t=r

(
wt(`

2
t − `1t) + λGD|wt − wt+1|

)
(28)
= − (1 +M)GD

s∑
t=r

(
wt`t −

λ

1 +M
|wt − wt+1|

)

≤− (1 +M)GD

s∑
t=r

(
wt`t − λ|wt − wt+1|

)
22

which proves (24). Similarly, the regret of A w.r.t. A2 over any interval [r, s] can be upper bounded
by

s∑
t=r

(
ft(wt) + λG‖wt −wt+1‖

)
−

s∑
t=r

(
ft(w

2
t) + λG‖w2

t −w2
t+1‖

)
(58)

≤
s∑
t=r

(1− wt)
[(
ft(w

1
t) + λG‖w1

t −w1
t+1‖

)
−
(
ft(w

2
t) + λG‖w2

t −w2
t+1‖

)]
+

s∑
t=r

λGD|wt − wt+1|

(26),(27)
=

s∑
t=r

(
(1− wt)(`1t − `2t) + λGD|wt − wt+1|

)
(28)
= − (1 +M)GD

s∑
t=r

(
wt`t −

λ

1 +M
|wt − wt+1| − `t

)

≤− (1 +M)GD

s∑
t=r

(
wt`t − λ|wt − wt+1| − `t

)
which proves (25).

A.8 Proof of Lemma 2

We will prove that the outputs of Ai’s and Bi’s move slowly such that (23) holds. Let wi
t be the

output of Ai in the t-th iteration. From the updating rule of OGD, we have

‖wi
t −wi

t+1‖ ≤ η(i)
∥∥∇ft(wi

t)
∥∥ (19)

≤ η(i)G
(29)
= D

√
1

(1 + 2λ)n(i)

(41)

≤ D

λ
. (59)

So, wi
t’s satisfy the condition in (23) when M = 2.

Let vit be the output of Bi in the t-th iteration. We will prove by induction that

‖vit − vit+1‖ ≤
D

λ
+

D

max(
√
λ, 1)

i∑
j=2

(√
1

n(j)
log

1

Z
+
Z

4

)
, ∀i ∈ [K]. (60)

The above equation, together with the following fact

D

λ
+

D

max(
√
λ, 1)

K∑
j=2

(√
1

n(j)
log

1

Z
+
Z

4

)

(30)
=
D

λ
+

D

max(
√
λ, 1)

√
1

2T
log

1

Z

K∑
j=2

√
2j +

D

max(
√
λ, 1)

Z(K − 1)

4

≤D
λ

+
D

max(
√
λ, 1)

√
1

2T
log

1

Z

2√
2− 1

√
2
K−1

+
D

max(
√
λ, 1)

Z(K − 1)

4

(32)

≤ D

λ
+

D

max(
√
λ, 1)

√
1

2T
log

1

Z

2√
2− 1

√
T

32λ log 1/Z
+

D

max(
√
λ, 1)

Z

4
log2 T

=
D

λ
+

(
√

2 + 1)D

4 max(
√
λ, 1)
√
λ

+
D log2 T

4 max(
√
λ, 1)T

(31)

≤ 2D

λ

(61)

implies that vit’s meet the condition in (23) when M = 2.

Since B1 = A1, we have

‖v1
t − v1

t+1‖ = ‖w1
t −w1

t+1‖
(59)

≤ D

λ
. (62)

23

Thus, (60) holds when i = 1. Suppose (60) is true when i = k, and thus

‖vkt − vkt+1‖ ≤
D

λ
+

D

max(
√
λ, 1)

k∑
j=2

(√
1

n(j)
log

1

Z
+
Z

4

)
(61)

≤ 2D

λ
. (63)

