
Vol.:(0123456789)

Machine Learning (2024) 113:3653–3673
https://doi.org/10.1007/s10994-023-06421-x

1 3

Tracking treatment effect heterogeneity in evolving 
environments

Tian Qin1 · Long‑Fei Li1 · Tian‑Zuo Wang1 · Zhi‑Hua Zhou1

Received: 31 May 2023 / Revised: 2 August 2023 / Accepted: 3 October 2023 /  
Published online: 11 January 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2024

Abstract
Heterogeneous treatment effect (HTE) estimation plays a crucial role in developing per-
sonalized treatment plans across various applications. Conventional approaches assume 
that the observed data are independent and identically distributed (i.i.d.). In some real 
applications, however, the assumption does not hold: the environment may evolve, which 
leads to variations in HTE over time. To enable HTE estimation in evolving environ-
ments, we introduce and formulate the online HTE estimation problem. We propose an 
online ensemble-based HTE estimation method called ETHOS, which is capable of adapt-
ing to unknown evolving environments by ensembling the outputs of multiple base estima-
tors that track environmental changes at different scales. Theoretical analysis reveals that 
ETHOS achieves an optimal expected dynamic regret O(

√

T(1 + P
T
)) , where T denotes the 

number of observed examples and P
T
 characterizes the intensity of environment changes. 

The achieved dynamic regret ensures that our method consistently approaches the optimal 
online estimators as long as the evolution of the environment is moderate. We conducted 
extensive experiments on three common benchmark datasets with various environment 
evolving mechanisms. The results validate the theoretical analysis and the effectiveness of 
our proposed method.
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1  Introduction

Treatment effect estimation is a fundamental problem in causal inference, with broad appli-
cations in fields such as healthcare (Shalit, 2019), advertising (Wang et al., 2015), and rec-
ommender systems (Schnabel et  al., 2016). Among different levels of treatment effects, 
heterogeneous treatment effects (HTE) measure the relative effect of decisions on the out-
come of individuals or subgroups of the population, providing valuable insights for creat-
ing personalized treatment plans. The estimation of HTE is challenging due to the funda-
mental difficulty of causal inference: we can only observe a factual outcome corresponding 
to the selected decision and can never observe the counterfactual outcomes that would have 
occurred if other decisions were made. Many studies have sought to overcome this chal-
lenge by leveraging machine learning models, leading to notable advancements in estimat-
ing HTE from observational data (Hill, 2011; Shalit et al., 2017; Wager & Athey, 2018; 
Yao et al., 2018; Yoon et al., 2018; Qin et al., 2021; Harada & Kashima, 2022).

These studies commonly assume that the observational data are independent and iden-
tically distributed (i.i.d.). However, in real-world problems, these assumptions can be 
strongly violated. First, the effect of treatments or the environment can evolve over time 
(Zhou, 2022a). For example, in the development of vaccines against COVID-19, the effec-
tiveness of a vaccine decreased as the coronavirus evolved into different variants. Another 
example is that in recommender systems, the click-through rate of a recommended product 
can dramatically change as the user interest typically evolves over a range of time. In both 
examples, the treatment effects vary over time. Second, in real applications, the treatment 
policy and the distribution of observed units can vary across different time periods. For 
example, recommendation policies are often adjusted according to the popularity of prod-
ucts, and visitor populations of a shopping recommender system are usually different on 
weekdays and weekends. Moreover, the observational data may appear in online scenarios, 
where the evolution of effects happens continuously and gradually. As a result, explicitly 
dividing the data into disjoint parts and assuming stationary distributions on each of them 
for separate estimation is unreliable. Due to the aforementioned reasons, it is necessary to 
develop HTE methods that are capable of tracking treatment effect heterogeneity in evolv-
ing environments where the i.i.d. assumption does not hold.

Specifically, we formulate the online HTE estimation problem for T rounds. The treat-
ment effects, the probability of being treated, and the unit distribution in each round may 
differ from previous ones. At each round, we submit an HTE estimator to the environment 
and subsequently observe a new example, which can be used to update the estimator. Note 
that the submitted estimator can be used to guide the treatment probability of the subse-
quent example, resembling many online decision processes such as online recommenda-
tion. Apart from the difficulties posed by the unobserved counterfactuals in conventional 
HTE estimation problems, the most challenging aspect of this problem is that we do not 
know how the environment would evolve in advance: The method must be able to adapt 
to any possible changes. Furthermore, it is crucial for the overall method to have strong 
theoretical guarantees, especially considering that HTE is frequently utilized in critical 
decision-making tasks such as medicating.

To address the online HTE estimation problem, we propose a method called ETHOS. 
We resolve the difficulty raised by unobserved counterfactuals by replacing the incalcu-
lable true estimation error with a surrogate loss function. By minimizing this surrogate 
loss, we effectively minimize the original true losses in expectation. To tackle the unknown 
environmental changes, we base ETHOS on the online ensemble technique, which was 
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originally introduced to handle the non-stationarity in online convex optimizations (Zhang 
et al., 2018; Zhao et al., 2021). Roughly, ETHOS maintains multiple base HTE estimators 
and optimally ensembles their outputs as the final estimator. Each base estimator optimizes 
the surrogate loss with a unique learning rate, which intuitively captures environmental 
changes at different scales. By aggregating the outputs of base estimators, ETHOS follows 
the base estimator that best adapts to the undergoing environmental change, thus providing 
reliable estimations throughout the whole process.

We measure the estimator performance with a variant of dynamic regret (Zinkevich, 
2003), which compares the generalization loss of the learned estimators with any possi-
ble estimator sequence, making it suitable for characterizing the performance in evolving 
environments. We prove that our proposed method achieves an optimal expected dynamic 
regret of O(

√

T(1 + PT )) , where PT characterizes the accumulated changes of a compara-
tor sequence, which can reflect the variations of the environment. The regret bound indi-
cates that the proposed method consistently approaches any optimal estimator as long as 
PT ≤ o(T) , which is satisfied by environments undergoing mild changes. In this case, the 
average regret of the estimator in each round is O(

√

(1 + PT )∕T) , which decreases to zero 
as T approaches infinity.

In summary, our primary contributions are threefold. Firstly, to the best of our knowl-
edge, this is the first work that introduces and formulates the online HTE estimation prob-
lem in evolving environments, which is crucial for deploying HTE estimators in real online 
applications. Secondly, we present an HTE estimation method for the problem with strong 
theoretical guarantees, supported by extensive experimental validation. Finally, we derive a 
problem lower bound, which matches the achieved dynamic regret of our proposed method, 
demonstrating the optimality of the method.

