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Abstract
Label propagation spreads the soft labels from few
labeled data to a large amount of unlabeled data ac-
cording to the intrinsic graph structure. Nonethe-
less, most label propagation solutions work un-
der relatively small-scale data and fail to cope
with many real applications, such as social net-
work analysis, where graphs usually have millions
of nodes. In this paper, we propose a novel al-
gorithm named SLP to deal with large-scale data.
A lightweight iterative process derived from the
well-known stochastic gradient descent strategy is
used to reduce memory overhead and accelerate the
solving process. We also give a theoretical anal-
ysis on the necessity of the warm-start technique
for label propagation. Experiments show that our
algorithm can handle million-scale graphs in few
seconds while achieving highly competitive perfor-
mance with existing algorithms.

1 Introduction
With the vigorous development of the Internet, many enter-
prises, such as Twitter, Facebook, YouTube etc., are accumu-
lating massive data in daily operating. Information which can
boost revenue are buried under raw data and need to dig out.
Among them, the social network is one of worthiest data to
mine and classification on a network would provide useful
information on the nodes which represent users.

Label propagation algorithms [Zhu et al., 2003; Joachims,
2003; Zhou et al., 2004] work well in the setting with a graph
and small amount of annotation, which aim to spread the soft
labels from few annotated nodes to the whole graph accord-
ing to the intrinsic structure. It’s such a simple and effective
method that it is widely used in practice. The key assump-
tions behind label propagation [Zhou et al., 2004] are: (1)
nearby nodes have the same labels; (2) nodes in the same
structure tends to have the same label. One of the challeng-
ing issues of label propagation is the scalability. In general,
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it costs O(kn2) time to solve the linear system (k is the num-
ber of neighbors and n is the sample size). What’s worse is
that the graph matrix costs O(n2), which is a disaster when
applied to large-scale graphs.

Various algorithms have been proposed to mitigate the
scalability problem. Most of them mainly focus on graph ap-
proximation to improve the efficiency and can be divided into
two sorts: low-rank approximation and sparse approximation.

The low-rank approximation is implemented in several
ways. [Wang and Zhang, 2008; Zhang et al., 2009; Liu et
al., 2010; Liu et al., 2012; Lever et al., 2012] select a subset
of the nodes as the prototypes and use them in the following
predicting procedure. Empirically, the number of prototypes
m should be proportional to n, and they are usually selected
from the clustering centers, which makes the prototypes ex-
pensive and inefficient. An alternative approach is based on
the fast spectral decomposition of Laplacian matrix [Fergus
et al., 2009; Talwalkar et al., 2013]. They try to find a repre-
sentation of the structure in a low-dimension space formed by
the eigenvectors of the Laplacian matrix with smallest eigen-
values and then train a classifier on this representation. The
decomposition computation needs careful design to acceler-
ate, and it’s still inefficient when the graphs are highly sparse.

Graph sparse approximation mainly utilizes the minimum
spanning tree (MST). These approaches first construct a min-
imum spanning tree on the given graph, and then solve the la-
bel propagation with a designed tree Laplacian solver [Herb-
ster et al., 2009; Cesa-Bianchi et al., 2009; Vitale et al., 2011;
Zhang et al., 2016]. These approaches seem great in com-
plexity analysis, but they need to solve each connected
component respectively, and the constructing process needs
meticulous coding work.

In addition, Fujiwara and Irie [2014] propose a scalable al-
gorithm different from those above. They compute the lower
and upper bounding label scores and iteratively prune unnec-
essary score computations for acceleration. However, the se-
lection of coefficient for bounding scores may be tricky. The
iteration process either terminates in a single epoch or fails to
stop, which may end up with poor performance.

