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Abstract

We study reinforcement learning in episodic inhomogeneous MDPs with adver-
sarial full-information rewards and the unknown transition kernel. We consider
the linear mixture MDPs whose transition kernel is a linear mixture model and
choose the dynamic regret as the performance measure. Denote by d the dimen-
sion of the feature mapping, H the length of each episode, K the number of
episodes, PT the non-stationary measure, we propose a novel algorithm that enjoys
an Õ

(√
d2H3K +

√
H4(K + PT )(1 + PT )

)
dynamic regret under the condition

that PT is known, which improves previously best-known dynamic regret for ad-
versarial linear mixture MDP and adversarial tabular MDPs. We also establish
an Ω

(√
d2H3K +

√
HK(H + PT )

)
lower bound, indicating our algorithm is

optimal in K and PT . Furthermore, when the non-stationary measure PT is un-
known, we design an online ensemble algorithm with a meta-base structure, which
is proved to achieve an Õ

(√
d2H3K +

√
H4(K + PT )(1 + PT ) +H2S2

T

)
dy-

namic regret and here ST is the expected switching number of the best base-learner.
The result can be optimal under certain regimes.

1 Introduction
Reinforcement Learning (RL) aims to learn a policy that maximizes the cumulative reward through
interacting with the environment, which has achieved tremendous successes in various fields, includ-
ing games [1, 2], robotic control [3, 4], and dialogue generation [5, 6]. In reinforcement learning, the
Markov Decision Process (MDP) [7] is the most widely used model to describe the environment.

Traditional MDPs assume that the reward functions are stochastic and the number of actions and
states is small. However, in many real-world applications, the reward functions may be adversarially
changing and the state and action spaces are large or even infinite. Previous work studies these
two problems separately. To deal with the adversarial reward functions, Even-Dar et al. [8] first
consider learning adversarial MDPs with known transition and full-information reward feedback.
They propose the MDP-E algorithm that enjoys Õ(

√
τ3T ) regret, where τ is the mixing time and

T is the number of steps. There is a line of subsequent work studying adversarial MDPs [9, 10,
11, 12, 13, 14, 15, 16], which studies various settings depending on whether the transition kernel
is known, and whether the feedback is full-information or bandit. To overcome the large state and
action space issue, a widely used method is linear function approximation, which reparameterizes
the value function as a linear function over some feature mapping that maps the state and action to
a low-dimensional space. Amongst these work, linear MDPs [17, 18, 19, 20, 21, 22, 23] and linear
mixture MDPs [24, 25, 26, 27, 28, 29, 30, 31] are two of the most popular MDP models with linear
function approximation. In particular, He et al. [23] and Zhou et al. [31] attain the minimax optimal
Õ(
√
d2H3K) regret for linear MDPs and linear mixture MDPs with stochastic rewards respectively.

Recent studies try to combine two lines of work to establish the theoretical foundation of adversarial
MDPs with large state and action space. In particular, Cai et al. [32] study adversarial linear mixture
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MDPs and propose the OPPO algorithm that enjoys an Õ(
√
d2H4K) regret. He et al. [33] improve

the result to Õ(
√
d2H3K) and show it is (nearly) optimal by presenting a matching lower bound.

However, these studies choose static regret as the performance measure, defined as the performance
difference between the learner’s policy and that of the best-fixed policy in hindsight, namely,

Regret(K) = max
π∈Π

K∑
k=1

V π
k,1(sk,1)−

K∑
k=1

V πk

k,1(sk,1), (1)

where V is the value function and Π is the set of all stochastic policies. One caveat in (1) is that
the best fixed policy may behave poorly in non-stationary environments. To this end, we introduce
dynamic regret, which benchmarks the learner’s performance with changing policies, defined as

D-Regret(K) =

K∑
k=1

V
πc
k

k,1(sk,1)−
K∑

k=1

V πk

k,1(sk,1), (2)

where πc
1, . . . , π

c
K ∈ Π is compared policies. Define PT =

∑K
k=2 d(π

c
k, π

c
k−1) with a certain distance

measure d(·, ·) as the non-stationary measure. A favorable dynamic regret should scale with PT .

Dynamic regret is a more appropriate measure in non-stationary environments, but it is more chal-
lenging to optimize such that few studies focus on it in the literature. Zhao et al. [34] investigate the
dynamic regret of adversarial tabular MDPs with the known transition kernel and present an algorithm
with optimal dynamic regret. Importantly, their algorithm does not require the non-stationarity
measure PT as the algorithmic input ahead of time. For the unknown transition setting, Fei et al. [35]
study adversarial tabular MDPs and propose an algorithm with dynamic regret guarantee. Zhong et al.
[36] further extend the algorithm of Fei et al. [35] to accommodate non-stationary transition kernels
with linear function approximation. Both algorithms of Fei et al. [35] and Zhong et al. [36] require
the quantity of PT as the input. Moreover, their dynamic regret bounds are suboptimal in terms of K
and PT as demonstrated by the lower bound established by our work (see Theorem 4).

This work investigates the dynamic regret of adversarial linear mixture MDPs, with a focus on
the full-information feedback and the unknown transition. We first propose POWERS-FixShare
algorithm when PT is known, an algorithm combining optimistic policy optimization with a Bernstein
bonus and fixed-share mechanism. We show it enjoys an Õ(

√
d2H3K +

√
H4(K + PT )(1 + PT ))

dynamic regret, where d is the dimension of the feature mapping, H is the length of each episode,
K is the number of episodes, PT is the non-stationary measure. We also establish a dynamic regret
lower bound of Ω(

√
d2H3K +

√
HK(H + PT )) . We stress four remarks regarding our results:

(1) Our result can recover the Õ(
√
d2H3K) minimax optimal static regret in He et al. [33].

(2) Our result improves upon the previously best-known Õ(dH7/4K3/4 +H2K2/3PT
1/3) dynamic

regret for the fixed transition of Zhong et al. [36, Theorem 4.6] in terms of H , K and PT .
(3) Our result can imply an Õ(

√
H4S2AK + H2

√
(K + PT )(1 + PT )) dynamic regret for ad-

versarial tabular MDPs, strictly improving upon the previously best-known Õ(
√
H4S2AK +

H2K2/3PT
1/3) dynamic regret of Fei et al. [35, Theorem 1], in terms of both K and PT .

(4) As the lower bound suggests, our result is the first optimal regarding the dependence on d, K and
PT and can be optimal in terms of H under certain regimes (H ≤ d and PT ≤ d2/H).

Furthermore, we study the case when PT is unknown and design a novel algorithm equipped
with the dynamic regret guarantee by the meta-base two-layer structure. Our algorithm enjoys
an Õ(

√
d2H3K +

√
H4(K + PT )(1 + PT ) +H2S2

T ) dynamic regret, where ST is the expected
switching number of the best base-learner. Though ST is a data-dependent quantity, it also reflects
the degree of environmental non-stationarity to some extent. Moreover, under specific regimes, the
magnitude of ST may be relatively negligible, resulting in our results still being optimal. Indeed,
given that ST is a data-dependent quantity, its inclusion in the regret bound is not ideal. Deriving
bounds that rely exclusively on problem-dependent quantities, like PT , remains an open challenge.
We discuss the technical difficulty of removing ST in Section 5 and take this issue for future work.

Finally, we also highlight the main technical challenges and our solutions as follows.

• We first show that the dynamic regret depends on the inverse of the minimal probability over
the action space of our policies, which can be arbitrarily small. To this end, we propose a novel
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algorithm with the fixed-share mechanism [37]. While this mechanism is proved to enjoy favorable
dynamic regret in online convex optimization [38], it suffers an additional term that can be regarded
as the weighted sum of the difference between the occupancy measure of the compared policies
in online MDPs. To overcome the difficulty, we exploit the multiplicative stability to bound this
term, eliminating the need for a restart strategy to handle the environmental non-stationarity as in
previous studies [35, 36] and allows us to attain the dynamic regret optimal in terms of K and PT .

