Yu-Xuan Huang, Wen-Chao Hu, En-Hao Gao, Yuan Jiang. ABLkit: A Python Toolkit for Abductive Learning. In: Frontiers of Computer Science, 2024, 18(6):186354.
Peng Tan, Zhi-Hao Tan, Yuan Jiang and Zhi-Hua Zhou. Towards Enabling Learnware to Handle Heterogeneous Feature Spaces. In: Machine Learning, 2024, 113(4): 1839-1860.
Jin-Hui Wu, Shao-Qun Zhang, Yuan Jiang, Zhi-Hua Zhou. Theoretical Exploration of Flexible Transmitter Model. In: IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 3674-3688.
Yang Yang, Da-Wei Zhou, De-Chuan Zhan, Hui Xiong, Yuan Jiang, Jian Yang. Cost-Effective Incremental Deep Model: Matching Model Capacity With the Least Sampling. In: IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3575-3588.
Han Wang, Yang Yu, Yuan Jiang. Fully decentralized multiagent communication via causal inference. In: IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10193-10202.
Yi-Xiao He, Shen-Huan Lyu, and Yuan Jiang. Interpreting Deep Forest through Feature Contribution and MDI Feature Importance. In: ACM Transactions on Knowledge Discovery from Data. In press.
Yang Yang, Da-Wei Zhou, De-Chuan Zhan, Hui Xiong, Yuan Jiang, and Jian Yang. Cost-Effective Incremental Deep Model: Matching Model Capacity with the Least Sampling. In: IEEE Transactions on Knowledge and Data Engineering. In press.
Zhen-Yu Zhang, Peng Zhao, Yuan Jiang, and Zhi-Hua Zhou. Learning from Incomplete and Inaccurate Supervision. In: IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12): 5854-5868.
Jia-Lue Chen, Jia-Jia Cai, Yuan Jiang, Sheng-Jun Huang. PU Active Learning for Recommender Systems. In: Neural Processing Letters, 2021, 53(5): 3639-3652.
Han-Jia Ye, De-Chuan Zhan, Yuan Jiang, and Zhi-Hua Zhou. Heterogeneous few-shot model rectification with semantic mapping. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 3878-3891.
Yang Yang, De-Chuan Zhan, Yi-Feng Wu, Zhi-Bin Liu, Hui Xiong, Yuan Jiang. Semi-Supervised Multi-Modal Clustering and Classification with Incomplete Modalities. In: IEEE Transactions on Knowledge and Data Engineering, 2021, 33(2): 682-695.
Yang Yang, Zhao-Yang Fu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Semi-Supervised Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport. In: IEEE Transactions on Knowledge and Data Engineering, 2021, 33(2): 696-709.
Zhi-Hao Tan, Peng Tan, Yuan Jiang, and Zhi-Hua Zhou. Multi-label optimal margin distribution machine. In: Machine Learning, 2020, 109(3): 623-642.
Lu Wang, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, Yuan Jiang. Spanning attack: reinforce black-box attacks with unlabeled data. In: Machine Learning, 2020, 109(12): 2349-2368.
Han-Jia Ye, De-Chuan Zhan, Nan Li, Yuan Jiang. Learning Multiple Local Metrics: Global Consideration Helps. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(7):1698-1712.
Han-Jia Ye, De-Chuan Zhan, Yuan Jiang. Fast Generalization Rates for Distance Metric Learning. Machine Learning, 2019, 108(2): 267-295.
Shao-Yuan Li, Yuan Jiang, Nitesh Chawla, and Zhi-Hua Zhou. Multi-label learning from crowds. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(7): 1369-1382.
Han-Jia Ye, De-Chuan Zhan, Yuan Jiang, Zhi-Hua Zhou. What Makes Objects Similar: A Unified Multi-Metric Learning Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(5): 1257-1270.
Ju-Hua Hu, De-Chuan Zhan, Xintao Wu, Yuan Jiang, and Zhi-Hua Zhou. Pairwised Specific Distance Learning from Physical Linkages. ACM Transactions on Knowledge Discovery from Data, 2015, 9(3):Article 20.
