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Abstract—This paper explores stochastic multi-level compositional optimization, where the objective function is a composition of multiple
smooth functions. Traditional methods for solving this problem suffer from either sub-optimal sample complexities or require huge batch
sizes. To address these limitations, we introduce the Stochastic Multi-level Variance Reduction (SMVR) method. In the expectation case,
our SMVR method attains the optimal sample complexity of O(1/ϵ3) to find an ϵ-stationary point for non-convex objectives. When the
function satisfies convexity or the Polyak-Łojasiewicz (PL) condition, we propose a stage-wise SMVR variant. This variant improves the
sample complexity to O(1/ϵ2) for convex functions and O(1/(µϵ)) for functions meeting the µ-PL condition or µ-strong convexity. These
complexities match the lower bounds not only in terms of ϵ but also in terms of µ (for PL or strongly convex functions), without relying on
large batch sizes in each iteration. Furthermore, in the finite-sum case, we develop the SMVR-FS algorithm, which can achieve a
complexity of O(

√
n/ϵ2) for non-convex objectives, O(

√
n/ϵ log(1/ϵ)) for convex functions and O(

√
n/µ log (1/ϵ)) for objectives

satisfying the µ-PL condition, where n denotes the number of functions in each level. To make use of adaptive learning rates, we propose
the Adaptive SMVR method, which maintains the same complexities while demonstrating faster convergence in practice.

Index Terms—Stochastic compositional optimization, multi-level optimization, nested variance reduction, finite-sum optimization.

✦

1 INTRODUCTION

THIS paper investigates the stochastic multi-level compo-
sitional optimization problem, formulated as:

min
w∈Rd

F (w) = fK ◦ · · · ◦ f2 ◦ f1(w), (1)

where fi : Rdi−1 7→ Rdi , for i = 1, . . . ,K (with dK = 1 and
d0 = d). In the expectation case, we assume that only noisy
evaluations of each layer function fi(·; ξi) and its gradient
∇fi(·; ξi) can be accessed, where ξi denotes a sample drawn
from the oracle such that:

Eξi [fi(·; ξi)] = fi(·), Eξi [∇fi(·; ξi)] = ∇fi(·).
In machine learning, w often represents the parameters of
a predictive model, and F denotes the loss of that model,
with ξi representing a training sample. A special case to
be considered separately is when each ξi has finite support
{1, · · · , ni} and is uniformly distributed. In such finite-sum
cases, the problem is expressed as:

min
w∈Rd

F (w) =
1

nK

nK∑
j=1

fK,j

· · · 1

n1

n1∑
j=1

f1,j (w) · · ·
 . (2)

Problems (1) and (2) have significant applications in many
tasks, such as reinforcement learning [1], robust learning [2],
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multi-step model-agnostic meta-learning [3], risk-averse
portfolio optimization [4, 5] and risk management [6, 7].

Our goal is to solve the problem with the optimal sample
complexity, which is a commonly used metric in stochastic
optimization. This metric measures the number of samples
needed to reach an ϵ-stationary point for non-convex func-
tions, i.e., ∥∇F (w)∥ ≤ ϵ, or an ϵ-optimal point for convex or
PL functions, i.e., F (w)− infw F (w) ≤ ϵ. Problems (1) and
(2) reduce to the standard one-level stochastic optimization
problem when K = 1, and are known as the two-level
compositional optimization for K = 2.

In the expectation case for one-level and two-level non-
convex problems, single-loop algorithms such as STORM
[8] and RECOVER [9] have been shown to achieve the
optimal complexity of O

(
1/ϵ3

)
for attaining an ϵ-stationary

solution without using large batch sizes. However, for multi-
level problems, the errors of gradient and function value
estimators accumulate with the level becoming deeper, mak-
ing the problem much harder. Existing multi-level methods
either suffer from sub-optimal complexities [10, 11, 12] or
require huge and increasing batch sizes [13]. When the
objective function is convex or strongly convex, [14] has been
established a sample complexity of O

(
1/ϵ2

)
or O(1/(µ2ϵ)).

However, their analysis requires that each layer function fi
is monotone and convex, and their complexity for µ-strongly
convex function is non-optimal with respect to µ [15].

In the finite-sum case, only one paper [13] addresses
the multi-level finite-sum problem, achieving an optimal
complexity of O

(
n+

√
n/ϵ2

)
for non-convex functions. Yet,

this approach also requires large batch sizes of O(
√
n)

per step and full batch sizes of O(n) at each checkpoint.
Moreover, the complexities for convex/PL/strongly convex
objectives have not been explored in this context.

Hence, a fundamental question to be addressed is: Is
it possible to solve stochastic multi-level problems with optimal
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complexities for non-convex, convex, and strongly convex functions
without large batch sizes? We give an affirmative answer to
this question by introducing an innovative algorithm named
Stochastic Multi-level Variance Reduction (SMVR). By using
the variance reduction techniques to estimate Jacobians and
function values at each level, SMVR achieves the optimal
sample complexity of O

(
1/ϵ3

)
for non-convex functions in

the expectation case, aligning with the established lower
bound [16]. Central to the algorithmic design and analysis
are: (i) the variance reduction is applied concurrently to
Jacobians and function values, which is different from most
existing works [10, 11, 12]; (ii) the Jacobian estimators are
updated with a projection to ensure that errors of gradient
estimators can be bounded regardless of the depth of the
problem. Then, by only estimating the overall gradient in
each step and using the normalization technique, we further
show that we are able to remove the projection operation
and do not require problem-dependent parameters to set
hyper-parameters, which are more practical to use in real-
world scenarios. When handling convex functions or those
satisfy the µ-PL condition (weaker than strong convexity),
we propose stage-wise SMVR methods and improve the com-
plexity to O

(
1/ϵ2

)
and O (1/ (µϵ)) respectively, matching

the corresponding lower bounds [15]. A crucial aspect of
our analysis is demonstrating that the errors of gradient and
function value estimators decrease in a stage-wise manner.