• We show the dynamic regret of online MDPs can be written as the weighted average of “multi-
armed bandits” problems over all states, where the weight for each state is the unknown and
changing probability of being visited by πc

1, . . . , π
c
K . For the unknown PT case, we first show

the standard two-layer structure used in non-stationary online learning studies [39, 40, 41] fails to
achieve a favorable dynamic regret guarantee, which characterizes the unique difficulty of online
MDPs. Then, we present an initial attempt to address this issue by a specifically designed two-layer
structure. We prove our algorithm enjoys nice dynamic regret guarantees under certain regimes.

Notations. We denote by ∆(A) the set of probability distributions on a set A and denote the KL-
divergence by DKL(p∥p′) =

∑
a∈A p(a) log p(a)

p′(a) for any p, p′ ∈ ∆(A). We define ∆(A | S, H) =

{{πh(· | ·)}Hh=1 | πh(· | x) ∈ ∆(A),∀s ∈ S, h ∈ [H]} for any set S and H ∈ Z+. Further, for
any π, π′, π′′ ∈ ∆(A | S, H), we define Eπ[D̃KL(π

′∥π′′)] = Eπ[
∑H

h=1 DKL(π
′
h(· | sh)∥π′′

h(· | sh))].
For any policy pair πh, π

′
h, we define ∥πh − π′

h∥1,∞ = maxs∈S∥πh(· | s) − π′
h(· | s)∥1. For any

a, b, x ∈ R with a ≤ b, let [x][a,b] denote min{max(x, a), b}. Õ(·) omits the logarithmic factors.

2 Related Work

RL with adversarial rewards. There are many studies on learning adversarial MDPs where the
reward functions are adversarially chosen, yielding fruitful results that can be categorized into three
lines [8, 9, 10, 11, 12, 13, 14, 15, 16]. In particular, the first line of work considers the infinite-horizon
MDPs with uniform mixing assumption. In the known transition and full-information setting, the
seminal work of Even-Dar et al. [8] proposes MDP-E algorithm that achieves the Õ(

√
τ3T ) regret,

where τ is the mixing time and T is the number of steps. Another concurrent work of Yu et al. [9]
achieves Õ(T 2/3) in the same setting. In the known transition and bandit-feedback setting, Neu et al.
[10] propose MDP-EXP3 algorithm that attains Õ(T 2/3) regret. The second line of work considers
the episodic loop-free MDPs. Neu et al. [11] first study this problem under the known transition setting
and propose algorithms that achieve Õ(

√
T ) and Õ(

√
T/α) for full-information and bandit-feedback

respectively, where α is the lower bound of the probability of all states under any policy. Zimin
and Neu [12] propose O-REPS algorithm that enjoys Õ(

√
T ) regret in both full-information and

bandit-feedback setting without any additional assumption. Rosenberg and Mansour [13] and Jin
et al. [14] further consider the harder unknown transition and bandit-feedback setting. The last line
of work studies the episodic Stochastic Shortest Path (SSP) setting [15, 16]. In this paper, we focus
on episodic MDPs with the unknown transition and full-information setting.

RL with linear function approximation. To design RL algorithms in large state and action space
scenarios, recent works focus on solving MDPs with linear function approximation. In general, these
works can be divided into three lines based on the specific assumption of the underlying MDP. The
first line of work considers the low Bellman-rank assumption [42, 43, 44, 45], which assumes the
Bellman error matrix has a low-rank factorization. The second line of work is based on the linear
MDP assumption [17, 18, 19, 20, 21, 22, 23], where both the transition kernel and reward functions
can be parameterized as linear functions of given state-action feature mappings ϕ : S × A → Rd.
The last line of work studies the linear mixture MDP [24, 25, 26, 28, 29, 30, 31], where the transition
kernel can be parameterized as a linear function of a feature mapping ϕ : S × A × S → Rd but
without the linear reward functions assumption. Amongst these works, He et al. [23] and Zhou
et al. [31] attain the minimax optimal Õ(

√
d2H3K) regret for both episodic linear MDPs and linear

mixture MDPs respectively. However, all the above studies consider the stochastic reward setting. In
this paper, we study the episodic linear mixture MDP setting but with adversarial reward functions.

Non-stationary RL. Another related line of research is online non-stationary MDPs. In contrast
to adversarial MDPs where the reward functions are generated in an adversarial manner, online
non-stationary MDPs consider the setting where the reward functions are generated stochastically
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according to some distributions that may vary over time. Jaksch et al. [46] study the piecewise
stationary setting where the transitions and rewards are allowed to change certain times and propose
UCRL2 with restart technique to deal with the non-stationarity. Later, Ortner et al. [47] consider
the generalized setting where the changes are allowed to take place every step. However, the above
studies need prior knowledge about the magnitude of non-stationary. To address this issue, Cheung
et al. [48] propose the Bandit-over-RL algorithm to remove this requirement. A recent breakthrough
by Wei and Luo [49] introduces a black-box method that can convert any algorithm satisfying specific
conditions and enjoying optimal static regret in stationary environments into another with optimal
dynamic regret in non-stationary environments, without requiring prior knowledge about the degree
of non-stationarity. However, this approach does not apply to the adversarial setting. Specifically,
their reduction requires the base algorithm to satisfy a certain property enjoyed by typical UCB-type
algorithms. When a new instance of the base algorithm surpasses the optimistic estimator, it can be
inferred that the environment has changed, prompting a restart of the algorithm to disregard prior
information. However, this approach of constructing an optimistic estimator by a UCB-type algorithm
can only be applied to a stochastic setting. In the adversarial setting, where no model assumptions
are made and comparators can be arbitrary, this approach encounters significant difficulties.

Dynamic Regret. Dynamic regret of RL with adversarial rewards is only recently studied in the
literature [34, 35, 36]. Zhao et al. [34] investigate the dynamic regret of adversarial tabular MDPs
with the known transition kernel and present an algorithm with optimal dynamic regret. Importantly,
their algorithm does not require the non-stationarity measure PT as the algorithmic input ahead of
time. For the unknown transition setting, Fei et al. [35] study adversarial tabular MDPs and propose
an algorithm with dynamic regret guarantees. Zhong et al. [36] further extend the algorithm of Fei
et al. [35] to accommodate non-stationary transition kernels with linear function approximation. Both
algorithms [35, 36] require the quantity of PT as the input. Moreover, their dynamic regret bounds
are suboptimal in K and PT as shown by the lower bound established in our work. In this work, we
first design an optimal algorithm in terms of K and PT when PT is known. Further, we develop the
first algorithm to handle the unknown PT issue in adversarial MDPs with unknown transition.

3 Problem Setup

We focus on episodic inhomogeneous MDPs with full-information reward functions and the unknown
transition kernel. Denote by M = {S,A, H, {rk,h}k∈[K],h∈[H], {Ph}h∈[H]} an episodic inhomoge-
neous MDP, where S is the state space, A is the action space, K is the number of episodes, H is
the horizon, rk,h : S × A → [0, 1] is the reward function, Ph(· | ·, ·) : S × A × S → [0, 1] is the
transition kernel. We assume the rewards are deterministic without loss of generality and extending
our results to stochastic rewards is straightforward. Let S = |S| and A = |A|.
The learner interacts with the MDP through K episodes without knowledge of transition kernel
{Ph}h∈[H]. In each episode k, the environment chooses the reward function {rk,h}h∈[H] and
decides the initial state sk,1, where the reward function may be chosen in an adversarial manner and
depend on the history of the past (k − 1) episodes. Simultaneously, the learner decides a policy
πk = {πk,h}h∈[H] where each πk,h : S → ∆(A) is a function that maps a state s to a distribution
over action space A. In the h stage in episode k, the learner observes current state sk,h, chooses
an action ak,h ∼ πk,h(· | sk,h), and transits to the next state sk,h+1 ∼ Ph(· | sk,h, ak,h). Then the
learner obtains the reward rk,h(sk,h, ak,h) and observes the reward function rk,h as we consider the
full-information setting. At stage H + 1, the learner observes the final state sk,H+1 but does not take
any action, and the episode k terminates. Denote by T = KH the total steps throughout K episodes.