In this paper, we try to ease the burden of large-scale la-
bel propagation in a way distinct from the approximation
work mentioned above. We solve LP (label propagation)
as a semi-supervised learning problem, which is equivalent
to minimize a cost function from the graph and derive a



Table 1: Summary of Notation
Notation Meaning
n Number of instances
l Number of labeled instances, l� n
xi ∈ Rd Feature vector of instance
yi ∈ {+1,−1} Label of instance
{(xi, yi)}li=1 Labeled instances
{xi}ni=l+1 Unlabeled instances
yl = [y1, y2, ..., yl] Label vector for given labeled instances
f : Rd → [−1, 1] Predictive function
f l = (f1, f2, ..., fl) f ’s prediction on labeled instances
fu = (fl+1, ..., fn) f ’s prediction on unlabeled instances
f = [f l, fu] Predictive vector
diag(·) Diagonal matrix with diagonal vector ·
1 Vector where all elements are set to 1
ei Vector where the i-th element is set to 1

and others are set to 0
I Identity matrix
I(·) I(·) = 1 if · is true, otherwise I(·) = 0
W ∈ Rn×n Affinity matrix of instances
Wi the i-th row of W
D ∈ Rn×n D ∈ Rn×n is a diagonal matrix with

Dii =
∑n

j=1 Wij

L ∈ Rn×n Laplacian matrix L = D−W
A ◦B Hadamard product of matrix A and B:

(A ◦B)ij = AijBij

lightweight iterative process from the stochastic gradient de-
scent (SGD) algorithm. SGD has been successfully applied
to large-scale machine learning problems [Bottou, 2010;
Gemulla et al., 2011]. Our proposal is simple, fast and scal-
able, and we name the algorithm SLP (Stochastic Label Prop-
agation). Experiments show that our algorithm can handle
million-scale graphs in few seconds while achieving highly
competitive performance with existing algorithms.

The paper is organized as follows. Section 2 introduces
the setting of label propagation. Our proposed method is pre-
sented in Section 3, followed by the analyses in Section 4.
We report the experimental results in Section 5 and then give
conclusive remark finally.

2 Preliminaries
To propagate labels, a graph G = (V,E) with affinity matrix
W is constructed to reflect the similarity of instances. V is
exactly the set of the feature vectors of nodes, and E is a set
of edges between node pairs. The weights between any node
pair (i, j) are stored in the affinity matrix W. Wij reflects
the similarity between xi and xj . The weight matrix can be
defined as

Wij = exp

(
−‖xi − xj‖2

σ2

)
,

where σ is the hyper-parameter [Zhu et al., 2003].
Like other LP methods, we try to learn a real value function

f : V → [−1, 1] to make prediction [Zhu et al., 2003]. For
ease of operation, the labeled instances are placed from the
beginning as the Table 1 indicates. The goal of LP is to find
a labeling which is consistent with the initial labeling and the
similarity of the data. The former is commonly considered in
supervised learning paradigm, which can be measured by

‖f l − yl‖2.

The latter one is called smoothness assumption [Chapelle et
al., 2006] and followed by the form

n∑
i,j=1

Wij(fi − fj)2 = f>(D−W)f = f>Lf .

As stated by Chapelle et al. [2006], label propagation
can be cast into a common framework which minimizes a
quadratic cost function as

C(f) = f>Lf + µ‖f l − yl‖2 + ε‖f‖2. (1)

The last term is added to prevent some degenerate situations,
for instance, when the graph has a connected component with
no labeled sample [Chapelle et al., 2006].

Eq.(1) is similar to the regularization framework for the
iterative algorithm proposed by [Zhou et al., 2004]. In the
extreme case when µ → ∞, ε = 0, minimizing Eq.(1) is
equivalent to minimize f>Lf under the constraint f l = yl ,
which is the setting in [Zhu et al., 2003].

The cost function is convex and so minimized when the
derivative is set to 0, i.e.,

f∗ = (S +
1

µ
L +

ε

µ
I)−1Sy,

where S is a diagonal matrix with Sii = I(1 ≤ i ≤ l). We
can get the labels by simple matrix inversion. However, com-
puting the inverse takes O(n3) time and O(n2) memory in
general, which makes it infeasible on large-scale datasets.

3 Stochastic Label Propagation
In this section, we describe our simple and efficient algorithm
SLP concretely. First, we derivate the updating routine for
the common cost function. Then, the general framework is
applied to the case in [Zhu et al., 2003].