Lei Yuan, Alexander Woodard, Shuiwang Ji, Yuan Jiang, Zhi-Hua Zhou, Sudhir Kumar, and Jieping Ye. Learning sparse representations for fruit-fly gene expression pattern image annotation and retrieval. BMC Bioinformatics, 2012, 13: 107.
Yuan Jiang, Ming Li, Zhi-Hua Zhou. Software defect detection with ROCUS. Journal of Computer Science and Technology, 2011, 26(2): 328-342.
Yuan Jiang, Ming Li, Zhi-Hua Zhou. Mining extremely small data sets with application to software reuse. Software: Practice and Experience, 2009, 39(4): 423-440.
Yuan Jiang, Ke-Jia Chen, Zhi-Hua Zhou. SOM ensemble-based image segmentation. Neural Processing Letters, 2004, 20(3): 171-178.
Yong Wang, Yuan Jiang, Yi Wu, Zhi-Hua Zhou. Spectral clustering on multiple manifolds. IEEE Transactions on Neural Networks, 2011, 22(7): 1149-1161.
Zhi-Hua Zhou and Yuan Jiang. NeC4.5: neural ensemble based C4.5. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(6): 770-773.
Zhi-Hua Zhou, Yuan Jiang. Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble. IEEE Transactions on Information Technology in Biomedicine, 2003, 7(1): 37-42.
黄宇轩, 姜远. 带拒绝推理的反绎学习方法. 计算机研究与发展, 2024, 61(7): 1791-1798.
吕沈欢, 陈一赫, 姜远. 基于交互表示的多标记深度森林方法. 软件学报, 2024, 35(4): 1934-1944.
胡菊花, 姜远, 周志华. 一种基于教学模型的协同训练方法. 计算机研究与发展, 2013, 50(11): 2262-2268.
佘俏俏, 俞扬, 姜远, 周志华. 一种基于标记传播的大规模图像分类方法. 计算机研究与发展, 2012, 49(11): 2289-2295.
姜远, 黎铭, 周志华. 一种基于半监督学习的多模态Web查询精化方法. 计算机学报, 2009, 32(10), 2099-2106.
姜远, 佘俏俏, 黎铭, 周志华. 一种直推式多标记文档分类方法. 计算机研究与发展, 2008, 45(11): 1817-1823.
姜远, 周志华. 基于词频分类器集成的文本分类方法. 计算机研究与发展, 2006, 43(10): 1681-1687.
孔祥南, 黎铭, 姜远, 周志华. 一种针对弱标记的直推式多标记分类方法. 计算机研究与发展, 2010, 47(8): 1392-1399.
薛晓冰, 韩洁凌, 姜远, 周志华. 基于多示例学习技术的Web目录页面链接推荐. 计算机研究与发展, 2007, 44(3): 406-411.
眭俊明, 姜远, 周志华. 基于频繁项集挖掘的贝叶斯分类算法. 计算机研究与发展, 2007, 44(8): 1293-1300.
Jun-Peng Jiang, Han-Jia Ye, Leye Wang, Yang Yang, Yuan Jiang, De-Chuan Zhan. Tabular Insights, Visual Impacts: Transferring Expertise from Tables to Images. In: Proceedings of the 41st International Conference on Machine Learning (ICML'24), 2024.
Xiao-Dong Bi, Shao-Qun Zhang, Yuan Jiang. MEPSI: An MDL-Based Ensemble Pruning Approach with Structural Information. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI'24), 2024.
Lue Tao, Yu-Xuan Huang, Wang-Zhou Dai, Yuan Jiang. Deciphering Raw Data in Neuro-Symbolic Learning with Provable Guarantees. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI'24), 2024.
Qin-Cheng Zheng, Shen-Huan Lyu, Shao-Qun Zhang, Yuan Jiang, Zhi-Hua Zhou. On the Consistency Rate of Decision Tree Learning Algorithms. In: Proceedings of the 26th International Conference on Artificial Intelligence and Statistics (AISTATS'23), 2023.