Linear Mixture MDPs. In this work, we focus on a special class of MDPs called linear mixture
MDPs, a setting initiated by Ayoub et al. [24] and further studied in the subsequent work [32, 31, 33].
In this setup, the transition kernel can be parameterized as a linear function of a feature mapping
ϕ : S ×A× S → Rd. The formal definition of linear mixture MDPs is as follows.

Definition 1 (Linear Mixture MDPs). An MDP M = {S,A, H, {rk,h}k∈[K],h∈[H], {Ph}h∈[H]} is
called an inhomogeneous, episode B-bounded linear mixture MDP, if there exist a known feature
mapping ϕ(s′ | s, a) : S × A × S → Rd and an unknown vector θ∗h ∈ Rd with ∥θ∗h∥2 ≤ B,
∀h ∈ [H] such that (i) Ph(s

′ | s, a) = ϕ(s′ | s, a)⊤θ∗h for all (s, a, s′) ∈ S ×A×S and h ∈ [H], (ii)
∥ϕV (s, a)∥2 ≜ ∥

∑
s′∈S ϕ(s′ | s, a)V (s′)∥2 ≤ 1 for any (s, a) ∈ S ×A and function V : S → [0, 1].
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Algorithm 1 POWERS-FixShare
Input: step size η, exploration parameter γ and regularization parameter λ.
1: Initialize {π0,h(· |s)}Hh=1, s ∈ S as uniform distribution, and set {Q0,h(·, ·)}Hh=1 as zero function.
2: for k = 1, 2, · · · ,K do
3: Receive the initial state sk,1.
4: for h = 1, 2, · · · , H do
5: For all h ∈ [H], s ∈ S, updates policy by

π′
k,h(· | s) ∝ πk−1,h(· | s) exp

(
ηQk−1,h(s, ·)

)
, πk,h(· | s) = (1− γ)π′

k,h(· | s) + γπu(· | s).

6: Take the action following ak,h ∼ πk,h(· | sk,h) and transit to the next state sk,h+1.
7: Obtain reward rk,h(sk,h, ak,h) and observe the reward function rk,h(·, ·).
8: end for
9: Initialize Vk,H+1(·) as a zero function.

10: for h = H,H − 1, · · · , 1 do
11: Set Qk,h(·, ·)←

[
rk,h(·, ·) +

〈
θ̂k,h, ϕVk,h+1

(·, ·)
〉
+ β̂k

∥∥Σ̂−1/2
k,h ϕVk,h+1

(·, ·)
∥∥
2

]
[0,H−h+1]

.
12: Set Vk,h(·)← Ea∼πk,h(· | ·) [Qk,h(·, ·)].
13: Set the estimated variance

[
V̄k,hVk,h+1

]
(sk,h, ak,h) as in (11), bonus Ek,h as in (21).

14: σ̄k,h ←
√
max

{
H2/d,

[
V̄k,hVk,h+1

]
(sk,h, ak,h) + Ek,h

}
.

15: Σ̂k+1,h ← Σ̂k,h + σ̄−2
k,hϕVk,h+1

(sk,h, ak,h)ϕVk,h+1
(sk,h, ak,h)

⊤.

16: b̂k+1,h ← b̂k,h + σ̄−2
k,hϕVk,h+1

(sk,h, ak,h)Vk,h+1

(
skh+1

)
.

17: Σ̃k+1,h ← Σ̃k,h + ϕV 2
k,h+1

(sk,h, ak,h)ϕV 2
k,h+1

(sk,h, ak,h)
⊤.

18: b̃k+1,h ← b̃k,h + ϕV 2
k,h+1

(sk,h, ak,h)V
2
k,h+1

(
skh+1

)
.

19: θ̂k+1,h ← Σ̂−1
k+1,hb̂k+1,h, θ̃k+1,h ← Σ̃−1

k+1,hb̃k+1,h.
20: end for
21: end for

Dynamic Regret. For any policy π = {πh}h∈[H] and any (k, h, s, a) ∈ [K] × [H] × S × A, we
define the action-value function Qπ

k,h and value function V π
k,h as

Qπ
k,h(s, a) = Eπ

[
H∑

h′=h

rk,h′(sh′ , ah′)
∣∣∣ sh = s, ah = a

]
, V π

k,h(s) = Eπ

[
H∑

h′=h

rk,h′(sh′ , ah′)
∣∣∣ sh = s

]
.

The Bellman equation is given by Qπ
k,h = rk,h + PhV

π
k,h+1, and V π

k,h(s) = Ea∼πh(· | s)[Q
π
k,h(s, a)]

with V π
k,H+1 = 0. For simplicity, for any function V : S → R, we define the operator

[PhV ](s, a) = Es′∼Ph(· | s,a)V (s′), [VhV ](s, a) = [PhV
2](s, a)− ([PhV ](s, a))2. (3)

As stated in Section 1, dynamic regret is a more appropriate measure compared with static regret for
the adversarial environments, which is defined in (2) and we rewrite it below for clarity:

D-Regret(K) =

K∑
k=1

V
πc
k

k,1(sk,1)−
K∑

k=1

V πk

k,1(sk,1), (4)

where πc
1, . . . , π

c
K is any sequence of compared policies. We define πc

0 = πc
1 to simplify the notation.

The non-stationarity measure is defined as PT =
∑K

k=1

∑H
h=1∥πc

k,h − πc
k−1,h∥1,∞.

4 Optimal Dynamic Regret with Known PT

We present our proposed algorithm in Algorithm 1. Similar to previous studies, the algorithm consists
of (i) policy improvement phase, and (ii) policy evaluation phase. We introduce the details below. In
Sections 4.1, we first consider the case when the transition is known to highlight the challenges even
under the ideal setting. Then, we extend the results to the unknown transition setting in Section 4.2.
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4.1 Policy Improvement Phase

In the policy improvement phase, the algorithm updates πk based on πk−1 using the proximal policy
optimization (PPO) method [50]. Specifically, at episode k, we define the following linear function:

Lk−1(π) = V
πk−1

k,1 (sk,1) + Eπk−1

[
H∑

h=1

⟨Qπk−1

k−1,h, πh(· | sh)− πk−1,h(· | sh)⟩
∣∣∣ s1 = sk,1

]
,

which is the first-order Taylor approximation of V π
k−1,1(sk,1) around πk−1. Then, we update πk by

πk = argmax
π∈∆(A | S,H)

Lk−1(π)−
1

η
Eπk−1

[
H∑

h=1

DKL

(
πh(· | sh)∥πk−1,h(· | sh)

)]
, (5)

where η > 0 is the stepsize and the KL-divergence encourages πk to be close to πk−1 so that Lk−1(π)
is a good approximation of V π

k−1,1(sk,1). The update rule in (5) takes the following closed form,

πk,h(· | s) ∝ πk−1,h(· | s) · exp
(
η ·Qπk−1

k−1,h(s, ·)
)
,∀h ∈ [H], s ∈ S. (6)

We show the update rule in (6) ensures the following guarantee and the proof is in Appendix C.1.
Lemma 1. The update rule in (6) ensures the following dynamic regret guarantee:

D-Regret(K) ≤ ηKH3

2
+

1

η

K∑
k=1

Eπc
k

[
D̃KL (π

c
k∥πk)− D̃KL (π

c
k∥πk+1)

]
. (7)

Note that the expectation in the last term in (7) is taken over πc
k which may change over episode

k. For static regret, i.e., πc
1 = . . . = πc

K = π∗, we can control this term by a standard telescoping
argument, which is not viable for dynamic regret analysis. Fei et al. [35] propose a restart strategy to
handle this term. Specifically, they restart the algorithm every certain number of steps and decompose
the above expectation into Eπc

k
[·] = Eπc

k0
[·] + Eπc

k−πc
k0
[·] where k0 < k is the episode in which

restart takes place most recently before episode k. For the first expectation Eπc
k0
[·], they apply a

customized telescoping argument to each period as the expectation is taken over the fixed policy. The
second expectation Eπc

k−πc
k0
[·] involves the difference πc

k−πc
k0

and can be bounded by PT . However,
as we will show in Theorem 4, their regret bound is suboptimal in terms of K and PT .