General Framework
In the following, we start from the cost function in Eq.(1)
and give the stochastic iterative solution to the optimization
problem,

min
f
C(f)

where

C(f) = f>Lf + µ‖f l − yl‖2 + ε‖f‖2

=

n∑
i,j

Wij(fi − fj)2 + µ

l∑
i=1

(fi − yi)2 + ε

n∑
i=1

f2i

Let

Ci(f) =

n∑
j=1

Wij(fi − fj)2 + I[l](i) · µ(fi − yi)2 + εf2i

where I[l](i) = I(1 ≤ i ≤ l), i ∈ {1, 2, ..., n} represents
the index of the chosen instance. We have E(∇Ci(f)) =
1
n∇C(f). Specifically, according to the definition, we have

C(f) =

n∑
i=1

Ci(f)



which implies that

∇C(f) =

n∑
i=1

∇Ci(f)

If we randomly select a node with index i, we have Pr[i] = 1
n .

The expectation of ∇Ci(f)

E[∇Ci(f)] =

n∑
i=1

∇Ci(f) · Pr[i]

=
1

n

n∑
i=1

∇Ci(f)

=
1

n
∇C(f)

Therefore,∇Ci(f) is an unbiased estimator of 1
n∇C(f) where

1
n is a constant given a graph. We can now adopt SGD strat-
egy [Robbins and Monro, 1951] to solve fu by following up-
dating

f (t+1) = f (t) − η∇Ci(f),
where the gradient

∇Ci(f) = (f − fi1) ◦W>
i +

(
I[l](i) · µ(fi − yi) + εfi

)
ei.

However, the gradient takes O(n) multiplication, which
terribly slows down the iteration on a large graph. We observe
that most of the elements in the vector of∇Ci(f) are zeros. In
addition, the number of non-zero elements is determined by
the degree deg(v) of the node v, and deg(v) is usually much
smaller than u. In order to prevent unnecessary multiplication
of zeros, we cache the neighbors’ indexes for all nodes in the
graph first. Then we use them to compute non-zero elements
of ∇Ci(f) and update f . Trivially, the computation cost for
each iteration is O(deg(v)).

Although SGD has made great success in large-scale ma-
chine learning, two more techniques are required for the ef-
fectiveness on large graphs. The first one is the warm start,
which is attracting more and more interest in recent years.
We manually select labeled instances and propagate their la-
bels to neighbors before the iteration. The second one is to
traverse all the shuffled nodes in each epoch as suggested by
[Bottou, 2012]. This process ensures that every node is ac-
cessed in each epoch and so as to reduce variance of∇Ci(f).

The overall description of the framework is presented in
Algorithm 1. It takes affinity matrix W, label vector yl, step
size η, epochs T and two coefficients of regularization term
as input. After the initialization in line 1, it stores neighbors’
indexes in I. Then, the warm-start process is taken from line
3 to 7, where every node with an initial label is selected to
update its neighbors’ labels. Finally, it takes T epochs and
performs n steps per epoch to update f from line 8 to 17. As
suggested in [Bottou, 2012], the step size η is set to O( 1√

s
)

where s is the total steps already taken. We call this frame-
work SLP (Stochastic Label Propagation).

Algorithm 1 solves the regularization framework of label
propagation with stochastic gradient and some techniques
mentioned above. It gives a solution to large-scale regulariza-
tion framework of label propagation and is easy to implement
and light to run.

In the extreme case with µ → ∞, ε = 0, minimize the
quadratic cost function Eq.(1) is equivalent to minimize fTLf
under the constraint of f l = yl, which is the setting in GRF
[Zhu et al., 2003]. More specifically, the problem is

min
f

f>Lf

s.t. f l = yl

We can derive corresponding algorithm for this problem from
Algorithm 1 by removing the operations associated with µ, ε
in line 14 as well as forcing fl = yl in line 5 and line 12.