Yi Xie, Zhi-Hao Tan, Yuan Jiang, Zhi-Hua Zhou. Identifying Helpful Learnwares Without Examining the Whole Market. In: Proceedings of the 26th European Conference on Artificial Intelligence (ECAI'23), 2023.
Xin-Qiang Cai, Yao-Xiang Ding, Zi-Xuan Chen, Yuan Jiang, Masashi Sugiyama, Zhi-Hua Zhou. Seeing Differently, Acting Similarly: Heterogeneously Observable Imitation Learning. In: Proceedings of the Eleventh International Conference on Learning Representations (ICLR'23) (spotlight), 2023.
Yu-Xuan Huang, Zequn Sun, Guangyao Li, Xiaobin Tian, Wang-Zhou Dai, Wei Hu, Yuan Jiang, Zhi-Hua Zhou. Enabling Abductive Learning to Exploit Knowledge Graph. In: Proceedings of the 32th International Joint Conference on Artificial Intelligence (IJCAI'23), 2023.
Peng Tan, Zhi-Hao Tan, Yuan Jiang, Zhi-Hua Zhou. Handling Learnwares Developed from Heterogeneous Feature Spaces without Auxiliary Data. In: Proceedings of the 32th International Joint Conference on Artificial Intelligence (IJCAI'23), 2023.
Yi Shi, Rui-Xiang Li, Wen-Qi Shao, Xin-Cen Duan, Han-Jia Ye, De-Chuan Zhan, Bai-Shen Pan, Bei-Li Wang, Wei Guo, Yuan Jiang. A Multi-task Method for Immunofixation Electrophoresis Image Classification. In: Proceedings of the 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI'23), 2023.
Jin-Hui Wu, Shao-Qun Zhang, Yuan Jiang, Zhi-Hua Zhou. Complex-valued Neurons Can Learn More but Slower than Real-valued Neurons via Gradient Descent. In: Advances in Neural Information Processing Systems 36 (NeurIPS'23), 2023.
Jun-Peng Jiang, Han-Jia Ye, Leye Wang, Yang Yang, Yuan Jiang, De-Chuan Zhan. On Transferring Expert Knowledge from Tabular Data to Images. In: Proceedings of UniReps: the First Workshop on Unifying Representations in Neural Models, 2023.
Yu-Xuan Huang, Wang-Zhou Dai, Yuan Jiang, Zhi-Hua Zhou. Enabling Knowledge Refinement upon New Concepts in Abductive Learning. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI'23), 2023.
Chiyu Cai, Wei Wang, Yuan Jiang. Adaptive clustered federated learning with representation similarity. In: Proceedings of the 10th IEEE International Conference on Data Science and Advanced Analytics (DSAA'23), 2023.
Zhi-Hao Tan, Yi Xie, Yuan Jiang, and Zhi-Hua Zhou. Real-Valued Backpropagation is Unsuitable for Complex-Valued Neural Networks. In: Advances in Neural Information Processing Systems 35 (NeurIPS'22), 2022.
Zhen-Yu Zhang, Yu-Yang Qian, Yu-Jie Zhang, Yuan Jiang, and Zhi-Hua Zhou. Adaptive Learning for Weakly Labeled Streams. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'22), 2022.
Zi-Xuan Chen, Xin-Qiang Cai, Yuan Jiang, and Zhi-Hua Zhou. Anomaly Guided Policy Learning from Imperfect Demonstrations. In: Proceedings of the 21th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS'22), 2022.
Bi-Cun Xu, Kai Ming Ting, Yuan Jiang. Isolation Graph Kernel. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI'21), 2021.
Yu-Xuan Huang, Wang-Zhou Dai, Le-Wen Cai, Stephen Muggleton, and Yuan Jiang. Fast Abductive Learning by Similarity-based Consistency Optimization. In: Advances in Neural Information Processing Systems 34 (NeurIPS'21), 2021.
Yi-He Chen, Shen-Huan Lyu, and Yuan Jiang. Improving Deep Forest by Exploiting High-order Interactions. In: Proceedings of the 21th IEEE International Conference on Data Mining (ICDM'21), 2021.