We introduce our approach below. Let us first consider taking expectations over any fixed pol-
icy π. Denote by δ the minimal probability over any action at any state for policies π1, . . . , πK ,
i.e., δ = mink∈[K] πk(a | s),∀a ∈ A, s ∈ S, the last term in (7) can be upper bounded by∑K

k=1 Eπ[D̃KL (π
c
k∥πk)− D̃KL (π

c
k∥πk+1)] ≤ H logA+PT log 1

δ , showing that we need to control
the minimal value of δ to obtain a favorable dynamic regret bound. To this end, we slightly modify
the update rule in (6) and add a uniform distribution πu(· | s) = 1

A1, ∀s ∈ S. That is, the policy πu

chooses each action with equal probability at any state. Thus, the update rule in (6) is modified as:

π′
k,h(· | s) ∝ πk−1,h(· | s) exp(η ·Q

πk−1

k−1,h(s, ·)), πk,h(· | s) = (1− γ)π′
k,h(· | s) + γπu(· | s) (8)

for any s ∈ S, h ∈ [H], where γ ≥ 0 is the exploration parameter. This update is called the
fixed-share mechanism in online learning literature [37]. While the fixed-share mechanism is standard
to obtain dynamic regret in modern online learning [38], several important new challenges arise in
online MDPs due to taking expectations over the policy sequence of changing policies πc

1, . . . , π
c
K .

In particular, we prove that performing (8) ensures the following dynamic regret.
Lemma 2. Set π1 as uniform distribution on A for any state s ∈ S. The update rule in (8) ensures

D-Regret(K) ≤ ηKH3

2
+

1

η

(
PT log

A

γ
+KH log

1

1− γ

)
+
1

η

K∑
k=1

H∑
h=1

Eπc
k

[∑
a∈A

(
πc
k−1,h(a | sh) log

1

π′
k,h(a | sh)

− πc
k,h(a | sh) log

1

π′
k+1,h(a | sh)

)]
(9)

The proof can be found in Appendix C.2. In the dynamic regret analysis in online learning, the last
term in (9) is usually canceled out through telescoping since we do not need to take expectations [38].
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However, this is not the case in online MDPs. Since the expectation is taken over the policy sequence
of changing policies πc

1, . . . , π
c
K , this term cannot be canceled out, which requires a more refined

analysis. To address this issue, we decompose one step of the expectation in (9) as follows.1(
Eπc

k−1

[∑
a∈A

πc
k−1,h log

1

π′
k,h

]
− Eπc

k

[∑
a∈A

πc
k,h log

1

π′
k+1,h

])
+ Eπc

k
−πc

k−1

[∑
a∈A

πc
k−1,h log

1

π′
k,h

]
.

With this decomposition, the first term can be canceled out through telescoping, yet it remains to
control the second term — the weighted difference between the state-action occupancy measures of
policy πc

k and πc
k−1 with weight −πc

k−1,h(a | sh) log π′
k,h(a | sh) for state-action (sh, a). To control

it, we need to (i) ensure the weight is upper bounded by some universal constant, and (ii) bound the
unweighted difference between the state-action occupancy measures, which are new challenges that
arose in online MDPs compared with standard online learning.

For the first challenge, note that the weight −πc
k−1,h(a | sh) log π′

k,h(a | sh) can be large or even
infinite since π′

k,h is the policy before uniform exploration and π′
k,h(a | sh) can be arbitrarily small.

Fortunately, π′
k,h is obtained by one-step descent from πk−1,h, which is the policy after uniform

exploration and can be lower bounded. We provide the following multiplicative stability lemma for
the one-step update, which shows π′

k,h is not far from πk−1,h and thus is also lower bounded.

Lemma 3 (Multiplicative Stability). For any distributions p ∈ ∆(A) with p(a) > 0, for all a ∈ A,
and any function Q : S ×A → [0, H], it holds for p′ ∈ ∆(A) with p′(a) ∝ p(a) · exp(η ·Q(s, a))
and η ≤ 1/H that p′(a) ∈ [p(a)/4, 4p(a)], for all a ∈ A.

For the second challenge, we show the unweighted difference between the state-action occupancy
measures can be bounded by the path length of policies. In particular, we have the following lemma.
Lemma 4. For any policy sequence πc

1, . . . , π
c
K , it holds that

K∑
k=1

(
Eπc

k
− Eπc

k−1

)[ H∑
h=1

1(sh) | s1 = sk,1

]
≤

K∑
k=1

H∑
h=1

h∑
i=1

∥πc
k,i − πc

k−1,i∥1,∞ = HPT .

Remark 1. We note that a similar argument is also used in Fei et al. [35, Appendix B.2.2]. How-
ever, they prove this lemma by imposing an additional smooth visitation measures assumption [35,
Assumption 1], which is not required in our analysis.

The proofs for Lemmas 3 and 4 can be found in Appendices C.3 and C.4 respectively. Combining
Lemmas 2, 3 and 4, we can prove the guarantee for update rule (8). The proof is in Appendix C.5.
Theorem 1. Set π1 as uniform distribution on A for any state s ∈ S . The update rule in (8) ensures

D-Regret(K) ≤ ηKH3

2
+

1

η

(
H logA+ (1 +H) log

4A

γ
PT +KH log

1

1− γ

)
.

Remark 2. Considering the static regret where πc
1 = . . . = πc

K = π∗, we can recover the
O(
√
H4K logA) static regret in Cai et al. [32] under the stationary scenario by setting γ = 0,

that is, without uniform exploration. However, when γ = 0, the dynamic regret is not bounded as
there lacks an upper bound for − log γ, showing the necessity of the fixed-share mechanism.

4.2 Policy Evaluation Phase

Sections 4.1 focus on the simplified scenario where the transition is known. In this subsection, we
further consider the unknown transition setting such that it is necessary to evaluate the policy πk

based on the (k− 1) historical trajectories. To see how the model estimation error enters the dynamic
regret, we decompose the dynamic regret in the following lemma.
Lemma 5 (Fei et al. [35, Lemma 1]). Define the model prediction error as ιk,h = rk,h+PhVk,h+1−
Qk,h, the dynamic regret D-Regret(K) =

∑K
k=1 V

πc
k

k,1(sk,1)−
∑K

k=1 V
πk

k,1(sk,1) can be written as∑
k,h

Eπc
k

[
⟨Qk,h(sh, ·), πc

k,h(· | sh)− πk,h(· | sh)⟩
]
+MK,H +

∑
k,h

(
Eπc

k
[ιk,h(sh, ah)]− ιk,h(sk,h, ak,h)

)
,

whereMK,H =
∑K

k=1

∑H
h=1 Mk,h is a martingale that satisfies Mk,h ≤ 4H , ∀k ∈ [k], h ∈ [H].

1With a slight abuse of notations, we omit (· | sh) for simplicity.
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Remark 3. Lemma 5 is independent of the structure of MDPs. The first term in Lemma 5 is the
dynamic regret over the estimated action-value function Qk,h, which can be upper bounded by
Theorem 5. The second term is a martingale, which can be bounded by Azuma-Hoeffding inequality.
The third term is the model estimation error, which is the main focus of this section. Note the model
prediction error ιk,h(sh, ah) can be large for the state-action pairs that are less visited or even unseen.
The general approach is incorporating the bonus function into the estimated Q-function such that
ιk,h(sh, ah) ≤ 0 for all s ∈ S, a ∈ A (i.e., Eπc

k
[ιk,h(sh, ah)] ≤ 0) and we only need to control

−ιk,h(sk,h, ak,h), which is the model estimation error at the visited state-action pair (sk,h, ak,h).

When applied to linear mixture MDPs, the key idea is learning the unknown parameter θ∗h of the linear
mixture MDP and using the learned parameter θk,h to build an optimistic estimator Qk,h(·, ·) such
that the model prediction error is non-positive, which is more or less standard. From the definition of
linear mixture MDP, for the learned value function Vk,h(·), we have [PhVk,h+1](s, a) = ⟨

∑
s′ ϕ(s

′ |
s, a)Vk,h+1(s

′), θ∗h⟩ = ⟨ϕVk,h+1
(s, a), θ∗h⟩. Inspired by recent advances in policy evaluation for linear

mixture MDPs [31], we adopt the weighted ridge regression to estimate the parameter θ∗h, that is, we
construct the estimator θ̂k,h by solving the following weighted ridge regression problem:

θ̂k,h = argmin
θ∈Rd

∑k−1

j=1

[〈
ϕVj,h+1

(sj,h, aj,h) , θ
〉
− Vj,h+1 (sj,h+1)

]2
/σ̄2

j,h + λ∥θ∥22.