For the finite-sum structure, we adopt the framework
of SAG algorithm [17] to avoid computing on the full
batches and incorporate variance reduction technique with
an additional term recording the gradient history. By
employing such a design, we obtain an optimal com-
plexity of O(

√
n/ϵ2) for non-convex objectives. Following

the similar stage-wise approach, we can also achieve a
complexity of O(

√
n/ϵ log (1/ϵ)) for convex functions and

O(
√
n/µ log (1/ϵ)) for µ-PL/strongly convex objectives. Fi-

nally, to take advantage of adaptive learning rates, we
design an adaptive version of SMVR methods and prove the
same rates. Adaptive SMVR performs better in practice and
avoids tuning the learning rate manually. Compared with
existing multi-level methods, this paper enjoys the following
advantages:

1) We achieve the optimal complexity of O
(
1/ϵ3

)
for non-

convex functions, which is better than existing multi-
level methods [10, 11, 12]. Although [13] attains the same
rate, their approach relies on a large and increasing batch
size of O (1/ϵ), which is impractical to use.

2) For convex and strongly convex functions, we obtain
an optimal complexity of O

(
1/ϵ2

)
and O (1/ (µϵ)),

respectively. This is an improvement over [14], as our
method does not require each layer function fi to be
monotone and convex, and exhibits better dependence
on µ for µ-strongly convex functions.

3) We introduce the Adaptive SMVR method to make
use of adaptive learning rates, which enjoys the same
complexity but shows faster convergence in practice.

A preliminary version of this paper was presented at
the 39th International Conference on Machine Learning in
2022 [18]. In this paper, we have significantly expanded the
conference version by adding the following extensions.

1) We develop a simpler version of the original SMVR
algorithm, named SMVR-NP, which preserves optimal

convergence but does not need the projection operation
anymore. This is achieved by estimating the overall
gradient instead of evaluating the gradient in each
level separately. By further employing the normalization
technique, we also avoid requiring problem-dependent
parameters to set hyper-parameters, making the newly
proposed method much more practical.

2) We also investigate the stochastic multi-level optimiza-
tion for the finite-sum structure and propose the SMVR-
FS algorithm to obtain the optimal sample complexity
of O(

√
n/ϵ2) for non-convex functions. Compared with

[13], our method supports a constant batch size, which
is much easier to implement. In contrast, [13] requires
to use a large batch of O(

√
n) in each step and of O(n)

in the checkpoint step.
3) We further improve the complexity to O(

√
n/ϵ log (1/ϵ))

for convex functions and to O(
√
n/µ log (1/ϵ)) for µ-

PL/strongly convex objectives in the finite-sum case.
These results are new in the multi-level finite-sum
literature, and the linear convergence rate O (log (1/ϵ))
is optimal under the PL condition, matching the current
result in the single-level finite-sum problem [19].

4) We compare the newly proposed methods, i.e., SMVR-
NP and SMVR-FS, with other multi-level algorithms in
the experiments of three different tasks, validating the
effectiveness of our proposed methods.

A comparison between our results and existing multi-
level methods is shown in Table 1 and Table 2.

2 RELATED WORK

This section provides an overview of related work on stochas-
tic two-level and multi-level compositional optimization, as
well as finite-sum compositional optimization.

2.1 Two-Level Compositional Optimization

[20] first introduces the stochastic compositional gradient
descent (SCGD) method to minimize a composition of two-
level expected-value functions. This method uses two step
size sequences in different time scales to update the decision
variable and inner function separately. When the inner func-
tion is smooth, this approach yields a complexity of O

(
1/ϵ7

)
for non-convex objectives, O

(
1/ϵ3.5

)
for convex functions,

and O
(
1/
(
µ14/4ϵ5/4

))
for µ-strongly convex functions. In

a subsequent work [21], the accelerated stochastic composi-
tional proximal gradient (ASC-PG) is proposed to improve
the complexity to O

(
1/ϵ4.5

)
, O
(
1/ϵ2

)
and O (1/ϵ) for non-

convex, convex and strongly convex functions, respectively.
Instead of using two-timescale step sizes, a single-

timescale method called Nested Averaged Stochastic Ap-
proximation (NASA) has been developed by [22] which
achieves a complexity of O

(
1/ϵ4

)
for non-convex objec-

tives. With the emergence of variance reduction techniques
in one-level stochastic optimization such as SARAH [23],
SPIDER [24], SpiderBoost [25] and STORM [8], variance
reduced algorithms are also developed for two-level com-
positional problems with improved rates under a slightly
stronger smoothness assumption [26, 27, 28, 29]. Notably,
[27] and [28] achieve the optimal O

(
1/ϵ3

)
sample com-

plexity, leveraging SARAH and SPIDER with large batch
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TABLE 1
Summary of results for attaining an ϵ-stationary or ϵ-optimal point in the expectation case. Notations: CVX for convex, Mono. & CVX indicating each

layer function is monotone and convex, SC for µ-strongly convex, and PL for the µ-PL condition (weaker than µ-strongly convex).

Method Assumptions Complexity Batch size

A-TSCGD [10] Smooth O
(
1/ϵ(7+K)/2

)
O (1)

A-TSCGD [10] Smooth + SC O
(
1/ϵ(3+K)/4

)
O (1)

NLASG [11] Smooth O
(
1/ϵ4

)
O (1)

SCSC [12] Smooth O
(
1/ϵ4

)
O (1)

Nested-SPIDER [13] Smooth O
(
1/ϵ3

)
O (1/ϵ)

SSD [14] Smooth + Mono. & CVX O
(
1/ϵ2

)
O (1)

SSD [14] Smooth + SC O
(
1/(µ2ϵ)

)
O (1)

SMVR/SMVR-NP (This work) Smooth O
(
1/ϵ3

)
O (1)

Stage-wise SMVR (This work) Smooth + CVX O
(
1/ϵ2

)
O (1)

Stage-wise SMVR (This work) Smooth + PL O (1/(µϵ)) O (1)

TABLE 2
Summary of results for finding an ϵ-stationary or ϵ-optimal point in the finite-sum case.

Method Assumptions Complexity Batch size

Nested-SPIDER [13] Smooth O
(√

n/ϵ2
)

O
(√

n
)

SMVR-FS (This work) Smooth O
(√

n/ϵ2
)

O (1)
Stage-wise SMVR-FS (This work) Smooth + CVX O

(√
n/ϵ log (1/ϵ)

)
O (1)

Stage-wise SMVR-FS (This work) Smooth + PL O
(√

n/µ log (1/ϵ)
)

O (1)

sizes, respectively. Later, [30] develops an algorithm named
STORM-Compositional, attaining the same complexity using
mini-batches. To avoid using batches, [9] proposes a STORM-
based method and obtains the same optimal rate. However,
these two-level approaches are not directly extendable to
multi-level optimization problems.