We proceed to bound the movement of vk+1
t , which is the output of Bk+1. Recall that Bk+1 is an

instance of Combiner which aggregates Bk and Ak+1. From the procedure of Algorithm 3, we have

vk+1
t

(22)
= (1− wk+1

t)vkt + wk+1
t wk+1

t

where wk+1
t is the weight generated by DNP-cu. Thus, the movement of vk+1

t can be bounded by

‖vk+1
t − vk+1

t+1 ‖ =
∥∥(1− wk+1

t)vkt + wk+1
t wk+1

t −
(
(1− wk+1

t+1)vkt+1 + wk+1
t+1 w

k+1
t+1

)∥∥
≤
∥∥(1− wk+1

t)vkt − (1− wk+1
t+1)vkt + wk+1

t wk+1
t − wk+1

t+1 w
k+1
t

∥∥
+
∥∥(1− wk+1

t+1)vkt + wk+1
t+1 w

k+1
t −

(
(1− wk+1

t+1)vkt+1 + wk+1
t+1 w

k+1
t+1

)∥∥
≤|wk+1

t − wk+1
t+1 |‖vkt −wk+1

t ‖+ (1− wk+1
t+1)‖vkt − vkt+1‖+ wk+1

t+1 ‖w
k+1
t −wk+1

t+1 ‖
(20),(59)

≤ D|wk+1
t − wk+1

t+1 |+ (1− wk+1
t+1)‖vkt − vkt+1‖+ wk+1

t+1

D

λ

≤D|wk+1
t − wk+1

t+1 |+ max

(
‖vkt − vkt+1‖,

D

λ

)
.

(64)

From (59) and (63), we know that the outputs of Bk and Ak+1 satisfy (23). Thus, we can apply
Corollary 2 to bound the change of wk+1

t :

|wk+1
t − wk+1

t+1 |
(16)

≤ 1

max(
√
λ, 1)

(√
1

n(k+1)
log

1

Z
+
Z

4

)
. (65)

From (64) and (65), we have

‖vk+1
t − vk+1

t+1 ‖ ≤
D

max(
√
λ, 1)

(√
1

n(k+1)
log

1

Z
+
Z

4

)
+ max

(
‖vkt − vkt+1‖,

D

λ

)
(63)

≤ D

λ
+

D

max(
√
λ, 1)

k+1∑
j=2

(√
1

n(j)
log

1

Z
+
Z

4

)
which shows that (60) holds when i = k + 1.

A.9 Proof of Lemma 3

The regret of BK w.r.t. Ak can be decomposed as
s∑
t=r

(
ft(v

K
t) + λG‖vKt − vKt+1‖

)
−

s∑
t=r

(
ft(w

k
t) + λG‖wk

t −wk
t+1‖

)
=

s∑
t=r

(
ft(v

k
t) + λG‖vkt − vkt+1‖

)
−

s∑
t=r

(
ft(w

k
t) + λG‖wk

t −wk
t+1‖

)
︸ ︷︷ ︸

:=U

+

K∑
i=k+1

s∑
t=r

(
ft(v

i
t) + λG‖vit − vi+1

t ‖
)
−

s∑
t=r

(
ft(v

i−1
t) + λG‖vi−1t − vi−1t+1‖

)
︸ ︷︷ ︸

:=V i

(66)

where U is the regret of Bk w.r.t. Ak, and V i is the regret of Bi w.r.t. Bi−1. Next, we make use of
Corollary 2 and Lemma 1 to bound these quantities.

24

To bound U , we have

U
(15),(25)

≤ 3GD

(
max(

√
λ, 1)U(n(k))

(τ

n(k)
+ 1
)

+
2τ

n(k)
+ 1 + max(

√
λ, 1)U(n(k))

+ 1 + max(
√
λ, 1)

τ

T

)
τ≤cn(k)

≤ 3GD
(

(2 + c) max(
√
λ, 1)U(n(k)) + 2 + 2c+ max(

√
λ, 1)

)
(10)

≤ 3GD
(

(2 + c) max(
√
λ, 1)

√
16n(k) log T + 2 + 2c+ max(

√
λ, 1)

)
≤3GDmax(

√
λ, 1)

(
4(2 + c)

√
n(k) log T + 3 + 2c

)
.