Here, σ̄2
j,h is the upper confidence bound of the variance [VhVj,h+1](sj,h, aj,h), and we set it

as σ̄k,h =
√
max{H2/d, [V̄k,hVk,h+1] (sk,h, ak,h) + Ek,h}, where [V̄k,hVk,h+1](sk,h, ak,h) is a

scalar-valued empirical estimate for the variance of the value function Vk,h+1 under the tran-
sition probability Ph(· | sk, ak), and Ek,h is the bonus term to guarantee that the true variance
[Vk,hVk,h+1](sk,h, ak,h) is upper bounded by [V̄k,hVk,h+1](sk,h, ak,h)+Ek,h with high probability.
Then, the confidence set Ĉk,h is constructed as follows:

Ĉk,h =
{
θ | ∥Σ̂1/2

k,h(θ − θ̂k,h)∥2 ≤ β̂k

}
. (10)

where Σ̂k,h is a covariance matrix based on the observed data, and β̂k is a radius of the confidence
set. Given Ĉk,h, we estimate the Q-function following the principle of “optimism in the face of
uncertainty” [51] and set it as Qk,h(·, ·) = [rk,h(·, ·) + maxθ∈Ĉk,h

⟨θ, ϕVk,h+1
(·, ·)⟩][0,H−h+1].

It remains to estimate the variance [VhVk,h+1](sk,h, ak,h). By the definition of linear mixture
MDPs, we have [VhVk,h+1](sk,h, ak,h) = ⟨ϕV 2

k,h+1
(sk,h, ak,h), θ

∗
h⟩ − [⟨ϕVk,h+1

(sk,h, ak,h), θ
∗
h⟩]2.

Therefore, we estimate [V̄k,hVk,h+1] (sk,h, ak,h) by the expression below[〈
ϕV 2

k,h+1
(sk,h, ak,h) , θ̃k,h

〉]
[0,H2]

−
[〈
ϕVk,h+1

(sk,h, ak,h) , θ̂k,h
〉]2

[0,H]
, (11)

where θ̃k,h = argminθ∈Rd

∑k−1
j=1 [⟨ϕV 2

j,h+1
(sj,h, aj,h), θ⟩ − V 2

j,h+1(sj,h+1)]
2 + λ∥θ∥22. The details

are summarized in Lines 10-20 of Algorithm 1 and we provide the following guarantee.
Theorem 2. Set the parameters as in Lemma 8, with probability at least 1− δ, we have

K∑
k=1

(
Vk,1

(
sk1
)
− V πk

k,1

(
sk1
))

=MK,H −
K∑

k=1

H∑
h=1

ιk,h(sk,h, ak,h) ≤ Õ
(√

dH4K + d2H3K
)
.

The proof is given in Appendix C.6. Theorem 2 shows the model estimation error can be bounded.
Combining Theorems 1, 2 and Lemma 5, we present the dynamic regret bound in the next section.

4.3 Regret Guarantee: Upper and Lower Bounds

In this section, we provide the regret bound for our algorithm and present a lower bound of the
dynamic regret for any algorithm for adversarial linear mixture MDPs with the unknown transition.

Theorem 3. Set η = min{
√
(PT + logA)/K, 1}/H , γ = 1/(KH) and β̂k as in Lemma 8, then

with probability at least 1− δ, it holds

D-Regret(K) ≤ Õ
(√

dH4K + d2H3K +
√

H4(K + PT )(1 + PT )
)
, (12)

where PT =
∑K

k=1

∑H
h=1∥πc

k,h − πc
k−1,h∥1,∞ is the path length of the compared policies.
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Remark 4 (recovering static regret). Since static regret is a special case with πc
k = π∗,∀k, our result

can recover the optimal Õ(
√
d2H3K) static regret when H ≤ d, same as the result in He et al. [33].

Remark 5 (improving linear mixture case). Our result improves upon the previously best-known
Õ(dH7/4K3/4 + H2K2/3PT

1/3) dynamic regret for adversarial linear mixture MDPs of Zhong
et al. [36, Theorem 4.6] in terms of the dependence on H , K and PT .
Remark 6 (improving tabular case). For the adversarial tabular MDPs, our result implies an
Õ(
√
H4S2AK +H2

√
(K + PT )(1 + PT )) dynamic regret. This improves upon the best-known

Õ(
√
H4S2AK+H2K2/3PT

1/3) result of Fei et al. [35, Theorem 1]. The details are in Appendix B.

We finally establish the lower bound of this problem. The proof can be found in Appendix C.8.
Theorem 4. Suppose B ≥ 2, d ≥ 4, H ≥ 3,K ≥ (d− 1)2H/2, for any algorithm and any constant
Γ ∈ [0, 2KH], there exists an episodic B-bounded adversarial linear mixture MDP and compared
policies πc

1, . . . , π
c
K such that PT ≤ Γ, and D-Regret(K) ≥ Ω(

√
d2H3K +

√
HK(H + Γ)).

When H ≤ d, the upper bound is Õ(
√
d2H3K +

√
H4(K + PT )(1 + PT )). Combining it with

Theorem 4, we discuss the optimality of our result. We consider the following three regimes.

• Small PT : when 0 ≤ PT ≤ d2/H , the upper bound (12) can be simplified as Õ(
√
d2H3K), and

the lower bound is Õ(
√
d2H3K), hence our result is optimal in terms of d, H and K.

• Moderate PT : when d2/H ≤ PT ≤ K, the upper bound (12) can be simplified as Õ(
√
d2H3K +√

H4K(1 + PT )), and it is minimax optimal in d, K and PT but looses a factor of H
3
2 .

• Large PT : when PT ≥ K, any algorithm suffers at most O(HK) dynamic regret, while the lower
bound is Ω(K

√
H). So our result is minimax optimal in K but looses a factor of

√
H .

5 Towards Optimal Dynamic Regret with Unknown PT

This section further considers the case when the non-stationarity measure PT is unknown. By
Theorem 1, we need to tune the step size η optimally to balance the number of episodes K and PT

to achieve a favorable dynamic regret. To address the difficulty of not knowing PT ahead of time,
we develop an online ensemble method to handle this uncertainty, in which a two-layer meta-base
structure is maintained. While the methodology can be standard in recent non-stationary online
learning [52, 39, 40, 41], new challenges arise in online MDPs. We introduce the details below.

By the performance difference lemma in Cai et al. [32, Lemma 3.2] (as restate in Lemma 13), we can
rewrite the dynamic regret as

K∑
k=1

[
V

πc
k

k,1

(
sk1
)
− V πk

k,1

(
sk1
)]

=
K∑

k=1

Eπc
k

[
H∑

h=1

〈
Qπk

k,h(sh, ·), π
c
k,h(· | sh)− πk,h(· | sh)

〉]
,

where the expectation is taken over the randomness of the state trajectory sampled according to πc
k.

The dynamic regret of online MDPs can be written as the weighted average of some “multi-armed
bandits” problems over all states, where the weight for each state is the unknown and changing
probability of being visited by πc

1, . . . , π
c
K . As the optimal step size depends on the unknown non-

stationarity measure PT as shown in Section 4, a natural idea is to the two-layer structure to learn the
optimal step size as in recent online convex optimization literature [52, 39, 40, 41].

The general idea is constructing a step size poolH = {η1, . . . , ηN} to discretize the value range of
the optimal step size; and then maintaining multiple base-learners B1, . . . ,BN , each of which works
with a specific step size ηi. Finally, a meta-algorithm is used to track the best base-learner and yield
the final policy. Then, the dynamic regret can be decomposed as follows (omit (· | sh) for simplicity):

K∑
k=1

Eπc
k

[
H∑

h=1

〈
Qπk

k,h, π
c
k,h − πi

k,h

〉]
+

K∑
k=1

Eπc
k

[
H∑

h=1

〈
Qπk

k,h, π
i
k,h − πk,h

〉]
.