The remainder of the paper proceeds as follows. Section 2 discusses related work. Sec-
tion 3 formulates the online HTE estimation problem. The proposed method and theoreti-
cal analysis are presented in Sects. 4 and  5, respectively. Empirical evaluations are pro-
vided in Sect. 6. Finally, we conclude in Sect. 7.

2 � Related work

There have been considerable efforts in incorporating machine learning models into HTE 
estimation. Notable methods include proposals based on Bayesian additive regression 
trees (Hill, 2011; Hahn et al., 2020), random forests (Wager & Athey, 2018; Athey et al., 
2019), deep neural networks (Shalit et  al., 2017; Louizos et  al., 2017; Yao et  al., 2018; 
Yoon et al., 2018; Zhang et al., 2021; Harada & Kashima, 2022), etc. Meta-algorithms that 
can leverage any supervised learning or statistical regression methods have also been pro-
posed (Künzel et al., 2019; Nie & Wager, 2020). These methods typically rely on the i.i.d. 
assumption, which is not assumed in this work.

Some studies investigate the mismatch of distributions in HTE estimation problems 
within the framework of transfer learning and domain adaptation (Künzel et al., 2018; 
Johansson et  al., 2018; Shi et  al., 2021; Bica & van der Schaar, 2022). These studies 
generally assumed the existence of at least two stationary domains and studied how 
to leverage the information of source domains to benefit HTE estimation on the target 
domain. As mentioned in Sect. 1, the observational data come in an online manner and 
does not have explicit domains with distinct distributions. It is also not appropriate to 
manually divide the accumulated data into several domains and apply transfer learning 
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since transfer learning requires the data on each domain to be i.i.d. while in the online 
HTE estimation problem, the distribution change can happen continuously, which 
means that it is unclear whether the data accumulated within a specific time period is 
identically distributed.

Brodersen et al. (2015) and Li and Buhlmann (2018) considered estimating treatment 
effects in observational studies that run over a certain period of time. They assume that 
after receiving a treatment, the effect can vary with time and constituents a non-stationary 
time series. The online HTE estimation problem considered in this work is different from 
theirs in that the outcome variable is real-valued instead of a time series, and that the we 
explore non-stationarity of observed distributions rather than the evolution of outcomes 
after receiving treatments.

In the field of online convex optimization, the concept of dynamic regret (Zinkevich, 
2003) compares the cumulative loss of a learner to that of any sequence of compara-
tors, taking into account the changing environments. However, the original definition of 
dynamic regret focuses on the in-sample losses incurred by the learner, whereas HTE esti-
mation requires the ability to generalize to unseen data. Therefore, a modified dynamic 
regret is necessary to assess the performance of HTE estimators in evolving environments. 
While Zhang et  al. (2018) proposed a method that achieves minimax optimal dynamic 
regret in online convex optimization tasks when the learner has access to true gradients, 
our problem poses additional challenges. In our case, obtaining the true gradients, or even 
the true losses, is impossible due to the presence of unobserved counterfactuals, making 
the application of online optimization techniques difficult.

3 � Problem setup

HTE quantifies the effect of a treatment W ∈ W on the real-valued outcome Y ∈ Y of 
a specific subgroup described by covariates X ∈ X  . We consider binary treatments 
W = {−1, 1} . A unit belongs to the treated group if W = 1 and the control group if W = −1 . 
Under the potential outcome framework (Neyman, 1923; Rubin, 1974), HTE is also known 
as the conditional average treatment effect (CATE) and is defined as

where Y(w) denotes the potential outcome for treatment W = w , i.e., the value that Y would 
obtain had x received treatment w. One of the main challenges of this task is that we can 
only observe the factual outcome Y(W) for a unit, but never the counterfactual outcome 
Y(−W).

We consider an online process of HTE estimation that spans T rounds, where 
the environment, including the CATE function �(x) , the propensity score function 
q(x) ≜ P(W = 1 ∣ x) , and the distribution of X , evolves over time. We estimate HTE with 
a function h(⋅;�) ∶ X → ℝ , which is parametrized by � ∈ � . Let xt,wt, yt , and �t(x) denote 
the observed covariates, treatment, factual outcome, and the underlying CATE function at 
round t, respectively. Let pt = P(wt ∣ xt) . The online HTE estimation process is: At each 
round t = 1,… , T  , 

1.	 The learner picks a parameter �t ∈ � , which constituents an HTE estimator h(⋅;�t);
2.	 The environment then reveals a new example (xt,wt, yt, pt) to the learner.

�(x) ≜ �[Y(1) − Y(−1) ∣ X = x],
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In this process, the learner determines the parameter based on data collected in previous 
rounds, and the environment randomly samples a new example dt = (xt,wt, yt) from the 
evolving distribution Dt , which can differ for each round t. Note that we assume pt is 
also revealed to the learner, which is reasonable since the deployed treatment policy is 
generally known in online applications such as online recommendation systems. Addi-
tionally, the environment can adjust the treatment probability according to the effect 
estimate 𝜏t = h(xt;�t) before giving treatment to the unit xt , which resembles many real 
scenarios, e.g., an ad provider first estimates the effect on a user and then decides the 
probability of displaying a specific ad.

As the environment is evolving, the optimal HTE estimator can vary across different 
rounds. We measure the performance of an online estimator with a modified version of 
dynamic regret, which compares the cumulative loss of the estimator sequence output 
by an online algorithm with that of an arbitrary sequence u1,… , uT ∈ �:

where the loss function ft(�) ≜ �
xt

[

1

2
(h(xt;�) − �t(xt))

2
]

 is the expected squared error of 
h(⋅;�) on the underlying distribution at round t. The loss is commonly known as the squared 
precision in estimation of heterogeneous effects (Hill, 2011). We aim to design an algo-
rithm that ensures that the generated sequence �1 … ,�T has low dynamic regret, which 
means that it has comparable or better performance against any possible sequence 
u1,… , uT , including the optimal one that best adapts to the changing environment. By 
achieving low dynamic regret, we can conclude that the algorithm successfully tracks the 
evolving treatment effect heterogeneity.

We consider h to be any function which satisfies that (h(x;�) − �)2 is convex in � . 
For example, h could be any generalized linear models in the form of h(x;�) = 𝜙(x)⊤� , 
where � ∶ X → X� is a feature transformation function that maps x from the original 
space to another feature space X′ . Although the true CATE function may not have the 
same form as h, with a properly specified � , we can expect that the best estimator rep-
resentable by h to well approximate the true function. We next state some standard 
assumptions in the treatment effect estimation (Imbens & Rubin, 2015) and the online 
convex optimization literature (Hazan, 2016; Zhang et al., 2018):

Assumption 1  (SUTVA) The potential outcomes for any unit do not vary with the treat-
ments assigned to other units, and, for each unit, there are no different forms or versions of 
each treatment level, which lead to different potential outcomes.