Xin-Qiang Cai, Yao-Xiang Ding, Yuan Jiang, and Zhi-Hua Zhou. Imitation Learning from Pixel-Level Demonstrations by HashReward. In: Proceedings of the 20th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS'21), online, 2021.
Zhao-Yu Zhang, Shao-Qun Zhang, Yuan Jiang, and Zhi-Hua Zhou. LIFE: Learning Individual Features for Multivariate Time Series Prediction with Missing Values. In: Proceedings of the 21th IEEE International Conference on Data Mining (ICDM'21), 2021.
Yi-Xuan Xu, Ming Pang, Ji Feng, Kai Ming Ting, Yuan Jiang, and Zhi-Hua Zhou. Reconstruction-based Anomaly Detection with Completely Random Forest. In: Proceedings of the 21st SIAM International Conference on Data Mining (SDM'21), 2021, pp.127-135.
Le-Wen Cai, Wang-Zhou Dai, Yu-Xuan Huang, Yu-Feng Li, Stephen H. Muggleton, Yuan Jiang. Abductive Learning with Ground Knowledge Base. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI'21), 2021.
Lu Wang, Xuanqing Liu, Jinfeng Yi, Yuan Jiang, Cho-Jui Hsieh. Provably Robust Metric Learning. In: Advances in Neural Information Processing Systems 33 (NeurIPS'20), 2020.
Peng Zhao, Lijun Zhang, Yuan Jiang, Zhi-Hua Zhou. A Simple Approach for Non-stationary Linear Bandits. In: Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS'20), 2020.
Zhen-Yu Zhang, Peng Zhao, Yuan Jiang, and Zhi-Hua Zhou. Learning with feature and distribution evolvable streams. In: Proceedings of the 37th International Conference on Machine Learning (ICML'20), 2020.
Liang Yang, Xi-Zhu Wu, Yuan Jiang, and Zhi-Hua Zhou. Multi-Label Learning with Deep Forest. In: Proceedings of the 24th European Conference on Artificial Intelligence (ECAI'20), Santiago de Compostela, Spain, 2020.
Lan-Zhe Guo, Zhenyu Zhang, Yuan Jiang, Yu-Feng Li, Zhi-Hua Zhou. Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data. In: Proceedings of the 24th European Conference on Artificial Intelligence (ECAI'20), Santiago de Compostela, Spain, 2020.
Ji Feng, Yi-Xuan Xu, Yong-Gang Wang, Yuan Jiang. Federated Soft Gradient Boosting Machine for Streaming Data. In: Federated Learning 2020: 93-107.
Yang Yang, Ke-Tao Wang, De-Chuan Zhan, Hui Xiong, Yuan Jiang. Comprehensive Semi-Supervised Multi-Modal Learning. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI’19), Macao, China, 2019.
Zhen-Yu Zhang, Peng Zhao, Yuan Jiang, and Zhi-Hua Zhou. Learning from incomplete and inaccurate supervision. In: Proceedings of the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’19), Anchorage, AL, 2019.
Yang Yang, Da-Wei Zhou, De-Chuan Zhan, Hui Xiong, Yuan Jiang. Adaptive Deep Models for Incremental Learning: Considering Capacity Scalability and Sustainability. In: Proceedings of the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’19), Anchorage, AL, 2019.
Yang Yang, Yi-Fan Wu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Deep Robust Unsupervised Multi-Modal Network. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19), Honolulu, HI, 2019.
Xiang-Rong Sheng, De-Chuan Zhan, Su Lu, Yuan Jiang. Multi-View Anomaly Detection: Neighborhood in Locality Matters. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19), Honolulu, HI, 2019.
Yi-Fan Wu, De-Chuan Zhan, Yuan Jiang. DMTMV: A Unified Learning Framework for Deep Multi-Task Multi-View Learning. In: Proceedings of the 2018 IEEE International Conference on Big Knowledge (ICBK’18), Singapore, 2018.
Han-Jia Ye, De-Chuan Zhan, Yuan Jiang, Zhi-Hua Zhou. Rectify Heterogeneous Model with Semantic Mapping. In: Proceedings of the 35th International Conference on Machine Learning (ICML’18), Stockholm, Sweden, 2018.