Since the above decomposition holds for any index i ∈ [N ], we can always choose the base-learner
with optimal step size to analyze and the first term is easy to control. The challenge is to control the
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second term, which is the regret of the meta-algorithm. Different from the standard “Prediction with
Expert Advice” problem, it involves an additional expectation over the randomness of states sampled
according to πc

k. This poses a grand challenge compared to conventional online convex optimization
where the expectation is not required. Although we can bound this term by PT again, optimal tuning
of the meta-algorithm is hindered as PT is unknown. Consequently, we opt to upper bound it by the
worst-case dynamic regret [53], that is, benchmarking the performance with the best choice of each
round, which in turn introduces the dependence on the switching number of the best base-learner.

We introduce our approach as follows. We maintain multiple base-learners, each of which works
with a specific step size ηi. All base-learners update their policies according to the same action-value
function Qk−1,h(sh, ·) of the combined policy πk−1, that is, the base-learner Bi updates policy by

πi,′
k,h(· | s) ∝ πi

k−1,h(· | s) exp(ηiQk−1,h(s, ·)), πi
k,h(· | s) = (1− γ)πi,′

k,h(· | s) + γπu(· | s), (13)
Then, the meta-algorithm chooses the base-learner by measuring the quality of each base-learner. In
our approach, we choose the best base-learner at the last episode, that is,

πk,h(· | s) = π
i∗k−1,h

k,h (· | s) with i∗k−1,h(s) = argmaxi∈[N ]⟨Qk−1,h(s, ·), πi
k−1,h(· | s)⟩. (14)

The details are summarized in Algorithm 2 of Appendix A and the guarantee is as follows.
Theorem 5. Set γ = 1/(KH), step size pool H = {ηi = (2i/H)

√
(logA)/K | i ∈ [N ]} with

N = ⌊ 12 log(
K

logA )⌋. Algorithm 2 ensures

D-Regret(K) ≤ Õ
(√

dH4K + d2H3K +
√

H4(K + PT )(1 + PT ) +H2S2
T

)
,

where PT =
∑K

k=1

∑H
h=1∥πc

k,h − πc
k−1,h∥1,∞ is the path length of the compared policies, ST =∑K

k=1

∑H
h=1 Eπc

k
1[i∗k,h(sh) ̸= i∗k−1,h(sh)] is the expected switching number of best base-learner.

Combining it with Theorem 3, we discuss the optimality of our result. We consider two regimes.

• Small ST : when ST ≤ max{d
√
HK,H

√
(K + PT )(1 + PT )}, the term ST can be subsumed by

other terms. In this case, the upper bound in Theorem 5 is entirely the same as that in Theorem 3.
This implies we maintain the same guarantees without PT as algorithmic input.

• Large ST : when ST > max{d
√
HK,H

√
(K + PT )(1 + PT )}, our result looses a factor of HST

compared with the result in Theorem 3 for the known PT setting.

By the above discussion, our result can be optimal in terms of K and PT under certain regimes
when PT is unknown. In comparison, the regret bounds achieved via the restart mechanism [35, 36]
remain sub-optimal across all regimes even PT is known. Note that we introduce the notation ST in
the regret analysis, which also reflects the degree of environmental non-stationarity to some extent.
Consider the following two examples: (i) in the stationary environment, ST could be relatively small
as the best base-learner would seldom change, and (ii) in the piecewise-stationary environment, ST

would align with the frequency of environmental changes. Indeed, given that ST is a data-dependent
quantity, its inclusion in the regret analysis is not ideal. Deriving bounds that rely exclusively on
problem-dependent quantities, like PT , remains a significant open challenge.

6 Conclusion and Future Work

In this work, we study the dynamic regret of adversarial linear mixture MDPs with the unknown
transition. For the case when PT is known, we propose a novel policy optimization algorithm that
incorporates a fixed-share mechanism without the need for restarts. We show it enjoys a dynamic
regret of Õ

(√
d2H3K +

√
H4(K + PT )(1 + PT )

)
, strictly improving the previously best-known

result of Zhong et al. [36] for the same setting and Fei et al. [35] when specialized to tabular MDPs.
We also establish an Ω

(√
d2H3K +

√
HK(H + PT )

)
lower bound, indicating that our algorithm

is optimal regarding d, K and PT and can be optimal in terms of H under certain regimes. Moreover,
we explore the more complex scenario where PT is unknown. We show this setting presents unique
challenges that distinguish online MDPs from conventional online convex optimization. We introduce
a novel two-layer algorithm and show its dynamic regret guarantee is attractive under certain regimes.

There are several important future works to investigate. First, how to remove the dependence on the
switching number ST is an important open question. Moreover, we focus on the full-information
feedback in this work, it remains an open problem to extend the results to the bandit feedback.
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A Algorithm with Unknown PT

In this part, we present the POWERS-FixShare-OnE algorithm in Algorithm 2 for the case when
PT is unknown. The algorithm is based on the POWERS-FixShare algorithm and we further
employ an online ensemble structure to eliminate the algorithmic dependence on PT . In Line 5, each
base-learner updates her policy with a specific step size ηi and the meta-learner selects the best policy
among the base-learners in Line 6. In the policy evaluation phase (Line 11 - 21), we use the same
estimator as in Algorithm 1 to estimate the parameter θ∗h and construct the confidence set.

Algorithm 2 POWERS-FixShare-OnE
Input: step size poolH, exploration parameter γ and regularization parameter λ.
1: Initialize {πi

0,h(· | s)}Hh=1,∀i ∈ [N ], s ∈ S as uniform distribution on A, {p0,h(s)}Hh=1,∀s ∈ S
as uniform distribution on N and set {Q0,h(·, ·)}Hh=1 as zero function.

2: for k = 1, 2, · · · ,K do
3: Receive the initial state sk,1.
4: for h = 1, 2, · · · , H do
5: For all h ∈ [H], s ∈ S, each base-learner Bi,∀i ∈ [N ] updates policy by

πi,′
k,h(· | s) ∝ πi

k−1,h(· | s) exp
(
ηiQk−1,h(s, ·)

)
, πi

k,h(· | s) = (1− γ)πi,′
k,h(· | s) + γπu(· | s).

6: Set πk,h(· | s) = π
i∗k−1,h

k,h (· | s) with i∗k−1,h(s) = argmaxi∈[N ]⟨Qk−1,h(s, ·), πi
k−1,h(· | s)⟩.

7: Take the action following ak,h ∼ πk,h(· | sk,h) and transit to the next state sk,h+1.
8: Obtain reward rk,h(sk,h, ak,h) and observe the reward function rk,h(·, ·).
9: end for

10: Initialize Vk,H+1(·) as a zero function.
11: for h = H,H − 1, · · · , 1 do
12: Set Qk,h(·, ·)←

[
rk,h(·, ·) +

〈
θ̂k,h, ϕVk,h+1

(·, ·)
〉
+ β̂k

∥∥Σ̂−1/2
k,h ϕVk,h+1

(·, ·)
∥∥
2

]
[0,H−h+1]

.
13: Set Vk,h(·)← Ea∼πk,h(· | ·) [Qk,h(·, ·)].
14: Set the estimated variance

[
V̄k,hVk,h+1

]
(sk,h, ak,h) as in (11), bonus Ek,h as in (21).

15: σ̄k,h ←
√
max

{
H2/d,

[
V̄k,hVk,h+1

]
(sk,h, ak,h) + Ek,h

}
.

16: Σ̂k+1,h ← Σ̂k,h + σ̄−2
k,hϕVk,h+1

(sk,h, ak,h)ϕVk,h+1
(sk,h, ak,h)

⊤.

17: b̂k+1,h ← b̂k,h + σ̄−2
k,hϕVk,h+1

(sk,h, ak,h)Vk,h+1

(
skh+1

)
.

18: Σ̃k+1,h ← Σ̃k,h + ϕV 2
k,h+1

(sk,h, ak,h)ϕV 2
k,h+1

(sk,h, ak,h)
⊤.

19: b̃k+1,h ← b̃k,h + ϕV 2
k,h+1

(sk,h, ak,h)V
2
k,h+1

(
skh+1

)
.