Assumption 2  (Consistency) For all t ∈ [T] , the potential outcome Yt(w) equals the 
observed outcome Yt if the actual treatment received is Wt = w.

Assumption 3  (�-strong ignorability) For all t ∈ [T] , {Yt(1),Yt(−1)} ⟂⟂ Wt ∣ Xt . There 
exists 0 < 𝜀 < 0.5 such that 𝜀 < P(Wt = 1 ∣ xt) < 1 − 𝜀 holds for all xt ∈ X .

Assumption 4  The covariates and the outcome have bounded norm, i.e., there exists A and 
B such that sup

x∈X ‖x‖2 ≤ A and supy∈Y |y| ≤ B.

(1)RegT (u1,… , uT ) ≜

T
∑

t=1

ft(�t) −

T
∑

t=1

ft(ut),



3658	 Machine Learning (2024) 113:3653–3673

1 3

Assumption 5  The range and the magnitude of the gradient of h(x;�) is bounded, i.e., 
there exists H and G such that for all x ∈ X,� ∈ � , we have

Assumption 6  The domain � is convex and 0 ∈ � . There exist D such that

We make some explanations for the last three assumptions, which rarely occur in the 
causal inference literature. Assumption 4 assumes bounded norm of the covariates and the 
outcomes, which is a relatively weak requirement that can be met in many real scenarios. 
For instance, it holds when none of the considered variables can take on an infinite value, 
which is reasonable for common quantities with certain semantics, such as age, gender, 
blood pressure, etc. Assumption  6 is also commonly fulfilled, as we typically consider 
model parameters within a specific range. Regarding Assumption 5, it is important to note 
that it imposes restrictions on the estimating function h rather than the true CATE function. 
Hence, one can easily select a suitable function class that satisfies this assumption. For 
example, linear functions automatically meet the requirement given Assumptions 4 and 6. 
Although the above assumptions exclude some commonly used function classes like tree-
based models, they facilitate the subsequent theoretical analysis and yield methods with 
strong theoretical guarantees.

4 � Proposed method

We propose a method called ETHOS, standing for tracking Evolving Treatment effect Het-
erogeneity with Online enSemble, which tackles the evolving environments with online 
gradient descent and online ensemble techniques (Zhang et al., 2018).

In contrast to typical online optimization tasks where the loss values are easily avail-
able, the loss function ft(⋅) , even its empirical version, is not computable in the online 
HTE estimation problem due to the unobserved counterfactuals. To address this limita-
tion and enable the learning of HTEs, we need a surrogate loss function as a substitute for 
the true loss. Noticing that 𝜏t ≜ wtyt∕pt is an unbiased estimator for the true effect, i.e., 
�wt ,yt ∣xt

[𝜏t] = 𝜏t(xt) , we define the following surrogate loss:

Definition 1  (Surrogate loss) The surrogate loss in the t-th round is defined as

We observe that the surrogate loss function f̂t is convex in �t due to the properties of 
h. This convexity property allows for easy minimization using general online gradi-
ent descent methods (Hazan, 2016). Moreover, as Proposition 1 indicates, by optimizing 
f̂t(�t;xt, 𝜏t) − f̂t(ut;xt, 𝜏t) , we effectively optimize the difference between the true loss of 
�t and ut in expectation. Consequently, we can transform the objective of minimizing the 

−H ≤ h(x;�) ≤ H and ‖∇�h(x;�)‖2 ≤ G.

sup
�,��∈�

‖� − ��
‖2 ≤ D.

f̂t(�t;xt, 𝜏t) ≜
1

2

(

h(xt;�t) − 𝜏t
)2

=
1

2

(

h(xt;�t) −
wtyt

pt

)2

.
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incalculable ft into minimizing the surrogate loss f̂t . For simplicity, we sometimes write 
f̂t(⋅) instead of f̂t(⋅;xt, 𝜏t) in the remainder of the paper.

Proposition 1  For any t ∈ [T] , �t ∈ � generated by any online algorithm and any fixed 
comparator ut ∈ � , �dt ∣d1∶t−1

[

f̂t(�t;xt, 𝜏t) − f̂t(ut;xt, 𝜏t)
]

= ft(�t) − ft(ut).

Proof  All the distributions in this proof are conditioned on d1∶t−1 . Denoting the variance of 
a random variable with � [⋅] , we have

	�  ◻

The gradient of the surrogate loss with respect to � is

which is upper bounded by a constant G̃ , as shown in the following proposition:

Proposition 2  Let G̃ ≜ (H + B∕𝜀)G . For any t ∈ [T] , � ∈ � , we have ‖ĝt(�)‖2 ≤ G̃.

Proof  The conclusion follows from Assumptions 3, 4, and 5. 	�  ◻

We can then optimize the surrogate loss with Algorithm  1, which simply performs 
online gradient descent with a fixed learning rate � . However, the outputs of Algorithm 1 
heavily relies on the given learning rate, which can not be optimally specified if the envi-
ronment changes are unknown (Zinkevich, 2003), which is exactly the most challenging 
part of the online HTE estimation problem. Hence, we need a more sophisticated method 
that adapts to any unknown scale of environmental changes.

�wt ,yt ∣xt

[

f̂t(⋅ ;xt, 𝜏t)
]

=
1

2
�wt ,yt ∣xt

[

h(xt;⋅ )
2 − 2h(xt;⋅ )𝜏t + 𝜏2

t

]

=
1

2

(

h(xt;⋅ )
2 − 2h(xt;⋅ )𝜏t + 𝜏t(xt)

2 + �wt ,yt ∣xt

[

𝜏t
])

=
1

2

(

(

h(xt;⋅ ) − 𝜏t(xt)
)2

+ �wt ,yt ∣xt

[

𝜏t
]

)

⇒ �dt

[

f̂t(⋅ ;xt, 𝜏t)
]

= �
xt

[

�wt ,yt ∣xt

[

f̂t(⋅ ;xt, 𝜏t)
]]

= �
xt

[

1

2

(

h(xt;⋅ ) − 𝜏t(xt)
)2
]

+
1

2
�
xt

[

�wt ,yt ∣xt

[

𝜏t
]]

= ft(⋅) +
1

2
�
xt

[

�wt ,yt ∣xt

[

𝜏t
]]

⇒ �dt

[

f̂t(�t;xt, 𝜏t) − f̂t(ut;xt, 𝜏t)
]

= ft(�t) − ft(ut).