2.2 Multi-Level Compositional Optimization

The pioneering work by [10] marks the beginning of research
into stochastic multi-level optimization. They introduced
an accelerated T -level stochastic compositional gradient de-
scent (A-TSCGD) algorithm, which, through an extrapolation-
interpolation technique, achieved a sample complexity of
O
(
1/ϵ(7+K)/2

)
for K-level problems. This complexity is

further improved to O
(
1/ϵ(3+K)/4

)
for strongly convex

functions. Building on this, [11] proposes the Nested Lin-
earized Averaging Stochastic Gradient method (NLASG),
extending the NASA algorithm to a more general K ≥ 1
setting, achieving a sample complexity of O

(
1/ϵ4

)
. Concur-

rently, [12] develops the Stochastically Corrected Stochastic
Compositional gradient method (SCSC), which adopts a
STORM-like technique for function value estimation at each
level, also achieving a sample complexity of O

(
1/ϵ4

)
.

Later, [13] introduces the Nested-SPIDER method, which
employs nested variance reduction for gradient approxima-
tion, improving the sample complexity to O

(
1/ϵ3

)
. However,

this method necessitates a large and increasing batch size at
the order of O (1/ϵ) and even O

(
1/ϵ2

)
in the first iteration

of each stage. The method also does not specify complexities
for convex and strongly convex functions. Later, [14] proves
that the sample complexity can be improved to O

(
1/ϵ2

)
when every layer function fi is monotone and convex, using
a general Stochastic Sequential Dual (SSD) method. The
complexity is further reduced to O

(
1/(µ2ϵ)

)
for µ-strongly

convex functions. However, their method requires strong

assumptions, i.e., layer-wise convexity and monotonicity.
In contrast, our method only requires the overall objective
function to be convex or strongly convex to achieve the
same complexity for convex functions and an even better
complexity for strongly convex functions.

More recently, multi-level optimization is also widely
investigated in the distributed environment. [31] further
introduced the decentralized stochastic multi-level opti-
mization algorithm, which achieves the level-independent
convergence rate under the decentralized setting. At the
same time, [32] studied distributed multi-level optimization
with the smooth and strongly convex objective, attaining an
optimal communication complexity while maintaining an
almost optimal sample complexity.

2.3 Finite-sum Compositional Optimization
For the two-level finite-sum optimization problem in the
form of 1

n2

∑n2

j=1 f2,j
(

1
n1

∑n1

j=1 f1,j (w)
)

, [33] first combines
the SCGD [20] and SVRG [34] techniques and achieve a
complexity of O ((n1 + n2) log (1/ϵ)) for strongly convex
functions. To deal with the general non-convex objectives,
[26] proposes an algorithm named VRSC-PG, which can
obtain a complexity of O

(
(n1 + n2)

2/3
/ϵ2
)

by employing
the variance reduction technique to estimate the inner
function values. This rate is also achieved by [28] using
a composite randomized incremental gradient method.

When it comes to the multi-level finite-sum optimization,
[13] obtains a sample complexity of O

(
n+

√
nmax/ϵ

2
)
,

where nmax = max {n1, · · · , nK} and n =
∑K

i=1 ni. Since
this method is based on SPIDER, it still has to use large
batch sizes of O

(√
nmax

)
and require computing over the

full batches at certain checkpoint steps. Furthermore, the
sample complexity for convex/PL/strongly convex func-
tions remains unexplored in this setting, highlighting an
opportunity for future research to investigate these specific
function types within the multi-level finite-sum framework.
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3 MULTI-LEVEL VARIANCE REDUCTION FOR THE
EXPECTATION CASE

We first discuss the main challenge in solving multi-level
compositional optimization problems. Then, we develop an
optimal method for non-convex objectives in the expectation
case. Finally, we explore additional conditions to further
improve the sample complexity.

3.1 Notations and Assumptions

Let ξ denote some random variable and ∥·∥ denote the
Euclidean norm of a vector. We use ΠLf

to represent the
projection onto the ball with radius Lf , i.e.,

ΠLf
(x) = argmin

∥w∥⩽Lf

∥w − x∥2.

We further give the definition of sample complexity below.

Definition 1. The sample complexity refers to the number of
samples needed to find a point satisfying E [∥∇F (w)∥] ≤ ϵ (ϵ-
stationary) or E [F (w)− infw F (w)] ≤ ϵ (ϵ-optimal).

Moreover, we make the following assumptions in this sec-
tion, which are commonly adopted in the studies of stochastic
compositional optimization [20, 21, 27, 28, 13, 35, 36].

Assumption 1. (Bounded Variance) For 1 ≤ i ≤ K, the
following conditions hold:

Eξit

[
fi(x; ξ

i
t)
]
= fi(x),

Eξit

[
∇fi(x; ξ

i
t)
]
= ∇fi(x),

Eξit

[∥∥fi(x; ξit)− fi(x)
∥∥2] ≤ σ2

f ,

Eξit

[∥∥∇fi(x; ξ
i
t)−∇fi(x)

∥∥2] ≤ σ2
J ,

where {ξit}Ki=1 are mutually independent.

Assumption 2. (Mean-Squared Smoothness)

Eξit

[∥∥fi(x; ξit)− fi(y; ξ
i
t)
∥∥2] ≤ L2

f ∥x− y∥2 ,

Eξit

[∥∥∇fi(x; ξ
i
t)−∇fi(y; ξ

i
t)
∥∥2] ≤ L2

J ∥x− y∥2 .

Assumption 3. F∗ = infw F (w) ≥ −∞ and F (w1)− F∗ ≤
∆F for the initial solution w1.

Remark: Note that Assumptions 1 and 2 can imply that the
overall objective function F is LF -smooth, where the smooth
constant is defined as LF := L2K−1

f LJ

∑K
i=1 L

−i
f .

3.2 The Challenge in Multi-Level Optimization

Compared with single-level problems, the main dilemma
in multi-level optimization lies in the difficulty of obtaining
an unbiased gradient of the function F . Consider a two-
level compositional problem, where the objective function is
expressed as F (w) = f ◦ g(w). The gradient of this function
is given by:

∇F (w) = ∇g(w) · ∇f(g(w)).