Yang Yang, Yi-Fan Wu, De-Chuan Zhan, Zhi-Bin Liu, Yuan Jiang. Complex Object Classification: A Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport. In: Proceedings of the Annual Conference on ACM SIGKDD (KDD’18), London, UK, 2018.
Yang Yang, De-Chuan Zhan, Xiang-Rong Sheng, Yuan Jiang. Semi-Supervised Multi-Modal Learning with Incomplete Modalities. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’18), Stockholm, Sweden, 2018.
Chong Liu, Peng Zhao, Sheng-Jun Huang, Yuan Jiang, and Zhi-Hua Zhou. Dual set multi-label learning. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI’18) , New Orleans, LA, 2018.
Yang Yang, Yi-Fan Wu, De-Chuan Zhan, Yuan Jiang. Multi-Network User Identification via Graph-Aware Embedding. In: Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’18) , Melbourne, Australia, 2018.
Yang Yang, De-Chuan Zhan, Ying Fan, Yuan Jiang. Instance Specific Discriminative Modal Pursuit: A Serialized Approach. In: Proceedings of the 9th Asian Conference on Machine Learning (ACML’17), Seoul, Korea, 2017.
Han-Jia Ye, De-Chuan Zhan, Xue-Min Si, Yuan Jiang. Learning Mahalanobis Distance Metric: Considering Instance Disturbance Helps. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17), Melbourne, Australia, 2017.
Yang Yang, De-Chuan Zhan, Xiang-Yu Guo, Yuan Jiang. Modal Consistency based Pre-trained Multi-Model Reuse. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17), Melbourne, Australia, 2017.
Y. Zhang, Yuan Jiang. Multimodal Linear Discriminant Analysis via Structural Sparsity. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17), Melbourne, Australia, 2017.
W. Wang, Xiang-Yu Guo, Shao-Yuan Li, Yuan Jiang, and Zhi-Hua Zhou. Obtaining high-quality label by distinguishing between easy and hard items in crowdsourcing. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17), Melbourne, Australia, 2017.
Peng Zhao, Yuan Jiang, and Zhi-Hua Zhou. Multi-view matrix completion for clustering with side information. In: Proceedings of the 21st Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’17), LNAI, Jeju, Korea, 2017.
Yang Yang, De-Chuan Zhan, Ying Fan, Yuan Jiang, and Zhi-Hua Zhou. Deep learning for fixed model reuse. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI’17), San Francisco, CA, 2017.
Han-Jia Ye, De-Chuan Zhan, Xue-Min Si, Yuan Jiang and Zhi-Hua Zhou. What makes objects similar: a unified multi-metric learning approach. In: Proceedings of 30th Advances in Neural Information Processing Systems 29 (NIPS’16), Barcelona, Spain, 2016. P1235-1243
Han-Jia Ye, De-Chuan Zhan, Xiaolin Li, Zhen-Chuan Huang and Yuan Jiang. College student scholarships and subsidies granting: a multi-modal multi-label approach. In: Proceedings of the 16th IEEE International Conference on Data Mining (ICDM’16), Barcelona, Spain, 2016.
Han-Jia Ye, De-Chuan Zhan, Xue-Min Si and Yuan Jiang. Learning feature aware metric. In: Proceedings of the 8th Asian Conference on Machine Learning (ACML’16), New Zealand, 2016, P286-301
Yang Yang, De-Chuan Zhan, Yuan Jiang. Learning by Actively Querying Strong Modal Features. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI’16), New York, USA, 2016.
Han-Jia Ye, De-Chuan Zhan, and Yuan Jiang. Instance specific metric subspace learning: A bayesian approach. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI’16), Phoenix, AZ, 2016.
Han-Jia Ye, De-Chuan Zhan, Yuan Miao, Yuan Jiang, and Zhi-Hua Zhou. Rank consistency based multi-view learning: A privacy-preserving approach. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM’15), Melbourne, Australia, 2015, 991-1000.
Nan Li, Yuan Jiang, Zhi-Hua Zhou. Multi-Label Selective Ensemble. In: Proceedings of the 12th International Workshop, MCS 2015, Günzburg, Germany, 2015, 76-88.