(2)ĝt(�) ≜ ∇� f̂t(�;xt, 𝜏t) =

(

h(xt;�) −
wtyt

pt

)

∇�h(xt;�),
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Algorithm 1   Online base HTE estimator

To overcome the difficulty, we adopt the idea of ensemble learning (Zhou, 2012; Zhang 
et al., 2018; Zhao et al., 2021), where the learning is built on the wisdom of diverse base 
learners (Zhou & Tan, 2023). Intuitively, when performing gradient descent, a small learn-
ing rate is more suitable for environments that evolve gradually and a large learning rate 
can better capture abrupt changes. Therefore, if we optimize the surrogate loss with suffi-
ciently many optimizers, each having a unique learning rate, we can ensure that we always 
have an optimizer that best adapts to the undergoing change of environments, even if the 
scale of change is unknown. Moreover, although we do not know which optimizer is the 
best, it is possible to combine all the optimizers with soft weights, for which we assign 
larger values if the corresponding optimizer suffers a smaller cumulative loss. In this way, 
the combined output can be comparable to the best one.

Based on the ensemble idea, we propose the ETHOS algorithm, which utilizes multi-
ple base estimators with different learning rates and ensembles their outputs. The overall 
algorithm is outlined in Algorithm 2, which accepts some problem-dependent quantities 
as inputs and outputs �t in each round. ETHOS invokes N = O(log T) base estimators from 
Algorithm 1 and aggregates their outputs using an exponential weighting scheme (Cesa-
Bianchi & Lugosi, 2006), which assigns higher weights ��

t  to base estimators with smaller 
losses, allowing the aggregated estimator to mimic the outputs of the best base estimators. 
At round t, ETHOS first receives the estimator parameters {��

t }� from N base estimators, 
then computes a weighted average of the parameters as the output. After receiving a new 
example, base estimators update their parameters and ETHOS updates the weights accord-
ingly. An advantage of ETHOS is that it only requires O(logT) storage space, significantly 
smaller than the size of data O(T), which could have significant practical implications in 
real applications.
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Algorithm 2   ETHOS

The parameters in Algorithm 2 are carefully designed to make the algorithm enjoy an 
optimal upper bound on dynamic regret, as elaborated in the following theoretical section. 
Roughly, the step size � reflects how confident we are about the representativeness of the 
surrogate loss for the underlying environment: a large step size enables the meta-estimator 
to quickly catch up with the best base estimators, meaning that we believe that the surro-
gate loss faithfully reflects the evolvement of the true environment. The learning rates in 
H are set with a geometric series with a ratio 2, which ensures that a nearly optimal learn-
ing rate, and correspondingly, a nearly optimal HTE estimator is available for any possible 
scale of environment changes.

5 � Theoretical guarantees

In this section, we present theoretical analysis for ETHOS and the online HTE estimation 
problem. In general, achieving a sublinear dynamic regret in T for online HTE estimation 
is impossible: in the worst case, the environment can evolve arbitrarily and make learning 
on previous data useless for generalizing on future environments. However, we can bound 
the regret with comparator-dependent quantities and obtain sublinear dynamic regret for 
benign environments. We consider the path length (Zinkevich, 2003) of a comparator 
sequence:

Definition 2  (Path length) The path length of a comparator sequence u1,… , uT is

The path length reflects the intensity of the environment change: a small path length 
of the optimal comparator sequence corresponds to a slowly evolving environment. In the 
remainder, we write the path length as PT when the comparator sequence is clear from the 
context. We proceed to present Lemma 3, establishing that ETHOS achieves a comparator-
dependent dynamic regret bound on the surrogate loss.

PT (u1,… , uT ) ≜

T
�

t=2

‖ut − ut−1‖2.
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Lemma 3  For any comparator sequence u1,… , uT ∈ X  , Algorithm 2 satisfies

Proof  For any k ∈ [N] , we have

The term (a) is the difference between the surrogate losses achieved by the meta-esti-
mator and a base estimator, which can be bounded by using analysis of expert-based algo-
rithms (Cesa-Bianchi & Lugosi, 2006). Based on Lemma 1 of Zhang et al. (2018), for any 
�k ∈ H , we have

The term (b) is the regret achieved by online gradient descent with learning rate �k on 
the convex surrogate functions (Zinkevich, 2003, Theorem 2), which is bounded by

The learning rate that minimizes ����(�) is given by 𝜂⋆ =

√

7D2+4DPt

2TG̃2
 , which is not neces-

sarily in H . We choose k = ⌊

1

2
log2(1 +

4PT

7D
)⌋ + 1 , which is no larger than N since 

PT

D
≤

TD

D
= T  , so that �k is close to 𝜂⋆ : 𝜂k =

2k−1D

G̃

√

7

2T
≤ 𝜂⋆ ≤ 2𝜂k , which gives

Combining (3–4) and noticing O(log log T) can be treated as a constant, we have

	�  ◻

Consequently, ETHOS achieves an expected dynamic regret on the true loss function, 
which is of the same order as the dynamic regret on the surrogate loss function:

Theorem 4  For any comparator sequence u1,… , uT , Algorithm 2 satisfies

T
∑

t=1

f̂t(�t;xt, 𝜏t) −

T
∑

t=1

f̂t(ut;xt, 𝜏t) ≤ O

(

√

T
(

1 + PT

)

)

.

T
∑

t=1

f̂t(�t;xt, 𝜏t) −

T
∑

t=1

f̂t(ut;xt, 𝜏t) =

T
∑

t=1

f̂t
(

�t

)

−

T
∑

t=1

f̂t(�
𝜂k

t )

�����������������������������
����(�)

+

T
∑

t=1

f̂t(�
𝜂k

t ) −

T
∑

t=1

f̂t
(

ut

)

�����������������������������
����(�)

.

(3)����(�) ≤
G̃D

√

2T

4

�

1 + ln
1

𝜔
𝜂k

1

�

≤
G̃D

√

2T

4
(1 + O(log log T)).

����(�) ≤
7D2

4𝜂k
+

D

𝜂k

T
�

t=2

‖ut − ut−1‖2 +
𝜂kTG̃2
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Proof  Noticing that the randomness of �t generated from Algorithm 2 only comes from the 
data collected in previous t − 1 rounds, we have

	�  ◻

Remark 1  The O(
√

T(1 + PT )) bound shows that in expectation, we can have a sublinear 
dynamic regret and the loss of ETHOS can consistently approach any estimator sequence 
as long as the sequence does not undergo drastic changes, i.e., PT ≤ o(T) . This condition 
can be satisfied by optimal comparator sequences in a slowly evolving environment. In this 
case, the average regret of the estimator in each round is O(

√

(1 + PT )∕T) , diminishing as 
T tends to infinity.