Although we have access to unbiased estimations of each
layer function and its gradient, i.e., Eξ1 [g(x; ξ1)] = g(x),
Eξ2 [f(x; ξ2)] = f(x) and Eξ2 [∇f(x; ξ2)] = ∇f(x), it is still
challenging to obtain an unbiased estimation of the gradient

∇f(g(w)). This is because the expectation over ξ1 cannot be
moved inside of ∇f such that:

Eξ1,ξ2 [∇f(g(w; ξ1); ξ2)] ̸= ∇f(g(w)).

Similarly, it is also difficult to obtain an unbiased estimation
of the function value:

Eξ1,ξ2 [f(g(w; ξ1); ξ2)] ̸= f(g(w)).

These challenges motivate us to adopt the variance reduced
estimator to have a better evaluation of function values and
Jacobians at each level, ensuring that the estimation errors
can be reduced over time.

However, variance reduced estimators used in two-level
optimization problems [9] can not be applied to multi-level
directly, because the error might blow up as the depth
increases if the estimators of Jacobians are not bounded.
To handle this issue, [13] proposes to use an extremely
small step size and periodically re-evaluate the function
values and Jacobians at all levels with a large batch size
after several iterations. However, this approach inevitably
necessitates the use of large batches (as large as O

(
1/ϵ2

)
) at

the beginning of each stage, and since they use SPIDER [24]
as their estimator, their method requires a batch size of
O (1/ϵ) at other iterations. To avoid using large batches, our
method uses STORM [8] estimator and projects gradients
onto a ball to ensure the Jacobians can be well bounded so
that the error of the gradient estimator does not blow up.

3.3 Stochastic Multi-Level Variance Reduction Method
Now, we introduce the proposed Stochastic Multi-level
Variance Reduction (SMVR) method for solving problem (1).
As mentioned before, the main difficulty is that we can not
obtain an unbiased estimation of the gradients and inner
function values in the multi-level setting. We note that,
in the one-level problems, the STORM method employs a
momentum-based variance reduction technique for gradient
estimation, represented as:

dt =(1− βt)dt−1 + βt∇f (xt; ξt)

+ (1− βt) (∇f (xt; ξt)−∇f (xt−1; ξt)) .

This method effectively reduces the variance of the estimated
values and achieves the optimal rate. Inspired by STORM,
we apply similar variance reduction estimators at each level
to approximate the gradient more accurately.

The proposed method is described in Algorithm 1. At
each time step t, we employ two sequences, ui

t and vi
t,

to estimate the function value and the gradient at level i,
respectively. For function value estimation, we use a nested
STORM estimator, i.e.,

ui
t =(1− βt)u

i
t−1 + βtfi(u

i−1
t ; ξit)

+ (1− βt)
(
fi(u

i−1
t ; ξit)− fi(u

i−1
t−1; ξ

i
t)
)
.

(3)

This formulation can be interpreted as that ui
t is a STORM

estimator of fi(ui−1
t ). For estimating the Jacobians, we apply

a nested STORM estimator, followed by a projection:

vi
t =ΠLf

[
(1− βt)v

i
t−1 + βt∇fi(u

i−1
t ; ξit)

+(1− βt)
(
∇fi(u

i−1
t ; ξit)−∇fi(u

i−1
t−1; ξ

i
t)
)]

.
(4)
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Algorithm 1 SMVR method
1: Input: time step T , initial points (w1,u1,v1), parameter

c, and learning rate sequence {ηt}
2: for time step t = 1 to T do
3: Set u0

t = wt, βt = cη2t−1

4: for level i = 1 to K do
5: Sample ξit
6: Compute the function estimator ui

t according to (3)
7: Compute the Jacobian estimator vi

t according to (4)
8: end for
9: Update gradient estimation: vt =

∏K
i=1 v

i
t

10: Update the decision variable: wt+1 = wt − ηtvt

11: end for
12: Choose τ uniformly at random from {1, . . . , T}
13: Return (wτ ,uτ ,vτ )

The projection operation ensures that the error of the stochas-
tic gradient estimator can be bounded; otherwise, they may
blow up as the level becomes deeper. Note that vi

t tracks the
value of ∇fi(u

i−1
t ), and the overall gradient estimation error

can be bounded as:∥∥∥∥∥
K∏
i=1

∇fi(u
i−1
t )−

K∏
i=1

vi
t

∥∥∥∥∥
2

≤K

∥∥∥∥∥
K∏
i=1

∇fi(u
i−1
t )− v1

t

K∏
i=2

∇fi(u
i−1
t )

∥∥∥∥∥
2

+ . . .+K

∥∥∥∥∥
K−1∏
i=1

vi
t · ∇fK(uK−1

t )−
K∏
i=1

vi
t

∥∥∥∥∥
2

≤K

(
K∑
i=1

L
2(K−1)
f

∥∥∥∇fi(u
i−1
t )− vi

t

∥∥∥2) ,

where the last inequality holds since vi
t is bounded by Lf .

That is to say, on the one hand, we aim to leverage the
benefits of variance reduction in the estimator (we require
that the true gradients are in the projected domain and thus
projection does not hinder the analysis); on the other hand,
we do not want the variance of estimator accumulates too fast
over multiple levels (vi is bounded after projection). Hence,
projection on the Jacobian estimator is a perfect solution.
Once the gradient at each level is evaluated, we apply the
chain rule to calculate the estimated gradient of the objective
function, i.e., vt = v1

tv
2
t · · ·vK

t and employ gradient descent
to update the variable wt at the end of each time step.

Note that in the first iteration of our algorithm, we
evaluate the function value and gradient at each level simply
as ui

1 = f(ui−1
1 ; ξi1) and vi

1 = ∇fi(u
i−1
1 ; ξi1). Our algorithm

does not need to use large batches in any iterations, though
it is fully compatible with mini-batch techniques. Here, ξit
within the algorithm can represent either a single training
sample or a batch of samples. Next, we present the sample
complexity of our method.

Theorem 1. If we set c = 10L2
1, ηt = (a+ t)

−1/3
/L1 and

a =
(
20L3

1

)3/2, where L1 = O(KLF ) is a positive constant, our
Algorithm 1 ensures that E [∥∇F (wτ )∥] ≤ O

(
KLF

T 1/3

)
.