20: θ̂k+1,h ← Σ̂−1
k+1,hb̂k+1,h, θ̃k+1,h ← Σ̃−1

k+1,hb̃k+1,h.
21: end for
22: end for

B Recovering Tabular Case

In this part, we show the result of our algorithm when specialized to the tabular case. Note in the
linear case, we adopt the weighted ridge regression to estimate the parameter θ∗h, that is, we construct
the estimator θ̂k,h by solving the following weighted ridge regression problem:

θ̂k,h = argmin
θ∈Rd

∑k−1

j=1

[〈
ϕVj,h+1

(sj,h, aj,h) , θ
〉
− Vj,h+1 (sj,h+1)

]2
/σ̄2

j,h + λ∥θ∥22.

In the tabular case, we simply set σ̄j,h = 1, and compute ϕVk,h+1
by taking the sample mean of

{Vk,h+1(sj,h+1)}j∈[k−1]. That is, we set it as

ϕVj,h+1
(sj,h, aj,h) =

∑
s′∈S

Nk(sj,h, aj,h, s
′)

Nk(sj,h, aj,h) + λ
· Vj,h+1(s

′),
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of each (s, a), where Nk counts the number of times each tuple (s, a, s) or (s, a) has been visited up
to episode k. Then, we construct the estimator θ̂k,h by solving the linear regression problem:

θ̂k,h = argmin
θ∈Rd

∑k−1

j=1

[〈
ϕVj,h+1

(sj,h, aj,h) , θ
〉
− Vj,h+1 (sj,h+1)

]2
+ λ∥θ∥22.

Then, the confidence set Ĉk,h is constructed as follows:

Ĉk,h =
{
θ | ∥Σ̂1/2

k,h(θ − θ̂k,h)∥2 ≤ β
}
.

The remaining part of the algorithm is the same as the linear case. The following theorem shows the
result of our algorithm in the tabular case.

Theorem 6. Set γ = 1/(KH), step size pool H = {ηi = (2i/H)
√

(logA)/K | i ∈ [N ]} with
N = ⌊ 12 log(

K
logA )⌋ and β = H

√
S log(dKH/δ), with probability at least 1− δ, it holds

D-Regret(K) ≤ Õ
(√

H4S2AK +
√
H4(K + PT )(1 + PT )

)
,

where PT =
∑K

k=1

∑H
h=1∥πc

k,h − πc
k−1,h∥1,∞ is the path length of the compared policy sequence.

Proof. By Lemma 5, we decompose the dynamic regret as follows.

D-Regret(K) ≤
K∑

k=1

H∑
h=1

Eπc
k

[
⟨Qk,h(sh, ·), πc

k,h(· | sh)− πk,h(· | sh)⟩
]
+MK,H

+

K∑
k=1

H∑
h=1

(
Eπc

k
[ιk,h(sh, ah)]− ιk,h(sk,h, ak,h)

)
,

Note that the policy evaluation phase is the same as the one in Fei et al. [35, Algorithm 3], by the
estimator bound in Fei et al. [35, Lemmas 7 and 9], we have

K∑
k=1

H∑
h=1

Eπc
k
[ιk,h(sh, ah)] ≤ 0,

K∑
k=1

H∑
h=1

−ιk,h(sk,h, ak,h) ≤ O
(√

H4S2AT log2(SAKH/δ)
)
.

(15)

The remaining proof is the same as the proof of Theorem 3 in Appendix C.7. ■

C Proofs

In this section, we provide the proof of the results in this paper.

C.1 Proof of Lemma 1

Proof. By the definition of dynamic regret, we have

D-Regret(K)

=

K∑
k=1

V
πc
k

k,1(sk,1)−
K∑

k=1

V πk

k,1(sk,1)

=

K∑
k=1

H∑
h=1

Eπc
k

[
⟨Qπk

k,h(sh, ·), π
c
k,h(· | sh)− πk,h(· | sh)⟩

∣∣∣ s1 = sk,1

]
≤ ηKH3

2
+

K∑
k=1

H∑
h=1

Eπc
k

[
DKL

(
πc
k,h(· | sh)∥πk,h(· | sh)

)
−DKL

(
πc
k,h(· | sh)∥πk+1,h(· | sh)

) ]
,

where the equality holds by the performance difference lemma in Lemma 13 and the inequality holds
by the one-step descent guarantee in Lemma 14. This finishes the proof. ■
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C.2 Proof of Lemma 2

Proof. Note the update rule is

π′
k,h(· | s) ∝ πk−1,h(· | s) exp(η ·Q

πk−1

k−1,h(s, ·)), πk,h(· | s) = (1− γ)π′
k,h(· | s) + γπu(· | s)

By Lemma 14, for any sh ∈ S, h ∈ [H], k ∈ [K], we have

⟨Qπk

k,h(sh, ·), π
c
k,h(· | sh)− πk,h(· | sh)⟩

≤ ηH2

2
+

1

η

(
DKL

(
πc
k,h(· | sh)∥πk,h(· | sh)

)
−DKL

(
πc
k,h(· | sh)∥π′

k+1,h(· | sh)
))

=
ηH2

2
+

1

η

∑
a∈A

(
πc
k,h(a | sh) log

1

πk,h(a | sh)
− πc

k,h(a | sh) log
1

π′
k+1,h(a | sh)

)
, (16)

where the equality holds by the definition of KL divergence. We decompose the last term as follows:∑
a∈A

(
πc
k,h(a | sh) log

1

πk,h(a | sh)
− πc

k,h(a | sh) log
1

π′
k+1,h(a | sh)

)
=
∑
a∈A

(
πc
k,h(a | sh) log

1

πk,h(a | sh)
− πc

k−1,h(a | sh) log
1

π′
k,h(a | sh)

)
(17)

+
∑
a∈A

(
πc
k−1,h(a | sh) log

1

π′
k,h(a | sh)

− πc
k,h(a | sh) log

1

π′
k+1,h(a | sh)

)
.

For the first term, we have∑
a∈A

(
πc
k,h(a | sh) log

1

πk,h(a | sh)
− πc

k−1,h(a | sh) log
1

π′
k,h(a | sh)

)

=
∑
a∈A

((
πc
k,h(a | sh)− πc

k−1,h(a | sh)
)
log

1

πk,h(a | sh)
+ πc

k−1,h(a | sh) log
π′
k,h(a | sh)

πk,h(a | sh)

)
.

By the update rule, we have 1 ≤ 1/πk,h(a | sh) ≤ A/γ and π′
k,h(a | sh)/πk,h(a | sh) ≤ 1/(1− γ).

Therefore, we have∑
a∈A

((
πc
k,h(a | sh)− πc

k−1,h(a | sh)
)
log

1

πk,h(a | sh)
+ πc

k−1,h(a | sh) log
π′
k,h(a | sh)

πk,h(a | sh)

)
≤ ∥πc

k,h(· | sh)− πc
k−1,h(· | sh)∥1 · log

A

γ
+ log

1

1− γ
. (18)

Then, the dynamic regret is bounded as follows:

D-Regret(K)

=

K∑
k=1

V
πc
k

k,1(sk,1)−
K∑

k=1

V πk

k,1(sk,1)

=

K∑
k=1

H∑
h=1

Eπc
k

[
⟨Qπk

k,h(sh, ·), π
c
k,h(· | sh)− πk,h(· | sh)⟩

∣∣∣ s1 = sk,1

]
≤ ηKH3

2
+

1

η

K∑
k=1

H∑
h=1

∑
a∈A

Eπc
k

[
πc
k,h(a | sh) log

1

πk,h(a | sh)
− πc

k,h(a | sh) log
1

π′
k+1,h(a | sh)

]

≤ ηKH3

2
+

1

η

K∑
k=1

H∑
h=1

Eπc
k

[∥∥πc
k,h(· | sh)− πc

k−1,h(· | sh)
∥∥
1
· log A

γ
+ log

1

1− γ

]

+

K∑
k=1

H∑
h=1

Eπc
k

[∑
a∈A

(
πc
k−1,h(a | sh) log

1

π′
k,h(a | sh)

− πc
k,h(a | sh) log

1

π′
k+1,h(a | sh)

)]
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≤ ηKH3

2
+

1

η

(
PT log

A

γ
+KH log

1

1− γ

)
+

K∑
k=1

H∑
h=1

Eπc
k

[∑
a∈A

(
πc
k−1,h(a | sh) log

1

π′
k,h(a | sh)

− πc
k,h(a | sh) log

1

π′
k+1,h(a | sh)

)]
,

where the first inequality holds by (16), the second inequality is due to (17) and (18), and the last
inequality holds by the definition of PT =

∑K
k=1

∑H
h=1∥πc

k,h − πc
k−1,h∥1,∞. It ends the proof. ■

C.3 Proof of Lemma 3

Proof. Lemma 3 is a simplified version of Chen et al. [54, Lemma 17] and we prove it in our notations
below for self-containedness. It is easy to verify that the update rule p′(a) ∝ p(a) · exp(η ·Q(s, a))
is equivalent to the update

p′ = argmax
p′∈∆(A)

η⟨p′, Q(s, ·)⟩+DKL(p
′∥p).