The expected dynamic regret provides guarantees on the average performance over multi-
ple runs. But it may not align with the goal of the online HTE estimation problem, where the 
focus is sequentially estimating the effects without running the process multiple times. Hence, 
it is more meaningful to derive a bound on the actual dynamic regret that holds with high 
probability:

Theorem 5  For any comparator sequence u1,… , uT , Algorithm 2 satisfies that with prob-
ability at least 1 − �,

Proof  Let d0 = 0 , dt = (xt,wt, yt) for all t ≥ 1 . Let z0 = 0 , 
zt =

∑t

i=1
(f̂i(�i) − fi(�i) − f̂i(ui) + fi(ui)) for all t ≥ 1 . Using Proposition 1, we have

�d1∶T

[

RegT (u1,… , uT )
]

≤ O

(

√

T
(

1 + PT

)

)

.
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�
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=

T
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=
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���

(Proposition 1)

=

T
�

t=1

�d1∶t

�

f̂t
�
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�

− f̂t
�

ut

��

= �d1∶T

�
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�

−

T
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≤ O
�

√
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. (Lemma 3)

RegT (u1,… , uT ) ≤ O
�

√

T(1 + PT + ln(1∕�))
�

.
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so z0, z1,… , zT is a martingale w.r.t. d0, d1,… , dT . Under regularity conditions,

So |zt − zt−1| is bounded for all t ≥ 1:

Applying Azuma’s inequality, we have that for any 𝜖 > 0,

Let 𝛿 = exp
(

−𝜖2∕(8TG̃2D2)
)

 . Then 𝜖 = 2G̃D
√

2T ln(1∕𝛿) . Hence with probability at least 
1 − �,

	�  ◻

Considering linear HTE estimators, we further prove a lower bound that matches the 
dynamic regret upper bound in Theorem 4, confirming the optimality of ETHOS.

Theorem 6  Suppose that the HTE is estimated via h(x;�) = �⊤
x , which satisfies Assump-

tion  5. Then for any � ∈ [0, TD] and any online algorithm, there exists a sequence of 
distributions D1,… ,DT satisfying Assumptions 3 and 4 and a sequence of comparators 
u1,… ,uT ∈ � satisfying Assumption 6, such that

To prove Theorem 6, we first present Lemma 7, which establishes a lower bound for 
estimating HTEs in the static environment setting.

�
[

zt+1 ∣ d0∶t
]

=

t
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Lemma 7  Suppose that the HTE is estimated via h(x;�) = �⊤
x , which satisfies Assump-

tion 5. Then for any online algorithm that outputs �1,… ,�T ∈ � satisfying Assumption 6, 
there exists a sequence of distributions D1,… ,DT satisfying Assumptions 3 and 4 and a 
sequence of unchanged comparators u1 = ⋯ = uT = u ∈ � , such that the online HTE esti-
mation process has

Proof  Let A,B,D, � be positive reals such that B ≥ 2 , A ≥ 4B∕D , 1∕2 > 𝜀 > 0 . Let 
𝔹 =

�

x ∈ ℝ
T ∣ ‖x‖2 ≤ 1

�

 denote the unit ball. Let � =
D

2
� which satisfies Assumption 6. 

Let X = A� and Y = [−B,B] which satisfy Assumption 4. We have

Without loss of generality, we assume T ≥ 2 . Let e1,… , eT be the standard basis of ℝT . 
Referring to the construction of Cesa-Bianchi et al. (1996), upon receiving �t , the environ-
ment chooses a distribution Dt where xt ≡ Aet , ℙ(wt = 1 ∣ xt) = � , and

where sgn[a] equals 1 if a ≥ 0 and −1 otherwise. It is easy to verify that yt(−1) ∈ Y and 
yt(1) ∈ Y . We have 𝜏t(xt) = yt(1) − yt(−1) = −sgn

�

�⊤
t
xt

�

�

2B
√

T
+ 1

�

, which gives
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�

−sgn[�⊤1 x1]2B

A
√

T
,… ,

−sgn[�⊤T xT]2B

A
√

T

�

∈ �.

We have

Combining (5) and (6), we have

	�  ◻

�d1∶T

�

RegT (u1,… , uT )
�

= �d1∶T

�

T
�

t=1

ft
�

�t

�

−

T
�

t=1

ft(u)

�

≥ B
√

T .

�d1∶T

[

T
∑

t=1

ft
(

�t

)

−

T
∑

t=1

ft(u)

]

=
1

2
�d1∶T

[

T
∑

t=1

(

�⊤
t
xt − 𝜏t(xt)

)2
−

T
∑

t=1

(

u
⊤
xt − 𝜏t(xt)

)2

]

.

yt(1) = −sgn
�

�⊤
t
xt

�

�

B
√

T
+

1

2

�

and yt(−1) = sgn
�

�⊤
t
xt

�

�

B
√

T
+

1

2

�

,

(5)
T
�

t=1

�

�⊤
t
xt − 𝜏t(xt)

�2
≥ T

�

2B
√

T
+ 1

�2

=
�

2B +
√

T
�2

.

(6)

T
�

t=1

�

u
⊤
xt − 𝜏t(xt)

�2
=

T
�

t=1

�

−sgn
�

�⊤
t
xt

�

2B
√

T
+ sgn

�

�⊤
t
xt

�

�

2B
√

T
+ 1

��2

=

T
�

t=1

�

2B
√

T
−

�

2B
√

T
+ 1

��2

= T .

�d1∶T

�

RegT (u1,… , uT )
�

=
1

2

�

T
�

t=1

�

�⊤
t
xt − 𝜏t(xt)

�2
−

T
�

t=1

�

u
⊤
xt − 𝜏t(xt)

�2

�

≥
1

2

�

�

2B +
√

T
�2

− T

�

≥ B
√

T .



3666	 Machine Learning (2024) 113:3653–3673

1 3

Proof of Theorem 6  Let A,B,D, � be positive reals such that B ≥ 2 , A ≥ 4B∕D , 1∕2 > 𝜀 > 0 . 
Let � = {� ∶ ‖�‖ ≤ D∕2} be a ball with radius D/2 which satisfies Assumption 6. Given 
any � ∈ [0, TD] , we consider 𝜏 < D and � ≥ D respectively.

We first consider 𝜏 < D . According to Lemma 7, for any online algorithm, there exists a 
sequence of distributions D1,… ,DT and a sequence of unchanged comparator 
u1 = ⋯ = uT = u such that PT (u1,… , uT ) = 0 < 𝜏 and 
�
d1∶T

�

Reg
T

�

≥ B

√

T = max

�

B

√

T ,B
√

�T∕D
�

.