Remark: The complexity of our approach is on the order of
O(1/ϵ3), which matches the lower bound in one-level setting

Algorithm 2 SMVR-NP
1: Input: time step T , initial points (w1,u1,v1), parameter

c, and learning rate sequence {ηt}
2: for time step t = 1 to T do
3: Set u0

t = wt

4: for level i = 1 to K do
5: Sample ξit
6: Compute the function estimator ui

t according to (3)
7: end for
8: Compute the gradient estimator vt according to (5)
9: Update the decision variable: wt+1 = wt − ηtvt

10: end for
11: Choose τ uniformly at random from {1, . . . , T}
12: Return (wτ ,uτ ,vτ )

[16]. The SMVR method avoids using large batches in each
iteration, which is more practical to implement compared
with the existing method which requires huge batch sizes
and changing the batch size over time [13].

3.4 Stochastic Multi-Level Variance Reduction without
Projection Operation
In the previous subsection, we introduce a projection opera-
tion to prevent the estimation error from escalating with the
level becoming deeper. This is necessary because the SMVR
method separately estimates the gradient at each level, and
then combines them using the chain rule. As a result, if each
vi
t is unbounded, it becomes challenging to decompose the

overall error of the whole gradient estimator vt as the errors
in each level, resulting the error blowing up. Therefore, the
projection is crucial for bounding the gradient estimator at
each level. However, implementing the projection (as well as
setting hyper-parameters in SMVR) requires the knowledge
of the upper bound of the gradient at each level, which is
often hard to know in practice.

To overcome this limitation, we propose an alternative
approach that only estimates the overall gradient at each
time step. Specifically, rather than evaluating the gradient
at each level as vi

t through the STORM estimator and then
multiplying these evaluations as vt =

∏K
i=1 v

i
t, we directly

apply variance reduction estimation on the overall gradient.
That is to say, we update the overall gradient estimator vt as:

vt = (1− βt)vt−1 + βt

K∏
i=1

∇fi(u
i−1
t ; ξit)

+ (1− βt)

(
K∏
i=1

∇fi(u
i−1
t ; ξit)−

K∏
i=1

∇fi(u
i−1
t−1; ξ

i
t)

)
.

(5)

With this modification, we eliminate the need for a projection
operation while still ensuring that the error does not accumu-
late as the level becomes deeper. This is because we no longer
multiply vi

t together, thus avoiding the need to bound each
vi
t and compute its error in the analyses. Instead, we can

analyze the overall gradient estimation error directly with-
out decomposition. By further employing a normalization
technique, we can also avoid requiring problem-dependent
parameters such as Lf , LJ , σf , σJ to set hyper-parameters ηt
and βt for our algorithm. We present this revised approach in
Algorithm 2, named SMVR-NP (SMVR with No Projection).
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Algorithm 3 Stage-wise SMVR
1: Input: initial points (w0,u0,v0), parameter c
2: for stage s = 1 to S do
3: Set ηs and Ts according to Lemma 1
4: ws,us,vs = SMVR (with Ts, (ws−1,us−1,vs−1), c, ηs)
5: end for
6: Return wS

We demonstrate that SMVR-NP achieves a similar optimal
complexity as stated below.

Theorem 2. By setting ηt = η
∥vt∥ and η = βt = T−2/3, our

Algorithm 2 can guarantee that E [∥∇F (wτ )∥] ≤ O
(
KLF

T 1/3

)
.

Remark: SMVR-NP maintains the same optimal complexity
as the original SMVR, and it is more practical than the initial
SMVR method since it does not need the projection operation
in each level or require to know problem-dependent parame-
ters to set hyper-parameters ηt and βt. When ∥vt∥ = 0, we
set vt/ ∥vt∥ = 0 such that we do not update wt in this case.

3.5 Faster Convergence under Stronger Conditions
Next, we explore whether additional assumptions could be
used to further improve the complexity of our approach. We
develop a variant of our original method, named Stage-wise
SMVR, which achieves better complexity when the objective
function satisfies the PL condition or convexity.

The new algorithm is a multi-stage adaptation of the
original SMVR method, summarized in Algorithm 3. Instead
of decreasing the learning rate ηt polynomially, in Stage-wise
SMVR, we decrease the learning rate η and the parameter β
after each stage, while concurrently increasing the iteration
number for each stage. At the end of each stage, the algorithm
saves the output ws,us,vs, which are used as starting points
for the next stage. With these modifications, we can obtain
a better convergence guarantee under the PL condition or
dealing with convex objective functions.

First, we investigate the case that the objective function
satisfies the PL condition, which is a commonly used
condition in the literature [37, 38, 39, 40]. We introduce the
definition of the PL condition below.

Definition 2. The function F (w) satisfies the µ-PL condition if
there exists a positive constant µ such that:

2µ (F (w)− F∗) ≤ ∥∇F (w)∥2.
With this condition, we can prove that the error of

function estimator us and gradient estimator vs decreases
after each stage.

Lemma 1. Define that ϵ1 = 8L1

µ and ϵs =
ϵ1

2s−1 . Then, by setting

that T1 = max
{
4L1K

(
σ2
f + σ2

J

)
, 2
√
2L1∆F

}
, β1 = 1

2L1
,

Ts = max

{
4L

3/2
2

µϵs−1
, 4L2

µ3/2√ϵs−1

}
, βs = µϵs−1

L2
, c = 16L2

1, ηs =√
βs/c and L2 = 64L2

1, the output of Algorithm 3 satisfies:

E [F (ws)− F∗] ≤ ϵs;
K∑
i=1

E
[∥∥fi(ui−1

s )− ui
s

∥∥2 + ∥∥vi
s −∇fi(u

i−1
s )

∥∥2] ≤ µϵs.

This lemma indicates the objective gap E [F (ws)− F∗]
is reduced by half after each stage. As a result, after S =
log2 (2ϵ1/ϵ) stages, the output satisfies E [F (wS)− F∗] ≤ ϵ.
Based on Lemma 1, we can establish the convergence of our
method in the following theorem.

Theorem 3. Assume F (w) satisfies the µ-PL condition. The
Stage-wise SMVR algorithm achieves an ϵ-optimal point with a
sample complexity of O

(
K3L3

F / (µϵ)
)
.