Algorithm 1 SLP Framework

Input: W, yl, µ, ε, η, T
Output: fu

1: Initialize f (1)u to 0, f (1)l to yl
2: Find neighborhood indexes for node i and store them in
I(i), i = 1, 2, ..., n

3: for i = 1, 2, ..., l do
4: for ind in I(i) do
5: f

(1)
ind ← f

(1)
ind − η(f

(1)
ind − f

(1)
i )Wi,ind

6: end for
7: end for
8: for t = 1, ...,T do
9: r ← random index from [1, n]

10: for i = r, r + 1, ..., n, 1, ..., r − 1 do
11: for ind in I(i) do
12: f

(t+1)
ind ← f

(t)
ind − η(f

(t)
ind − f

(t)
i )Wi,ind

13: end for
14: f

(t+1)
i ← f

(t)
i − η(I[l](i) · µ(f

(t)
i − yi) + εf

(t)
i )

15: update η
16: end for
17: end for

4 Analyses
This section contains our analyses of SLP. In the first part, we
give a convergent result and analyze the complexity of our
algorithm. Then we discuss the necessity of warm start.

4.1 Convergence
Assume we have a dataset with n instances, the constructed
graph G = (V,E) has m edges, and the algorithm runs
for T epochs. Adopting the proof from Chapter 14.3 of
[Shalev-Shwartz and Ben-David, 2014], we have the follow-
ing convergence result.

Theorem 1. Let B, ρ > 0. Let f∗ ∈ arg min‖f‖≤B C(f).

Assume that SLP run for T epochs with η ≤
√

B2

ρ2T , also
assume that ‖∇Ci(f)‖ ≤ ρ with probability 1. Then,

E[C(f)]− C(f∗) ≤ O(
Bρ√
T

)

Therefore, for any ε > 0, to achieve E[C(f)] − C(f∗) ≤ ε,
it suffices to run the algorithm for a number of epochs which
satisfies T ≥ B2ρ2

ε2 .



In practice, the algorithm converges with a rather good so-
lution in a few epochs (usually in 6 epochs). The inner two
for-loop actually go through all edges in E and have a time
complexity in O(|E|), so the proposed algorithm can reach a
good solution inO(T |E|) time, which furthermore equivalent
to O(Tn) w.r.t sparse graphs. SLP needs to put the affinity
matrix W, the corresponding non-zero indexes I and predic-
tive vector f into memory, so the space cost is O(|E|).

4.2 Warm Start
In the following part, we try to explain why the warm-
start process is required to perform in large-scale label prop-
agation. We denote the length of the shortest walk be-
tween two nodes u and v as dis(u, v). Given the initially
labeled nodes, we can divide the V into several subsets
V̂l, V1, V2, ..., Vk. V̂l is the set of the initially labeled nodes,
and Vi = {u|minv∈Vl

dis(u, v) = i}, i = 1, 2, ..., k. The
predictive label of a node is regarded as valid if it has re-
ceived the label information from initially labeled nodes, and
otherwise invalid.

Observation 1. Based on the fact that label propagates
through one edge per epoch, the predictions of the nodes in
Vi will not be valid until the propagation of epoch i is done.

We will show that the performance is affected by the den-
sity of graph and initially labeled ratio.

Theorem 2. LetG be a graph with n nodes and the degree of
all nodes in G is d. With l initial labeled nodes, after t-epoch
propagation, at most min{n, (d

t+1−1)l
d−1 } nodes will be valid.

Proof. According to Observation 1, after t-epoch propaga-
tion, the predictions of the nodes in V̂l, V1, V2, ..., Vt are valid,
and we have

|V̂l ∪ V1 ∪ ... ∪ Vt| ≤ |V̂l|+ |V1|+ ...+ |Vt| (2)

≤ l + ld+ ...+ ldt (3)

=
(dt+1 − 1)l

d− 1
. (4)

The two sides of inequality (2) are equal if and only if
V̂l, V1, V2, ..., Vt are mutual disjoint, and the two sides of in-
equality (3) are equal if and only if the graph G consists of
d-ary trees and the roots of these trees are selected as initially
labeled nodes.

Also notice that |V̂l ∪ V1 ∪ ... ∪ Vt| ≤ n, we have

|V` ∪ V̂l ∪ ... ∪ Vt| ≤ min{n, (dt+1 − 1)l

d− 1
},

and the theorem is proved.