Next, we consider � ≥ D. Without loss of generality, we assume ⌈�∕D⌉ divides T and 
divide the overall length-T online estimation problem into ⌈�∕D⌉ consecutive subprob-
lems S1,… , S

⌈�∕D⌉ , each of which has length L = T∕⌈�∕D⌉ . We apply Lemma 7 to each 
Si, i ∈ [⌈�∕D⌉] , and get a sequence of distributions D1,… ,DT and a sequence of com-
parators u1,… , uT such that for all i ∈ [⌈�∕D⌉] , u(i−1)L+1 = u(i−1)L+2 = ⋯ = u

uiL
, and that 

�d(i−1)L+1∶iL

�

Reg(i−1)L+1∶iL
�

≥ B
√

L. Therefore, we have

u1,… , uT changes at most ⌈�∕D⌉ − 1 ≤ �∕D times, so PT (u1,… , uT ) ≤ �∕D ⋅ D = �.
Combining above results, we have that for any � ∈ [0, TD] , there exists a sequence 

of distributions D1,… ,DT and a sequence of comparators u1,… , uT such that 
PT (u1,… , uT ) ≤ � and

	�  ◻

6 � Experiments

Due to the nature of the HTE estimation problem, we do not have access to the counter-
factuals or the true CATE values from real-world observational data. And although the 
COVID example and recommender system motivate this work, the evolving treatment 
effects are ubiquitous in other scenarios as well. Therefore, we evaluate the performance 
of ETHOS on three semi-synthetic datasets that are commonly used in the causal inference 
literature with carefully designed environment evolving mechanisms. We first describe 
the data generation and the environment evolving mechanisms, then implementations and 
baselines, and finally the results and analysis.

IHDP. This dataset was first introduced for HTE estimation tasks by Hill (2011). The 
data come from a randomized experiment studying the effects of specialist home visits on 
future cognitive test scores. An imbalanced observational dataset is created by removing all 
children with non-white mothers in the treated group. The dataset consists of 25 covariates 
and records of 139 treated and 608 controlled units.

Twins. This dataset is constructed on the data of twins birth in the USA between 1989 
and 1991. A total of 11,984 twin pairs are selected into records (Louizos et al., 2017). We 
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have 46 pre-treatment covariates. The treatment is being the heavier one in the twins, and 
the outcome is 1-year mortality.

Jobs. This dataset is the combination of Lalonde experiment data and the PSID compar-
ison group (Shalit et al., 2017). The covariates include 8 variables such as age, education, 
ethnicity, etc. The people in the treated group join a job training program. The outcome is 
employment status. It contains 297 treated and 2915 controlled units.

Outcome generation and treatment assignments. We use the covariates in all 
three datasets and simulate the outcomes and the treatment assignments. The covari-
ates are scaled to have Euclidean norms smaller than 1. We consider linear and non-
linear responses for each dataset. The response surfaces are modified from Hill 
(2011) with proper scaling. The linear setting uses Y(−1) ∼ N(X⊤�1∕‖�1‖, 0.1) and 
Y(1) ∼ N(X⊤�2∕‖�2‖, 0.1) , where the coefficients in �1, �2 are randomly sampled val-
ues (0, 1, 2, 3, 4) with probabilities (0.5, 0.2, 0.15, 0.1, 0.05). The nonlinear setting uses 
Y(−1) ∼ N(exp((X + 0.05)⊤�3)∕ exp(‖�3‖), 0.1) , Y(1) ∼ N(X⊤�3∕‖�3‖, 0.1) , where the 
coefficients in �3 are randomly sampled values (0,  0.1,  0.2,  0.3,  0.4) with probabilities 
(0.6, 0.1, 0.1, 0.1, 0.1). As for the treatment assignments, we fit a logistic regression model 
� ∶ X → [0, 1] on a randomly sub-sampled data and each unit is treated with probability 
min{max{�(X), �}, 1 − �} to satisfy Assumption 3.

Environment evolving mechanisms. We consider switching and linear mechanisms for 
the evolving environment. The T rounds are divided into K contiguous segments of length 
L = T∕K . For each segment, we randomly sample 50% from a dataset as the test set, on 
which the true dynamic regret is computed. The samples revealed to the online HTE learner 
in the L rounds are sampled from the left 50%. In the switching case, for every segment, 
we re-generate the data following the procedure described in the previous paragraph, which 
mimics sudden environmental changes. In the linear evolving case, the related functions in 
each segment are linear combinations of two sets of functions, mimicking gradual changes 
in the environment. For example, let vi, vi+1 denote CATE functions generated for the i-th 
and (i + 1)-th segments respectively, then the CATE function at round t ∈ [iL, (i + 1)L) is 
�t(⋅) = (1 − �t)vi(⋅) + �tvi+1(⋅) , where �t = max{0, (t − (i + 0.5)L)∕(0.5L)} . Other related 
functions are also similarly generated.

Implementation. For all settings, we set T = 10000 , D = G = H = B = 1 , � = 0.05 . G̃ 
is computed as in Proposition 2. We use h(x;�) = 𝜙(x)⊤� as the HTE estimator. For linear 
responses, we set �(x) = (x, 1) to adjust for possible bias term. For nonlinear responses, 
�(x) is instantiated via a randomly initialized ReLU-activated multi-layer perceptron 
(MLP) without any training. The numbers of neurons in each layer are set to 256, 256, 256, 
and 2048. The parameters of the MLP are not updated during the online process, which 
fulfills the requirements of the theoretical analysis.

Baselines. Because the online HTE estimation problem is first proposed by this work, 
there do not exist any published baseline methods. Inspired by the sliding-window tech-
nique which is commonly used to handle non-stationarity (Cheung et al., 2019), we adopt 
common HTE estimation methods with different window size, which only learns from data 
within the nearest window. We make a simplification that only retrains an HTE estima-
tor for disjoint windows due to the huge costs of repeated learning. The baselines include 
ordinary least squares with treatment as a feature (OLS), k-nearest neighbor (k-NN), pro-
pensity score matching (PSM), random forest (RF), BART (Chipman et  al., 2010; Hill, 
2011), causal forest (CF) (Wager & Athey, 2018; Athey et al., 2019), balancing neural net-
work (BNN) (Johansson et al., 2016), treatment-agnostic representation network (TARNet) 
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(Shalit et al., 2017), and counterfactual regression with Wasserstein distance (CFR) (Shalit 
et al., 2017). The window sizes include 25, 50, and 100.

Results and analysis. For each setting, we conducted the experiment 10 times with 
different random seeds and report the average results and standard error. Figure  1 illus-
trates several quantities observed during the execution of ETHOS in a particular setting. 
The effectiveness of the online ensemble technique is evident as the weights of good base 
estimators keep increasing and the performance of ETHOS is as good as the best base esti-
mator. Furthermore, the dynamic regret clearly demonstrates a sublinear trend, providing 
further validation of the theoretical analysis in Sect. 5.