Yang Yang, Han-Jia Ye, De-Chuan Zhan, Yuan Jiang. Auxiliary Information Regularized Machine for Multiple Modality Feature Learning. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15), Buenos Aires, Argentina, 2015, 1033-1039.
Shao-Yuan Li, Yuan Jiang, and Zhi-Hua Zhou. Partial multi-view clustering. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI‘14), Quebec, Canada, 2014, 1968-1974.
Yue Zhu, Jianxin Wu, Yuan Jiang, and Zhi-Hua Zhou. Learning with Augmented Multi-Instance View. In: Proceedings of the 6st Asian Conference on Machine Learning (ACML’14), Nha Trang, Vietnam, 2014, JMLR: W&CP.
Shaowu Liu, Truyen Tran, Gang Li, and Yuan Jiang. Ordinal Random Fields for Recommender Systems. In: Proceedings of the 6st Asian Conference on Machine Learning (ACML’14), Nha Trang, Vietnam, 2014, JMLR: W&CP.
Shu-Jun Yang, Yuan Jiang, and Zhi-Hua Zhou. Multi-instance multi-label learning with weak label. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13), Beijing, China, 2013,1862-1868.
Yu-Feng Li, Ju-Hua Hu, Yuan Jiang, and Zhi-Hua Zhou. Towards discovering what patterns trigger what labels. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12), Toronto, Canada, 2012,1012-1018.
Xin-Shun Xu, Yuan Jiang, Xiangyang Xue and Zhi-Hua Zhou. Semi-supervised multi-instance multi-label learning for video annotation task. In: Proceedings of the 20th ACM International Conference on Multimedia (MM’12), Nara, Japan, 2012, 737-740.
Quannan Li, Xinggang Wang, Wei Wang, Yuan Jiang, Zhi-Hua Zhou, and Zhuowen Tu. Disagreement-based multi-system tracking. In: Proceedings of the ACCV Workshop on Detection and Tracking in Challenging Environments (DTCE’12), Daejeon, Korea, 2012, 320-334.
Xin-Shun Xu, Yuan Jiang, Peng Liang, Xiangyang Xue, Zhi-Hua Zhou. Ensemble approach based on conditional random field for multi-label image and video annotation. In: Proceedings of the 19th ACM International Conference on Multimedia (MM’11), Scottsdale, AZ, 2011.
Yong Wang, Yuan Jiang, Yi Wu, Zhi-Hua Zhou. Local and structural consistency for multi-manifold clustering. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI’11), Barcelona, Spain, 2011, 1559-1564.
Yong Wang, Yuan Jiang, Yi Wu, Zhi-Hua Zhou. Localized K-flats. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11), San Francisco, CA, 2011, 525-530.
Yong Wang, Yuan Jiang, Yi Wu, Zhi-Hua Zhou. Multi-manifold clustering. In: Proceedings of the 11th Pacific Rim International Conference on Artificial Intelligence (PRICAI’10), Daegu, Korea, LNAI 6230, Zhang B-T, Orgun M A, eds. Berlin: Springer, 2010, 280-291. (”Best Paper Award”)
Li-Ping Liu, Yuan Jiang, Zhi-Hua Zhou. Least square incremental linear discriminant analysis. In: Proceedings of the 9th IEEE International Conference on Data Mining (ICDM’09), Miami, FL, 2009, 298-306.
Zhi-Hua Zhou, Michael Ng, Qiao-Qiao She, Yuan Jiang. Budget semi-supervised learning. In: Proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’09) (Bangkok, Thailand), LNAI 5476, Theeramunkong T, Kijsirikul B, Cercone N, Ho T-B, eds. Berlin: Springer, 2009, 588-595.
Li-Ping Liu, Yang Yu, Yuan Jiang, Zhi-Hua Zhou. TEFE: A time-efficient approach to feature extraction. In: Proceedings of the 8th IEEE International Conference on Data Mining (ICDM’08), Pisa, Italy, 2008, 423-432.