Lemma 1. Let G be a graph with n nodes and the degree
of all nodes in G is d. With l initial labeled nodes, the
predictions on graph G will all be valid with t epochs, and
t ∈ Ω(logd

n(d−1)
l ).

Proof. According to Theorem 2, after t-epoch propagation,
at most min{n, (d

t+1−1)l
d−1 } nodes will be valid. To make sure

the predictions on the graphG are all valid, let (dt+1−1)l
d−1 ≥ n,

then we have

t ≥ logd

(
n(d− 1)

l
+ 1

)
.

Theorem 2 and Lemma 1 show that the sparser the graph
is, and the fewer the initial labels are, the more invalid pre-
dictions will be made in the first few epochs. The warm start
process spreads initial labels to neighborhoods before main
iteration (line 3 to 7 in Algorithm 1), which helps reduce in-
valid predictions when the algorithm terminates.

5 Experiments
We carry out three tasks to evaluate SLP. The first task is
large-scale network analysis. In the second one, we compare
SLP to several state-of-the-art algorithms on a categorization
dataset. Finally, we show the influence of the density of graph
on the performance of SLP.

Experimental Setup
The proposed approach is compared with a number of
methods, including supervised method 10-NN as a base-
line, ARG [Liu et al., 2010], Eigen [Liu et al., 2010] and
TbTL [Zhang et al., 2016]. Particularly, the ARG method
uses a few anchor points which cover the entire point cloud
to build a smaller graph with strong representative power.
The final prediction is obtained by a simple linear combina-
tion of anchor points. The Eigen method approximates the
graph Laplacian matrix by spectral decomposition, and in this
way, the problem is solved in a reduced dimensional space.
The TbTL method first generates a minimum spanning tree
for given graph and then solve the problem with a designed
Laplacian solver. The work presented in [Zhu et al., 2003;
Zhou et al., 2004] fails to cope with the problem scale of our
experiments, therefore, we do not include them in the exper-
iments. For SLP, the extreme case mentioned at the end of
Section 3 is used as the implementation and is evaluated in
the following three tasks.

The codes of ARG, Eigen, TbTL are all shared by their
authors. The parameters for comparison methods are cho-
sen from the recommended ones suggested by the authors.
We adopt KD-tree algorithm to construct approximate 10NN
graphs when the dataset does not provide a graph. For
ARG, anchor points are generated by 500-means clustering
and the released LAE version is chosen to run. For Eigen,
the number of eigenvectors is set to 160. For TbTL, the
tree type is set to the minimum spanning tree, the number
of trees is 16 as suggested by the authors and the regular-
ization factor is selected from 0.01, 0.1, 1, 10 by perform-
ing 5-fold cross-validation on the training set. We use de-
fault hyper-parameters for SLP. The step size η is set to 1

10
√
t

where t is the next step to take and rounds T are set to
6. 0.1%, 0.2%, 0.4%, 0.8%, 1.6%, 3.2% of instances are ran-
domly selected as labeled data. Results are averaged over
20 independent repetitions. The performance is measured in
terms of both accuracy and AUC. We run these evaluations on
a PC with 3.2GHz AMD Ryzen 1400 CPU and 16GB RAM.



Table 2: Label Propagation on Large-Scale Network Analysis

GRAPH
LABELED ACC AUC TIME(S)

RATIO TBTL SLP TBTL SLP TBTL SLP

WIKIPEDIA
(1,791,489
NODES,
28,511,807
EDGES)

0.1% .607± .009 .643± .008 .539± .006 .591± .006 33.1± 1.4 7.0± 0.4
0.2% .655± .003 .687± .004 .559± .004 .606± .004 37.2± 1.7 6.4± 0.1
0.4% .669± .002 .703± .002 .581± .003 .630± .005 45.6± 3.4 6.5± 0.2
0.8% .684± .001 .717± .002 .605± .002 .652± .004 60.2± 3.9 6.5± 0.1
1.6% .698± .001 .727± .001 .630± .001 .668± .003 90.6± 5.8 6.5± 0.1
3.2% .712± .001 .732± .001 .656± .001 .681± .003 146.0± 7.0 6.5± 0.1