Moreover, if the objective function satisfies the convexity
rather than the PL condition, our method can still use this
property to improve the sample complexity, as indicated in
the following theorem.

Theorem 4. Assume F (w) is convex and the optimal solution
is bounded by ∥x∗∥ ≤ D. The proposed algorithm attains an
ϵ-optimal point with a complexity of O

(
K3L3

F /ϵ
2
)
.

Remark: The Stage-wise SMVR method behaves optimally
when the objective function enjoys the PL condition or
convexity. For smooth and convex functions, our method
aligns with the O

(
1/ϵ2

)
lower bound for this problem [15].

When it comes to the PL condition, there exists O (1/ (µϵ))
lower bound for the µ-strongly convex setting [15], which is
a special case of the PL condition, thus proving our method
is optimal. Compared with existing results [14], our analysis
requires weaker assumptions and enjoys a better and optimal
dependence in terms of µ.

4 MULTI-LEVEL VARIANCE REDUCTION FOR THE
FINITE-SUM STRUCTURE

In this section, we investigate the case for the finite-sum
structure, where the function in each level is in the form of
the finite-sum, i.e.,

1

nK

nK∑
j=1

fK,j

· · · 1

n2

n2∑
j=1

f2,j

 1

n1

n1∑
j=1

f1,j (w)

 · · ·
 .

In this case, we may have the chance to compute the exact
gradient in certain iterations, as a result, we can obtain
improved complexity in terms of ϵ. First, we introduce the
following assumption in this section, which is also used in
the previous multi-level finite-sum literature [13].

Assumption 4. Each function fi,j is Lf -Lipschitz continuous
and its Jacobian ∇fi,j is LJ -Lipschitz continuous.

It is well-known that the optimal sample complexity for
non-convex objectives in the single-level finite-sum setting
is O

(
n+

√
n

ϵ2

)
[24]. To achieve this optimal complexity,

a straightforward approach is to integrate the existing
SVRG [34, 41] technique with our SMVR method. This
strategy is also used in the previous multi-level finite-sum
literature [13], which incorporates SVRG into the SPIDER
algorithm. However, SVRG is a two-loop algorithm and
requires computing the full version of the function value and
the gradient periodically at “checkpoint steps”, which is not
practical in real-world scenarios.

To avoid this limitation, we propose a novel single-loop
variance reduction technique for the finite-sum structures. In



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXX 20XX 7

Algorithm 4 SMVR-FS
1: Input: time step T , initial points (w1,u1,v1), parameter

c, and learning rate sequence {ηt}
2: for time step t = 1 to T do
3: Set u0

t = x
4: for level i = 1 to K do
5: random select it from {1, · · · , ni}
6: Compute the function estimator ui

t according to (6)
7: Compute the gradient estimator vi

t according to (7)
8: end for
9: Update gradient estimation: vt = ΠK

i=1v
i
t

10: Update the decision variable: wt+1 = wt − ηvt

11: end for
12: Choose τ uniformly at random from {1, . . . , T}
13: Return (wτ ,uτ ,vτ )

each time step t, for level i, we first sample it randomly from
{1, · · · , ni}, and then we estimate the function value as:

ui
t =(1− β)ui

t−1 + βrit

+ (1− β)
[
fit(u

i−1
t )− fit(u

i−1
t−1)

]
.

(6)

By setting rt = fit(u
i−1
t ), this estimation reduces to our

original SMVR method. To achieve the optimal rate in the
finite-sum structure, we adopt the similar design of SAG
method [17], and set rit = fit(u

i−1
t )−hit

t +
1
ni

∑ni

j=1 h
j
t , where

ht represents the historical record of past function values,

updated as hj
t+1 =

{
fit(u

i−1
t ) j = it

hj
t j ̸= it

. This formulation

is a combination of the SAG algorithm and STORM method,
and effectively ensures that the estimation error decreases
over time without using the checkpoint technique or the
two-loop design. Similarly, we compute the gradient for each
level as follows:

vi
t =ΠLf

[
(1− β)vi

t−1 + βzit

+(1− β)
(
∇fit(u

i−1
t )−∇fit(u

i−1
t−1)

)]
,

(7)

where zit = ∇fit(u
i−1
t ) − giti,t +

1
ni

∑ni

j=1 g
j
i,t and we can

set that gji,t+1 =

{
∇fit(u

i−1
t ) j = it

gji,t j ̸= it
. Note that in each

time step, we first calculate vi
t and then update gi,t, which

helps to avoid the dependency issues in the analyses. Finally,
we estimate the overall gradient by multiplying v1 · · ·vK

together and apply gradient descent for updating. The
whole algorithm, named SMVR-FS (SMVR for Finite-Sum
structure), is summarized in Algorithm 4. Next, we present
the theoretical result for non-convex functions as follows:

Theorem 5. Setting η = O
(
1/
√
nmax

)
and β = O (1/nmax),

our method can ensure that E [∥F (wτ )∥] ≤ O
(
n1/4

max K1/4LF

T 1/2

)
.

Remark: The complexity of SMVR-FS method is on the
order of O

(√
nmax/ϵ

2
)
, where nmax = max{n1, · · · , nK},

matching the lower bound for the one-level setting [19].
Our single-loop method avoids using huge batches and
checkpoint steps, which is more practical to implement
compared with the existing method which requires large
batch sizes and the use of checkpoints [13].

Remark: We also have to note that there is a trade-off
between sample complexity and storage complexity. To
obtain optimal sample compelxity, we borrow the idea from
the SAG algorithm, and thus require storing past gradients
estimators. This storage requirement is the common issue for
SAG or SAGA type variance reduction methods.

Moreover, by adopting a similar stage-wise design as in
Algorithm 3, but with constant values for ηs, βs and Ts in
each stage, we can achieve improved complexities for convex,
PL, or strongly convex functions:

Theorem 6. Assuming that F (w) satisfies the µ-PL condition
or is µ-strongly convex, our stage-wise SMVR-FS algorithm
can achieve an ϵ-optimal point with a sample complexity of
O
(√

nmaxKL2
F /µ log 1/ϵ

)
by setting that ηs = O

(
1/
√
nmax

)
,

βs = O (1/nmax) and Ts = 4/µηs.