Next, we compared ETHOS with baselines. We ran all baseline methods using three 
different window sizes, but due to space limitations, we only present the results for the 
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Fig. 1   The figures record the running process of ETHOS for the setting with linear responses, switching 
environments, and K = 100 . The results are averaged over 10 replications. The legend in the middle is 
shared by three figures. The bands depict standard errors. a plots the dynamic regret of ETHOS and its 
seven base estimators against the optimal comparator sequences, showing that ETHOS is able to catch up 
with the best base estimator. b plots the ratio between the dynamic regret of ETHOS in t rounds and t, 
which almost decreases to zero as t increases, verifying the sublinear dynamic regret bound in Theorem 4. c 
shows the change of base estimator weights {�

i
}7
i=1

 during the running, where the weights of best estimators 
keep increasing

Table 1   The average cumulative loss (squared PEHE) and standard errors of ETHOS and baselines for the 
setting with linear responses and switching environments

Results with the smallest average losses are displayed in bold font

Method IHDP Twins Jobs

K = 10 K = 100 K = 10 K = 100 K = 10 K = 100

OLS 14.4 ± 0.5 17.2 ± 0.6 4.3 ± 0.2 9.9 ± 0.3 8.1 ± 0.5 9.0 ± 0.3

k-NN 29.6 ± 0.6 36.6 ± 0.8 20.2 ± 0.2 22.7 ± 0.3 23.9 ± 0.6 24.4 ± 0.7

PSM 32.3 ± 0.8 36.0 ± 0.9 20.5 ± 0.3 22.9 ± 0.3 23.8 ± 0.6 24.3 ± 0.7

RF 24.4 ± 0.7 31.0 ± 0.6 10.2 ± 0.4 13.4 ± 0.3 5.2 ± 0.3 5.4 ± 0.2

BART​ 15.4 ± 0.6 19.1 ± 0.6 4.9 ± 0.2 9.5 ± 0.3 4.1 ± 0.3 4.5 ± 0.1

CF 13.6 ± 0.5 16.2 ± 0.5 4.6 ± 0.1 8.1 ± 0.2 7.6 ± 0.5 8.2 ± 0.2

BNN 57.0 ± 1.9 54.6 ± 0.5 18.8 ± 1.3 19.7 ± 0.6 8.4 ± 0.2 11.6 ± 0.1

TARNet 32.8 ± 0.8 34.0 ± 0.9 6.9 ± 0.3 13.1 ± 0.4 8.9 ± 0.3 9.2 ± 0.4

CFR 30.5 ± 0.8 33.2 ± 1.2 6.9 ± 0.2 12.7 ± 0.4 8.8 ± 0.3 9.0 ± 0.4

ETHOS ��.� ± �.� ��.� ± �.� �.� ± �.� �.� ± �.� �.� ± �.� �.� ± �.�
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Table 2   Results for the setting with linear responses and linear changes