(67)

To bound the summation of V i, we have

K∑
i=k+1

V i
(15),(24)

≤ 3GD

K∑
i=k+1

(
max(

√
λ, 1)U(n(i)) + 1 + max(

√
λ, 1)

τ

T

)

≤3GDmax(
√
λ, 1)

K∑
i=k+1

U(n(i)) + 6GDmax(
√
λ, 1)(K − k)

(10)

≤ 3GDmax(
√
λ, 1)

K∑
i=k+1

√
16n(i) log T + 6GDmax(

√
λ, 1)(K − k)

(30)
= 12GDmax(

√
λ, 1)

√
n(k) log T

K−k∑
i=1

√
2−i + 6GDmax(

√
λ, 1)(K − k)

≤12GDmax(
√
λ, 1)

√
n(k) log T

1√
2− 1

+ 6GDmax(
√
λ, 1)(K − k)

≤29GDmax(
√
λ, 1)

√
n(k) log T + 6GDmax(

√
λ, 1)(K − k).

(68)

We complete the proof by substituting (67) and (68) into (66).

A.10 Proof of Theorem 5

Our purpose is to provide a general analysis of Algorithm 1 over any bit sequence, so we do not make
use of the range of xt in (33). As an alternative, we use the following simple upper bound

|xt| ≤ µn, ∀t ≥ 1 (69)

which can be proved by induction. From the initialization, we have |x1| = 0 ≤ µn. Now, suppose
|xk| ≤ µn. Then, we have

|xk+1| ≤ |ρxk|+ |bk|
ρ=1−1/n
≤

(
1− 1

n

)
µn+ µ = µn.

Then, we can bound the difference between any two consecutive derivations by 2:

|xt − xt+1| = |(1− ρ)xt − bt| ≤
1

n
|xt|+ |bt|

(69)

≤ 2µ ≤ 2. (70)

Next, we introduce Lemma 19 of Daniely and Mansour [2019], which characterizes the derivative of
g(·) over short intervals.

Lemma 4 Suppose log 1
Z ≤

n
16 , Z ≤ 1

e and n ≥ 8e. For every segment I ⊂ R of length ≤ 2 and
every x ∈ I, we have

4 max
s∈I
|g′(s)| ≤ 1

n
xg(x) + Z.

25

Then, we can apply the above lemma to bound the derivative of g(·) over the interval [xt, xt+1],4
whose length is smaller than 2. Under the conditions of Lemma 4, we have

4 max
s∈[xt,xt+1]

|g′(s)| ≤ 1

n
xtg(xt) + Z. (71)

Since g(x) = 0 if x ≤ 0, we have

4 max
s∈[xt,xt+1]

|g′(s)| ≤ Z, if xt ≤ 0. (72)

Furthermore, we know that g′(x) = 0, if x ≥ U(n). When xt ≥ U(n) + 2µ, from (70) we have

[xt, xt+1] ⊂ [U(n),∞).

Thus,
max

s∈[xt,xt+1]
|g′(s)| = 0, if xt ≥ U(n) + 2µ. (73)

Let I(x) be the indicator function of the interval [0, U(n) + 2µ]. We can summarize the general result
in (71) and the special cases in (72) and (73) as

4 max
s∈[xt,xt+1]

|g′(s)| ≤ 1

n
xtg(xt)I(xt) + Z. (74)

We proceed to use the following potential function

Φt =

∫ xt

0

g(s)ds

to analyze the reward of Algorithm 1. It is easy to verify that

max(0, xt − U(n)) ≤ Φt =

∫ xt

0

g(s)ds ≤ max(xt, 0). (75)

To bound the change of the potential function, we need the following inequality for piece-wise
differential functions f : [a, b] 7→ R [Kapralov and Panigrahy, 2010, Daniely and Mansour, 2019]∫ b

a

f(x)dx ≤ f(a)(b− a) + max |f ′(z)|1
2

(b− a)2. (76)

We have

Φt+1 − Φt =

∫ xt+1

xt

g(s)ds

(76)