Theorem 7. Assuming that F (w) is convex and the norm of
the optimal solution x∗ is bounded by ∥x∗∥ ≤ D, our stage-wise
SMVR-FS algorithm attains an ϵ-optimal point with a complexity
of O

(√
nmaxKL2

F /ϵ log (1/ϵ)
)
.

Remark: We achieve linear convergence O (log (1/ϵ)) for the
PL condition, aligning with the current results for the single-
level finite-sum problem [19]. It is also the first time that we
obtain such complexities for convex, PL, or strongly convex
objectives under the multi-level finite-sum setting.

5 MULTI-LEVEL VARIANCE REDUCTION METHOD
WITH ADAPTIVE LEARNING RATES

In this section, we demonstrate that the proposed method can
be effectively adapted to incorporate adaptive learning rates
and maintain the same sample complexity. Adaptive learning
rates are widely used in stochastic optimization problems,
and many successful methods have been proposed, such as
AdaGrad [42], Adam [43], AMSGrad [44], AdaBound [45],
etc. Despite their prevalence, their application in stochastic
multi-level setting remains less explored. Inspired by the
above methods, we introduce an adaptive version of our
method, named Adaptive SMVR. To use adaptive learning
rates, we modify the decision variable update step from
wt+1 = wt − ηtvt to:

wt+1 = wt −
ηt√

ht + δ
vt, (8)

where δ > 0 is a parameter to prevent dividing by zero, and
ht can take following forms:

AdaGrad-type: ht =
1

t

t∑
i=1

v2
i

Adam-type: ht = (1− β′
t)ht−1 + β′

tv
2
t

AMSGrad-type: h′
t = (1− β′

t)h
′
t−1 + β′

tv
2
t ,

ht = max (ht−1,h
′
t) .

(9)

Inspired by the recent study of Adam-style methods [46], we
establish the sample complexity of the Adaptive SMVR in
Theorem 8 using similar analyses.

Theorem 8. By setting c = 10L2
3, ηt = (a+ t)

−1/3
/L3 and

a =
(
20L3

3

)3/2, Adaptive SMVR with learning rates defined in
(8) and (9) can ensure that E [∥∇F (wτ )∥] ≤ O

(
KLF

T 1/3

)
, where

L3 is a constant indicated in the proof.
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Fig. 1. Results for Risk-Averse Portfolio Optimization.
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Fig. 2. Results for Risk-Averse Portfolio Optimization.

6 EXPERIMENTS

In this section, we conduct a series of numerical experiments
to evaluate the performance of the proposed methods over
three different tasks. We compare our method with existing
multi-level algorithms, including A-TSCGD [10], NLASG
[11], Nested-SPIDER [13] and SCSC [12]. For the SMVR
method, hyper-parameters βt and ηt are set up according
to Theorem 1, and the parameter L1 is searched from the
set {0.5, 1, 5, 10}. When it comes to SMVR-FS, the parameter
nmax is searched from the set {1e1, 1e2, 1e3, 1e4, 1e5}. For
other methods, we choose the hyper-parameters recom-
mended in their original papers or conduct a grid search
to select the best hyper-parameters. As for the projection
operation ΠLf

, we simply set Lf as a large value and
provide a sensitivity analysis in terms of tuning Lf in the
first experiment. All the curves in the experiment part are
averaged over 20 runs.

6.1 Risk-Averse Portfolio Optimization
We first consider the risk-averse portfolio optimization prob-
lem. Suppose we have d assets to invest during each time step
{1, . . . , T}, and rt ∈ Rd denotes the payoff of d assets in the
time step t. The objective is to maximize investment returns
and minimize the risk simultaneously. A useful formulation
is the mean-deviation risk-averse optimization model [5],
where the risk is defined as the standard deviation. This
mean-deviation model is widely used in practice and often
used for experimental validation in multi-level optimization
research [10, 14]. The problem can be formulated as:

max
x∈X

1

T

T∑
t=1

⟨rt, x⟩ − λ

√√√√ 1

T

T∑
t=1

(⟨rt, x⟩ − ⟨r̄, x⟩)2,

where r̄ =
∑T

t=1 rt, decision variable x denotes the invest-
ment quantity vector in d assets. Note that the domain X is
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Fig. 3. Results for Hierarchical Tilted Empirical Risk Minimization.

a simplex, and we use a projection operation to ensure that
the variable x is within the domain. The above problem is a
three-level stochastic compositional optimization problem,
and each layer can be represented as:

f1(x) =

(
1

T

T∑
t=1

⟨rt, x⟩, x
)
,

f2(y, x) =

(
y,

1

T

T∑
t=1

(⟨rt, x⟩ − y)
2

)
,

f3 (z1, z2) = −z1 + λ
√
z2.

In the experiment, we test different methods on real-world
datasets Industry-10, Industry-12, Industry-17, and Industry-
30 from Keneth R. French Data Library1. These datasets
consist of 10, 12, 17, and 30 industrial assets payoff over
25105 consecutive periods, respectively. Following [13], we
set the parameter λ = 0.2.

Figure 1 shows a comparison of the loss values and
the gradient norms against the number of samples drawn
by each method. We can find that our methods (including
SMVR, SMVR-NP, and SMVR-FS) converge much faster than
other algorithms across all tasks. More specifically, both
the loss and the gradient norms of SMVR and its variants
show a more rapid decrease, demonstrating the low sample
complexity of the proposed method.

We also conduct experiments to investigate the impact
of tuning the parameter Lf for the projection operation ΠLf

in the SMVR method. For the theoretical analysis, setting
Lf above the actual upper bound of the gradient should
not alter the order of the convergence rate, although it may
affect the size of the constant factor in the rate. Here, we
adjust the Lf from the set {5, 10, 50, 100}, and the results
are depicted in Figure 2, where Lf = NA indicates that
the projection operation is not used, equivalent to assigning
Lf an extremely large value, such as 1e7. We find that the

1. https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

method performs very closely as long as Lf is set as a large
number and would perform worse when Lf is small. This
finding suggests that in practical applications, setting Lf to
a high value is a viable strategy.