Yuan Jiang, Ming Li, Zhi-Hua Zhou. Generation of comprehensible hypotheses from gene expression data. In: Li J Y, Yang Q, Tan A H, eds. Lecture Notes in Bioinformatics 3916 (BioDM’06) (Proceedings of the International Workshop on Data Mining for Biomedical Application, in conjunction with PAKDD’06, Singapore, April.2006), Berlin: Springer, 2006, 116-123.
Yuan Jiang, Jin-Jiang Ling, Gang Li, Honghua Dai, Zhi-Hua Zhou. Dependency bagging. In: Slezak D, Yao J T, Peters J F, Ziarko W, Hu X, eds. Lecture Notes in Artificial Intelligence 3641 (RSFDGrC’05) (Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, Regina, Canada, Sept.2005), Berlin: Springer, 2005, 491-500.
Yuan Jiang, Zhi-Hua Zhou. Editing Training Data for kNN Classifiers with Neural Network Ensemble. In: Yin F, Wang J, and Guo C eds. Lecture Notes in Computer Science 3173 (ISNN’04) (Proceedings of the 1st International Symposium on Neural Networks, Dalian, China, Aug. 2004), Berlin: Springer-Verlag, 2004, 356-361.
Zhi-Hua Zhou, Xiao-Bing Xue, Yuan Jiang. Locating regions of interest in CBIR with multi-instance learning techniques. In: Zhang S, Jarvis R, eds. Lecture Notes in Artificial Intelligence 3809 (AJCAI’05) (Proceedings of the 18th Australian Joint Conference on Artificial Intelligence, Sydney, Australia, Dec.2005), Berlin: Springer, 2005, 92-101.
Zhi-Hua Zhou, Ke-Jia Chen, Yuan Jiang. Exploiting Unlabeled Data in Content-Based Image Retrieval. In: Boulicaut J F, Esposito F, Giannotti F, Pedreschi D eds. Lecture Notes in Artificial Intelligence 3201 (ECML’04) (Proceedings of the 15th European Conference on Machine Learning, Pisa, Italy, Sept.2004), Berlin: Springer-Verlag, 2004, 525-536.
Yuan Jiang, Ke-Jia Chen, Zhi-Hua Zhou. SOM-based image segmentation. In: Wang G, Liu Q, Yao Y, Skowron A eds. Lecture Notes in Artificial Intelligence 2639 (RSFDGrC’03) (Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data mining and Granular Computing, Chongqing, China, Aug. 2003), Berlin: Springer-Verlag, 2003, 640-643.
Yuan Jiang, Zhi-Hua Zhou, Morshed U. Chowdhury. Image retrieval based on the combination of color and keyword. In: Proceedings of the International Conference on Computer Science, Software Engineering, Information Technology, e-Business, and Applications (CSITeA’03, Rio de Janeiro, Brazil, June. 2003), Cary, NC: ISCA, 2003, 450-453.
Yuan Jiang, Zhi-Hua Zhou, Zhao-Qian Chen. Rule learning based on neural network ensemble. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN’02) (Honolulu, HI, May. 2002), Piscataway, NJ: IEEE, 2002, vol.2, 1416-1420.
Zhi-Hua Zhou, Yuan Jiang, Xu-Ri Yin, Shi-Fu Chen. The application of visualization and neural network techniques in a power transformer condition monitoring system. In: Hendtlass T, Ali M eds. Lecture Notes in Artificial Intelligence 2358 (IEA/AIE’02) (Developments in Applied Artificial Intelligence, Proceedings of the 15th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, Cairns, Australia, June. 2002), Berlin: Springer-Verlag, 2002, 325-334.
Zhi-Hua Zhou, Jian-Xin Wu, Yuan Jiang, Shi-Fu Chen. Genetic algorithm based selective neural network ensemble. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (Seattle, WA, July. 2001), San Francisco, CA: Morgan Kaufmann, 2001, vol.2, 797-802.
Yuan Jiang, Zhi-Hua Zhou, Chen Shifu. Visualization in power transformer state detection expert system. In: Proceedings of the Pacific-Asia International Conference on Microcomputer Application, 2000, 223-225.