≤ g(xt)(xt+1 − xt) +
1

2
(xt+1 − xt)2 max

s∈[xt,xt+1]
|g′(s)|

(70)

≤ g(xt)

(
− 1

n
xt + bt

)
+ 2 max

s∈[xt,xt+1]
|g′(s)|

=g(xt)

(
− 1

n
xt + bt

)
− 2 max

s∈[xt,xt+1]
|g′(s)|+ 4 max

s∈[xt,xt+1]
|g′(s)|

≤g(xt)

(
− 1

n
xt + bt

)
− 2

∣∣∣∣g(xt)− g(xt+1)

xt − xt+1

∣∣∣∣+ 4 max
s∈[xt,xt+1]

|g′(s)|

(70)

≤ g(xt)

(
− 1

n
xt + bt

)
− 1

µ
|g(xt)− g(xt+1)|+ 4 max

s∈[xt,xt+1]
|g′(s)|

(74)

≤ g(xt)

(
− 1

n
xt + bt

)
− 1

µ
|g(xt)− g(xt+1)|+ 1

n
xtg(xt)I(xt) + Z

=g(xt)bt −
1

µ
|g(xt)− g(xt+1)|+ 1

n
xtg(xt) (I(xt)− 1) + Z

(77)

4With a slight abuse of notation, we will write [a, b] to denote [min{a, b},max{a, b}].

26

where the 3rd inequality is due to the mean value theorem. To bound the cumulative reward over any
interval [r, s], we sum (77) from t = r to t = s, and obtain

Φs+1 − Φr ≤
s∑
t=r

(
g(xt)bt −

1

µ
|g(xt)− g(xt+1)|

)
+

s∑
t=r

1

n
xtg(xt) (I(xt)− 1) + Zτ.

Thus,
s∑
t=r

(
g(xt)bt −

1

µ
|g(xt)− g(xt+1)|

)
≥ Φs+1 +

s∑
t=r

1

n
xtg(xt) (1− I(xt))− Φr − Zτ. (78)

First, we use the simple fact that

xtg(xt) (1− I(xt)) ≥ 0,

to simplify (78), and have

s∑
t=r

(
g(xt)bt −

1

µ
|g(xt)− g(xt+1)|

)
≥ −Φr − Zτ. (79)

Second, we lower bound the cumulative reward by the summation of the bit sequence. From (75), we
have

Φs+1 ≥ xs+1 − U(n). (80)

We also have
xtg(xt) (1− I(xt)) ≥ xt − U(n)− 2µ. (81)

That is because if xt ≥ U(n) + 2µ, we have

xtg(xt) (1− I(xt)) = xt ≥ xt − U(n)− 2µ;

otherwise,
xtg(xt) (1− I(xt)) ≥ 0 ≥ xt − U(n)− 2µ.

Based on (80) and (81), we have

Φs+1 +

s∑
t=r

1

n
xtg(xt) (1− I(xt))

≥xs+1 − U(n) +
1

n

s∑
t=r

(xt − U(n)− 2µ) = xs+1 +
1

n

s∑
t=r

xt −
τ

n
(U(n) + 2µ)− U(n)

=ρτxr +

s∑
j=r

ρs−jbj +
1

n

s∑
t=r

ρt−rxr +

t−1∑
j=r

ρt−1−jbj

− τ

n
(U(n) + 2µ)− U(n)

=ρτxr +

s∑
j=r

ρs−jbj +
xr
n

s∑
t=r

ρt−r +

s∑
j=r

bj
n

s∑
t=j+1

ρt−1−j − τ

n
(U(n) + 2µ)− U(n)

=ρτxr +

s∑
j=r

ρs−jbj +
xr
n

1− ρτ

1− ρ
+

s∑
j=r

bj
n

1− ρs−j

1− ρ
− τ

n
(U(n) + 2µ)− U(n)

ρ=1−1/n
= xr +

s∑
t=r

bt −
τ

n
(U(n) + 2µ)− U(n).