Results with the smallest average losses are displayed in bold font

Method IHDP Twins Jobs

K = 10 K = 100 K = 10 K = 100 K = 10 K = 100

OLS 12.2 ± 0.5 15.5 ± 0.4 4.3 ± 0.2 6.6 ± 0.3 6.7 ± 0.2 8.4 ± 0.4

k-NN 26.2 ± 0.6 30.9 ± 0.4 17.1 ± 0.2 18.1 ± 0.2 20.6 ± 0.7 21.5 ± 0.5

PSM 28.3 ± 0.7 31.5 ± 0.4 17.5 ± 0.2 18.0 ± 0.2 20.5 ± 0.7 21.5 ± 0.5

RF 20.3 ± 0.3 26.3 ± 0.4 9.1 ± 0.3 11.0 ± 0.3 3.9 ± 0.3 4.9 ± 0.2

BART​ 13.2 ± 0.6 15.8 ± 0.5 3.9 ± 0.2 7.2 ± 0.3 3.3 ± 0.2 4.3 ± 0.1

CF 11.9 ± 0.5 14.4 ± 0.4 4.9 ± 0.1 5.4 ± 0.1 6.5 ± 0.3 8.0 ± 0.3

BNN 55.9 ± 1.9 53.9 ± 0.4 18.2 ± 1.1 19.4 ± 0.6 7.3 ± 0.2 7.5 ± 0.1

TARNet 31.1 ± 1.2 35.7 ± 1.4 6.2 ± 0.3 9.9 ± 0.4 7.8 ± 0.5 8.5 ± 0.5

CFR 29.2 ± 1.2 33.6 ± 1.3 6.1 ± 0.3 9.8 ± 0.4 7.8 ± 0.5 8.4 ± 0.5

ETHOS �.� ± �.� ��.� ± �.� �.� ± �.� �.� ± �.� �.� ± �.� �.� ± �.�

Table 3   Results for the setting with nonlinear responses and switching changes

Results with the smallest average losses are displayed in bold font

Method IHDP Twins Jobs

K = 10 K = 100 K = 10 K = 100 K = 10 K = 100

k-NN 33.5 ± 0.7 48.4 ± 1.1 23.0 ± 0.2 27.2 ± 0.6 53.0 ± 2.8 111.5 ± 3.1

PSM 33.9 ± 0.9 48.1 ± 1.2 23.0 ± 0.3 27.0 ± 0.6 53.0 ± 2.8 111.3 ± 3.1

RF 34.5 ± 0.8 48.4 ± 1.4 27.6 ± 0.4 32.7 ± 0.4 58.7 ± 2.7 102.2 ± 3.7

BART​ 22.6 ± 1.5 44.4 ± 1.2 20.0 ± 0.7 27.9 ± 0.7 43.2 ± 2.7 105.3 ± 5.0

CF 16.8 ± 0.7 30.5 ± 0.6 ��.� ± �.� ��.� ± �.� 30.8 ± 1.5 61.1 ± 2.4

BNN 122.3 ± 2.9 119.2 ± 2.6 90.3 ± 2.2 89.3 ± 4.4 230.1 ± 7.2 236.7 ± 5.0

TARNet 101.1 ± 2.6 114.3 ± 1.3 59.4 ± 2.7 70.7 ± 1.1 143.2 ± 3.2 168.5 ± 2.9

CFR 76.8 ± 3.9 92.9 ± 2.0 53.6 ± 2.3 64.4 ± 1.0 137.8 ± 3.6 162.7 ± 3.8

ETHOS ��.� ± �.� ��.� ± �.� 45.0 ± 4.2 44.0 ± 1.9 ��.� ± �.� ��.� ± �.�

Table 4   Results for the setting with nonlinear responses and linear changes

Results with the smallest average losses are displayed in bold font

Method IHDP Twins Jobs

K = 10 K = 100 K = 10 K = 100 K = 10 K = 100

k-NN 28.7 ± 0.8 32.0 ± 1.0 19.5 ± 0.3 20.0 ± 0.3 42.3 ± 2.6 69.2 ± 2.1

PSM 28.8 ± 1.0 32.1 ± 1.1 19.5 ± 0.3 20.2 ± 0.3 41.9 ± 2.7 69.2 ± 2.1

RF 29.1 ± 0.8 33.1 ± 0.6 24.3 ± 0.4 24.9 ± 0.2 47.6 ± 2.5 67.9 ± 3.4

BART​ 19.3 ± 1.3 28.7 ± 1.2 16.8 ± 0.6 20.1 ± 0.8 33.8 ± 3.0 61.9 ± 2.1

CF 16.2 ± 0.7 27.5 ± 0.8 �.� ± �.� ��.� ± �.� 25.4 ± 1.4 36.5 ± 1.3

BNN 122.0 ± 2.9 119.9 ± 2.5 90.0 ± 2.3 88.2 ± 2.5 230.3 ± 4.9 232.4 ± 4.9

TARNet 98.6 ± 2.9 102.1 ± 2.1 58.4 ± 2.2 62.4 ± 1.2 141.8 ± 4.1 147.6 ± 2.7

CFR 74.3 ± 2.3 79.8 ± 1.6 53.2 ± 2.3 55.1 ± 1.5 139.2 ± 4.0 142.6 ± 2.9

ETHOS ��.� ± �.� ��.� ± �.� 34.3 ± 2.7 40.3 ± 2.1 ��.� ± �.� ��.� ± �.�
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best configurations in Tables  1, 2, 3 and 4. Tables  1 and 2 show the results for linear 
responses with switching and linear environment changes, respectively, where the environ-
ment changes occurred 10 or 100 times. ETHOS consistently achieves significantly lower 
cumulative loss compared to all baselines across all settings. Notably, the performance gap 
between ETHOS and OLS, which is also a linear model, indicates that ETHOS’s superior 
performance is not solely due to the assumption of linearity in the responses but also its 
ability to handle unknown environmental changes effectively. Tables  3 and 4 report the 
results on nonlinear responses with respective switching and linear environment changes. 
ETHOS still outperforms all baselines on two datasets, despite the true HTE in these set-
tings now falling outside the hypothesis space of ETHOS. It is worth noting that while 
neural network-based methods, such as CFR, have a similar hypothesis space, ETHOS 
outperforms them, indicating its strong adaptability to evolving environments. Improved 
performance in nonlinear settings could potentially be achieved by carefully designing 
the nonlinear mapping function � or initializing the model with pre-trained models using 
auxiliary data. Additionally, we observed that tree-based methods, such as CF, perform 
better than neural network-based methods in these settings, which could be attributed 
to the robustness of trees in low-data regimes, where deep neural networks are prone to 
overfitting.

Moreover, we show the cumulative PEHEs for the linear setting in Table 5, showcasing 
that while ETHOS is derived from theoretical analysis on the squared PEHE loss (the mean 
squared error), it also performs well when evaluated with PEHE (the root mean squared 
error) as the performance measure.

7 � Conclusion

In this paper, we introduce and formulate the online HTE estimation problem in evolv-
ing environments. Leveraging the online ensemble technique, we propose a novel method 
called ETHOS, which enables the tracking of treatment effect heterogeneity in evolv-
ing environments with unknown environmental changes. The optimality of ETHOS is 

Table 5   The average cumulative PEHE and standard errors for the setting with linear responses and switch-
ing environment changes

Results with the smallest average losses are displayed in bold font

Method IHDP Twins Jobs

K = 10 K = 100 K = 10 K = 100 K = 10 K = 100

OLS 3.8 ± 0.1 4.1 ± 0.1 2.1 ± 0.0 3.1 ± 0.1 2.8 ± 0.1 3.0 ± 0.1

k-NN 5.4 ± 0.1 6.1 ± 0.1 4.5 ± 0.0 4.8 ± 0.0 4.9 ± 0.1 4.9 ± 0.1

PSM 5.7 ± 0.1 6.0 ± 0.1 4.5 ± 0.0 4.8 ± 0.0 4.9 ± 0.1 4.9 ± 0.1

RF 4.9 ± 0.1 5.6 ± 0.1 3.2 ± 0.1 3.7 ± 0.0 2.3 ± 0.1 2.3 ± 0.0

BART​ 3.9 ± 0.1 4.4 ± 0.1 2.2 ± 0.0 3.1 ± 0.0 2.0 ± 0.1 2.1 ± 0.0

CF 3.7 ± 0.1 4.0 ± 0.1 2.1 ± 0.0 2.8 ± 0.0 2.7 ± 0.1 2.9 ± 0.0

BNN 7.5 ± 0.1 7.4 ± 0.0 4.3 ± 0.1 4.4 ± 0.1 3.1 ± 0.1 3.2 ± 0.0

TARNet 5.7 ± 0.1 5.8 ± 0.1 2.6 ± 0.1 3.6 ± 0.1 3.0 ± 0.1 3.0 ± 0.1

CFR 5.5 ± 0.1 5.8 ± 0.1 2.6 ± 0.0 3.6 ± 0.1 3.0 ± 0.1 3.0 ± 0.1

ETHOS �.� ± �.� �.� ± �.� �.� ± �.� �.� ± �.� �.� ± �.� �.� ± �.�



3671Machine Learning (2024) 113:3653–3673	

1 3

established through a problem lower bound that matches its achieved expected dynamic 
regret. Experimental results provide empirical evidence supporting the effectiveness of the 
proposed method and the validity of the theoretical analysis. We believe that our proposed 
method will benefit HTE estimation in diverse real online applications and hope that this 
work would inspire further investigations.

The challenging online HTE estimation problem in evolving environments offers ample 
opportunities for diverse future research. For the specific problem proposed in this work, 
potential future work may include exploring alternative measures to characterize the evolu-
tion of the environment, rather than relying solely on PT , to better suit various scenarios; 
designing more efficient methods, e.g., with fewer base estimators; and extending the anal-
ysis from convex functions to non-convex ones, which could provide greater flexibility in 
modeling the treatment effects. Moreover, we can consider the broader problem of causal 
inference in evolving environments, where potential directions may include considering 
evolving sets of confounding covariates or the existence of latent confounders (Wang et al., 
2020, 2023a, b); improving HTE estimations via learning the confounder structure (Lv 
et al., 2021; Qin et al., 2023); and grounding decision-making (Zhou, 2022; Wang et al., 
2022) with HTE estimators in dynamic environments.
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