LIVEJOURNAL
(3,997,962
NODES,
34,681,189
EDGES)

0.1% .979± .000 .950± .036 .515± .004 .619± .020 107.2± 5.4 10.3± 0.1
0.2% .979± .000 .960± .011 .530± .004 .646± .014 113.7± 4.4 10.2± 0.1
0.4% .979± .000 .964± .004 .549± .003 .670± .011 115.6± 4.2 10.4± 0.1
0.8% .980± .000 .966± .003 .575± .004 .696± .011 106.1± 8.6 10.4± 0.1
1.6% .981± .000 .969± .002 .614± .003 .732± .005 115.1± 6.3 10.5± 0.2
3.2% .982± .000 .973± .001 .657± .003 .769± .004 144.0± 8.7 10.5± 0.2

ORKUT
(3,072,441
NODES,
117,185,083
EDGES)

0.1% .720± .010 .594± .045 .559± .007 .701± .012 256.5± 113.9 32.4± 1.9
0.2% .773± .003 .623± .013 .528± .004 .712± .010 222.5± 94.6 30.7± 0.6
0.4% .773± .001 .635± .008 .532± .002 .718± .007 248.9± 95.3 31.1± 0.5
0.8% .772± .001 .636± .007 .538± .002 .722± .003 232.9± 108.6 30.9± 0.6
1.6% .772± .001 .645± .005 .546± .001 .719± .002 247.9± 117.0 30.9± 0.5
3.2% .771± .001 .657± .004 .558± .001 .724± .002 205.7± 89.4 31.3± 0.4

Tasks on Large-Scale Network Analysis

We collect three large-scale network datasets and perform la-
bel propagation on them. These graphs [Yang and Leskovec,
2015; Yin et al., 2017] include graphs from Wikipedia1,
Livejournal2 and Orkut3. Specifically, Wikipedia is a web
graph Wikipedia hyperlinks collected in September 2011
with 1, 791, 489 nodes and 28, 511, 807 edges. LiveJour-
nal is a free on-line blogging community where users de-
clare friendship each other and the graph contains 3, 997, 962
nodes and 34, 681, 189 edges. Orkut is a free on-line social
network where users form friendship each other and the graph
contains 3, 072, 441 nodes and 117, 185, 083 edges.

We can not access the profiles of nodes in these graphs and
the labels of these nodes are generated by the ground-truth
communities information provided by [Yang and Leskovec,
2015]. We adopt the one-vs-rest strategy by regarding the
most frequent label as positive one. Because Anchor and
Eigen methods take features of instances as input and fail to
run in these tasks, we can only compare SLP with TbTL. We
will evaluate Anchor and Eigen in the following part.

The performance is shown in Table 2. SLP achieves highly
competitive performance with TbTL with much shorter time.
Although TbTL seems to have higher accuracy, its poor AUC
performance indicates that it benefits from the unbalance of
the classes. We observe that most of TbTL’s predictions are
the label with the larger proportion in the training set. The
superior of SLP over TbTL owes to the fact that SLP does not
modify the given graph and maintain origin edges for label
propagation. In addition, SLP is generally at least five times
faster than TbTL.

1http://snap.stanford.edu/data/wiki-topcats.html
2http://snap.stanford.edu/data/com-LiveJournal.html
3http://snap.stanford.edu/data/com-Orkut.html

Tasks on Forest Covertype Categorization
The second task is collected from UCI4 and the target is to
predict forest cover type from cartographic variables only. On
this dataset, more state-of-the-art methods can be conducted
for comparison. The dataset has 581, 012 instances and we
construct a 10NN graph based on the features. Following the
procedure of network data, we transform the task into a binary
task by treating the most frequent label as the positive label
and the rest as the negative one.