Combining the above inequality with (78), we have

s∑
t=r

(
g(xt)bt −

1

µ
|g(xt)− g(xt+1)|

)
≥

s∑
t=r

bt + xr −
τ

n
(U(n) + 2µ)− U(n)− Φr − Zτ.

(82)

27

0 1000 2000
t

0

500

1000

1500

C
u

m
u

la
ti

ve
lo

ss

SOGD

CBCE

Ader

(a) Cumulative loss over t rounds

0 1000 2000
t

0

2

4

6

T
ot

al
lo

ss

SOGD

CBCE

Ader

(b) Total loss in each round

0 1000 2000
t

0

2

4

6

S
w

it
ch

in
g

co
st

SOGD

CBCE

Ader

(c) Switching cost in each round

Figure 1: Performance of different methods versus the number of rounds.

Third, from (79) and (82), we have
s∑
t=r

(
g(xt)bt −

1

µ
|g(xt)− g(xt+1)|

)

≥max

(
0,

s∑
t=r

bt + xr −
τ

n
(U(n) + 2µ)− U(n)

)
− Φr − Zτ

(75)

≥ max

(
0,

s∑
t=r

bt + xr −
τ

n
(U(n) + 2µ)− U(n)

)
−max(xr, 0)− Zτ

which proves (34).

Finally, to bound the change of successive predictions, we have

|g(xt)− g(xt+1)| ≤ |xt − xt+1|max
s
|g′(s)|

(70)

≤ 2µmax
s
|g′(s)|. (83)

Following the analysis of Lemma 23 of Daniely and Mansour [2019], we know that g′(·) is nondecre-
asing in [0, U(n)] and is 0 outside, and thus

max
s
|g′(s)| = g′(U(n)) =

U(n)g(U(n))

8n
+
Z

8
=
U(n)

8n
+
Z

8

(10)

≤

√
16n log 1

Z

8n
+
Z

8
(84)

where the 2nd equality is due to the property of the confidence function [Daniely and Mansour, 2019,
Lemma 18]. We obtain (35) by combining (83) and (84).

B Experiments

In this section, we implement online linear regression on synthetic data to evaluate our method, i.e.,
smoothed OGD (SOGD). In each round t, a batch of data points {(xt,1, yt,1), . . . , (xt,n, yt,n)} arrive,
where xt,i is sampled randomly from [−1, 1]d. The target value yt,i is generated by yt,i = w>xt,i+ε,
where ε ∼ N (0, 0.1) is a zero-mean Gaussian noise with standard deviation 0.1. The unknown
parameter w is sampled randomly from [−1, 1]d, and would be re-sampled every 500 rounds to
simulate changing environments. After predicting wt, the online learner suffers the following total
loss

n∑
i=1

|w>t xt,i − yt,i|+ λG‖wt −wt−1‖

which includes both the hitting cost and the switching cost.

In the experiment, we set n = 64, d = 10, λ = 1, D = 2
√

10, and G =
√

10. We compare our
method with CBCE [Jun et al., 2017a] and Ader [Zhang et al., 2018a], which obtain optimal adaptive
regret and dynamic regret respectively, but do not consider the switching cost.

28

The whole experiment is conducted on a personal laptop equipped with an Intel i7-10750H CPU and
16G memory. We repeat the experiment 100 times and plot the average cumulative loss, total loss
and switching cost in Fig. 1. As can be seen, all three methods can deal with changing environments
and adapt quickly when the underlying parameter w changes. Among them, our SOGD suffers the
smallest cumulative loss, and incurs the least total loss in most rounds. As indicated in Fig. 1(c), both
Ader and CBCE have much higher switching cost compared with our method, and CBCE suffers
huge switching loss when w is re-sampled. In contrast, SOGD maintains the lowest switching cost in
all rounds, since it explicitly takes the switching cost into consideration.

29

	Analysis
	Proof of Theorem 1
	Proof of Corollary 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 5

	Experiments