6.2 Hierarchical Tilted Empirical Risk Minimization
Hierarchical Tilted Empirical Risk Minimization (TERM)
is a method proposed by [47, 2], which can deal with
noisy and imbalanced machine learning problems simul-
taneously. The TERM objective is given by R̃(w) :=
1
t log

(
1
N

∑
i∈[N ] e

tl(w;zi)
)

, where l (w; zi) denotes the loss
for sample zi from data {z1, . . . , zN}. It can mitigate outliers
when t < 0 and handle class imbalance when t > 0. When
the task involves outliers and class imbalance at the same
time, the Hierarchical TERM approach can be used:

J̃(w) :=
1

t
log

 1

|D|
∑
G⊆D

|G|etR̃G(w)

 ,

with R̃G(w) :=
1

τ
log

(
1

|G|
∑
z∈G

eτℓ(w;z)

)
,

where D represents all training samples and G denotes
samples for one specific class. The parameters t and τ
are constants dealing with different goals (i.e., outliers and
class imbalance). This framework is a four-level stochastic
compositional optimization, with each layer represented as:

f1(w) =
1

|G|
∑
z∈G

eτℓ(w;z), f2 (x) =
1

τ
log(x),

f3 (y) =
1

|D|
∑
G⊆D

|G|ety, f4 (z) =
1

t
log(z).

In the experiment, we use the “HIV-1”2, “Australian”3,
“Breast-cancer”3 and “svmguide1”3 datasets, and make the

2. https://archive.ics.uci.edu/ml/datasets.php
3. https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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TABLE 3
Classification accuracies (%) for Hierarchical Tilted Empirical Risk Minimization.

Method Hiv-1 Australian scale Breast-cancer Svmguide1
rare overall rare overall rare overall rare overall

A-TSCGD 71.3±2.9 88.1±1.2 62.7±8.9 72.5±5.2 55.1±8.5 80.6±4.4 76.5±4.6 85.8±2.1
SCSC 76.7±2.4 88.7±1.2 61.8±8.4 72.5±5.2 55.6±8.0 80.7±4.1 75.8±4.7 85.5±2.1
Nested-SPIDER 47.3±9.2 63.0±6.7 68.5±9.7 72.9±4.8 61.8±8.6 83.3±6.6 74.3±5.4 84.8±2.4
NLASG 69.9±3.0 88.1±1.3 79.4±8.4 78.7±5.8 42.0±8.5 76.7±5.2 73.3±5.2 85.0±2.2
SMVR-NP 77.4±2.8 89.2±1.1 80.2±7.8 80.5±4.3 67.6±5.4 85.5±3.8 78.9±2.6 86.1±2.2
SMVR-FS 78.9±2.6 88.1±2.0 79.5±6.8 79.7±3.5 67.8±7.6 85.2±2.8 80.8±3.4 86.8±1.8
SMVR 79.3±2.1 89.9±1.1 83.2±8.0 82.7±4.5 72.8±8.1 86.8±4.2 81.2±2.7 87.8±2.1
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Fig. 4. Results for Multi-step Model-Agnostic Meta-Learning.

training data noisy and imbalanced, where nearly 30% of
the labels are reshuffled and the number of rare class versus
common class is 1:20. We set τ = −2, t = 10 according to
the origin paper and repeat each experiment 20 times.

As shown in Figure 3, our methods perform best among
all other algorithms. Both the loss value and the norm of the
gradient converge more rapidly to a small value compared
to other methods. We also report the classification accuracy
in Table 3. It shows that SMVR and its variants achieve the
highest accuracy rates on the rare class and the overall task
simultaneously, indicating the effectiveness of our methods.

6.3 Multi-Step Model-Agnostic Meta-Learning

Finally, we conduct experiments on Multi-step Model-
Agnostic Meta-Learning (MAML). Multi-step MAML aims to
find a good initialization point that performs well in different
tasks after taking a few steps of gradient descent. Classical
one-step MAML is formed as:

min
x

F (θ) :=
1

M

M∑
m=1

Fm (x− α∇Fm(x)) ,

with Fm(θ) := Eξm [f (θ; ξm)] ,

where α is the learning rate, Fm denotes the loss for task m
and ξm represents the training samples for task m. One-step
MAML is a two-level problem, involving a single update to
the initial point followed by evaluation across different tasks.
In practice, it’s common to update the initial point multiple
times to enhance results, such as the five-step updates used
by [48], which is a six-level compositional problem.

Following [48], we conduct experiments on 5-way 1-shot
and 5-shot tasks on Omniglot dataset [49]. Each task is
a 5-class classification problem, with only 1 or 5 training
samples for each class. We conduct a 5-step MAML and

report the accuracy of different methods against the number
of training samples in Figure 4. Since adaptive learning
rates are widely used in neural networks, which are also
applied in Multi-step MAML, we implement Adaptive SMVR
methods in these tasks, denoted as SMVR-ADAM. We use the
adaptive learning rate defined in (8) and (9) and choose the
commonly used Adam-type. As can be seen, the accuracy of
SMVR (and its variants), as well as SMVR-ADAM, increases
rapidly in both training and testing sets, and outperforms
other methods dramatically. Although SMVR and SMVR-
ADAM enjoy the same sample complexity, SMVR-ADAM
demonstrates faster convergence in practice due to the
adaptive learning rate used.

7 CONCLUSION

In this paper, we propose an optimal algorithm named
SMVR for stochastic multi-level composition optimization.
We prove that the proposed algorithm, by using variance
reduced estimator of function values and Jacobians, coupled
with a projection operation, achieves a sample complexity of
O
(
1/ϵ3

)
for finding an ϵ-stationary point. This complexity

aligns with the lower bound even in the one-level setting, and
our method avoids using batches in each iteration. Later, we
demonstrate that by directly estimating the overall gradient
and employing the normalization technique, we are able
to remove the projection operation and avoid requiring
problem-dependent parameters. When the objective function
further satisfies the convexity or PL condition, we develop a
stage-wise version of SMVR to obtain the optimal complexity
of O

(
1/ϵ2

)
or O (1/ϵ). For the finite-sum structure, we

propose the SMVR-FS method. By utilizing the past gradients
and function values, SMVR-FS attains the complexity of
O
(√

n/ϵ2
)

for non-convex functions, O (
√
n/ϵ log (1/ϵ)) for

convex functions, and O (
√
n/µ log (1/ϵ)) for µ-PL or µ-

strongly convex functions. Finally, to take advantage of
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adaptive learning rates, we also propose Adaptive SMVR,
which can achieve the same complexity with the learning
rate changing adaptively. Experiments on three real-world
tasks demonstrate the superiority of the proposed methods.
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