Average accuracy, AUC and running time with standard de-
viation are shown in Table 3. On Covertype dataset, EIGEN,
TbTL, and SLP are all inferior to 10NN and ARG with 0.1%
and 0.2% labeled data. ARG may achieve better performance
with more anchor points, but it’s restricted by the memory
cost. SLP performs better with more initial labeled data. Be-
sides, given a graph, SLP spends much shorter time than com-
petitors and achieve the highest AUC at most time.

Benchmark Tasks with Different Graphs
In order to evaluate how the density of the graph influences
the performance of SLP, we further conduct experiments on
several benchmark datasets collected from UCI5 and MIN-
IST6 [LeCun et al., 1998]. Six binary datasets, i.e., Adults,
Ijcnn, Minist3vs8, Minist4vs9, Minist7vs9 and Devanagari
are conducted. We construct 4NN, 6NN, 8NN and 10NN
graphs for these datasets and compare the predictive accuracy
of SLP with different graphs.

Results in Figure 1 show that our proposal can have a better
performance on a denser graph. Commonly, 8NN and 10NN
graphs give competitive results, while 4NN and 6NN graphs

4https://archive.ics.uci.edu/ml/datasets/Covertype
5https://archive.ics.uci.edu/ml/index.php
6http://yann.lecun.com/exdb/mnist/



Table 3: Comparison on Forest Covertype Categorization

METHOD 0.1% 0.2% 0.4% 0.8% 1.6% 3.2%

ACC

10NN .684± .007 .709± .006 .732± .004 .758± .003 .789± .002 .822± .001
ARG .688± .008 .703± .005 .717± .004 .728± .002 .737± .001 .741± .001
EIGEN .513± .003 .530± .017 .572± .028 .629± .004 .636± .001 .646± .004
TBTL .652± .014 .698± .007 .739± .005 .777± .003 .811± .002 .840± .001
SLP .633± .011 .691± .006 .742± .004 .787± .003 .825± .002 .857± .001

AUC

10NN .687± .007 .711± .006 .734± .004 .759± .002 .790± .002 .823± .001
ARG .755± .007 .771± .005 .796± .002 .812± .002 .822± .001 .828± .001
EIGEN .718± .023 .724± .023 .734± .022 .734± .009 .741± .007 .752± .003
TBTL .653± .015 .695± .008 .738± .005 .778± .003 .813± .002 .845± .001
SLP .731± .011 .768± .007 .801± .004 .837± .003 .868± .002 .899± .001

TIME(S)

10NN 457.2± 35.3 615.7± 70.4 913.2± 12.1 1544.0± 55.5 2767.7± 64.5 5270.0± 745.8
ARG 786.1± 0.0 786.1± 0.0 786.1± 0.0 786.1± 0.0 786.1± 0.0 786.1± 0.0
EIGEN 8.3± 0.3 8.2± 0.2 9.1± 1.7 8.9± 1.5 8.2± 0.1 8.3± 0.3
TBTL 20.1± 1.2 25.0± 0.8 31.1± 1.0 38.3± 1.1 46.4± 1.4 55.2± 1.2
SLP 1.0± 0.0 0.9± 0.0 0.9± 0.0 0.9± 0.0 0.9± 0.0 1.0± 0.0
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Figure 1: Performance of SLP with different graphs.

performs worse. This is consistent with Theorem 2. Partic-
ularly, the denser the graph is, the more predictions will be
valid in the first few epochs.

6 Conclusion
In this paper, we propose a fast and scalable label propagation
method named SLP. Its procedure is derived from stochas-
tic gradient descent and it is simple to implement. The con-
vergence as well as the necessity of warm start is analyzed.
Experiments on million-scale graphs demonstrate that our
method is nearly one order of magnitude faster than lead-

ing approaches and in addition achieves highly competitive
or even the best performance. The contribution of this work
is that we incorporate the stochastic method to label prop-
agation and provides a different inspiration to handle large-
scale label propagation tasks with clear practical advantages.
There are many interesting future works. For example, our
recent work showed that an inappropriate graph construction
may deteriorate the performance of label propagation [Li et
al., 2016]. In future we will judge the quality of the graph for
million-scale network analysis and derive robust label propa-
gation by pruning inappropriate edges of graph.
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