Thus, by the KKT condition, we have for some λ and µ(a) ≥ 0, such that

Q(s, a)− 1

η
log

p′(a)

p(a)
+ λ+ µ(a) = 0, and µ(a)p′(a) = 0,∀a ∈ A.

The above equations give the closed-form solution p′(a) = p(a) exp(η(Q(s, a) + λ+ µ(a))). First,
we prove that for all a ∈ A we have µ(a) = 0. Indeed, when µ(a) ̸= 0, by µ(a)p′(a) = 0, we have
p′(a) = p(a) exp(η(Q(s, a) + λ+ µ(a))) = 0, which contradicts with p(a) > 0.

Then, we now separately discuss two cases.

Case 1: mina∈A Q(s, a) ̸= maxa∈A Q(s, a). In this case, we first show that mina∈A−Q(s, a) ≤
λ ≤ maxa∈A−Q(s, a). We prove it by contradiction: If λ ≥ maxa∈A−Q(s, a), then we have∑

a∈A
p′(a) =

∑
a∈A

p(a) exp(η(Q(s, a) + λ+ µ(a))) ≥
∑
a∈A

p(a) ≥ 1.

contradicting with p′ ∈ ∆(A). A similar argument holds for the case λ ≤ mina∈A(−Q(s, i)).
Thus, we have λ ∈ [mina∈A(−Q(s, a)),maxa∈A(−Q(s, a))]. Then, we have |Q(s, a) + λ +
µ(a)| ≤ maxa∈A Q(s, a)−mina∈A Q(s, a) ≤ H . By the condition on ηH ≤ 1, we have p′(a) ∈
[exp(−1)p(a), exp(1)p(a)] ∈ [1/(4p(a)), 4p(a)].

Case 2: mina∈A Q(s, a) = maxa∈A Q(s, a). In this case, it is clear that λ = −Q(s, a) must hold
for all a ∈ A to make p and p′ both discussions. Thus p′(a) = p(a) for all a ∈ A.

Combining the above two cases finishes the proof. ■

C.4 Proof of Lemma 4

To prove Lemma 4, we first introduce the following two lemmas. Denote by Pπh

h (s′ | s) =∑
a∈A Ph(s

′ | s, a)πh(a | s) the transition kernel of the MDP in step h under policy πh and re-
call that ∥π− π′∥1,∞ = maxs∈S∥π(· | s)− π′(· | s)∥. The first lemma shows the difference between
the state distribution of two policies can be bounded by the path length of the policies.
Lemma 6 (Zhao et al. [34, Lemma 7]). For any state distribution d, policy pair π and π′, and
transition kernel P, we have∥∥dPπh

h (·, s)− dPπ′
h

h (·, s)
∥∥
1
≤ ∥πh − π′

h∥1,∞,∀h ∈ [H].

Proof. Consider the case when d is a delta function on s. The difference in the next distributions is∥∥Pπh

h (·, s)− Pπh

h (·, s)
∥∥
1
=
∑
s′∈S

∑
a∈A
|P(s′ | s, a)(πh(a | s)− πh(a | s))|

≤
∑
s′∈S

∑
a∈A

P(s′ | s, a)∥πh(a | s)− π′
h(a | s)∥1
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≤
∑
a∈A
|π(a | s)− π′(a | s)| ≤ ∥πh − π′

h∥1,∞.

Linearity of expectation leads to the result for arbitrary distributions. This finishes the proof. ■

The second lemma shows the difference between the state distribution of the policy starting from the
different initial distributions can be bounded by the difference between the initial distributions.
Lemma 7 (Zhao et al. [34, Lemma 8]). For any two initial distributions d and d′, transition kernel P
and policy π, we have ∥∥dPπh

h − d′Pπh

h

∥∥
1
≤ ∥d− d′∥1,∀h ∈ [H].

Proof. Note the relationship that d(s′) =
∑

s∈S d(s)Pπh

s,s′ , we have∥∥dPπh

h − d′Pπh

h

∥∥
1
=
∑
s′

∣∣∣∑
s

d(s)Pπh

h (s′ | s)− d′(s)Pπh

h (s′ | s)
∣∣∣

≤
∑
s′

∑
s

∣∣d(s)Pπh

h (s′ | s)− d′(s)Pπh

h (s′ | s)
∣∣

=
∑
s′

∑
s

|d(s)− d′(s)|Pπh

h (s′ | s)

=
∑
s

|d(s)− d′(s)|
∑
s′

Pπh

h (s′ | s)

=
∑
s

|d(s)− d′(s)| = ∥d− d′∥1 .

This finishes the proof. ■

Now, we are ready to prove Lemma 4.

Proof of Lemma 4. For any policy π and π′ and any initial state s1, denote by dh the distribution of
the MDP in step h under policy πh and d′h the distribution of the MDP in step h under policy π′

h, that
is dh(sh) = Eπ[1(sh) | s1] and d′h(sh) = Eπ′ [1(sh) | s1]. We have∥∥dh − d′h

∥∥
1
= ∥dh−1Pπh

h − d′h−1P
π′
h

h ∥1

≤
∥∥dh−1Pπh

h − d′h−1P
πh

h

∥∥
1
+
∥∥d′h−1P

πh

h − d′h−1P
π′
h

h

∥∥
1

≤
∥∥dh−1 − d′h−1

∥∥
1
+
∥∥πh − π′

h

∥∥
1,∞

≤
∑
i∈[h]

∥∥πi − π′
i

∥∥
1,∞,

where the second inequality holds by Lemmas 6 and 7 and the last inequality holds by a recursive
calculation. Thus, we have

K∑
k=1

(
Eπc

k
− Eπc

k−1

)[ H∑
h=1

1(sh) | s1 = sk,1

]
≤

K∑
k=1

H∑
h=1

h∑
i=1

∥πc
k,i − πc

k−1,i∥1,∞ = HPT .

This finishes the proof. ■

C.5 Proof of Theorem 1

Proof. By Lemma 2, we have

D-Regret(K) ≤ ηKH3

2
+

1

η

(
PT log

4A

γ
+KH log

1

1− γ

)
(19)

+
1

η

K∑
k=1

H∑
h=1

Eπc
k

[∑
a∈A

(
πc
k−1,h(a | sh) log

1

π′
k,h(a | sh)

− πc
k,h(a | sh) log

1

π′
k+1,h(a | sh)

)]
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Then, the last term can be bounded as follows:
K∑

k=1

H∑
h=1

Eπc
k

[∑
a∈A

(
πc
k−1,h(a | sh) log

1

π′
k,h(a | sh)

− πc
k,h(a | sh) log

1

π′
k+1,h(a | sh)

)]

≤
K∑

k=1

H∑
h=1

(
Eπc

k−1

[∑
a∈A

πc
k−1,h(a | sh) log

1

π′
k,h(a | sh)

]
− Eπc

k

[∑
a∈A

πc
k,h(a | sh) log

1

π′
k+1,h(a | sh)

])

+

K∑
k=1

H∑
h=1

Eπc
k−πc

k−1

[∑
a∈A

πc
k−1,h(a | sh) log

1

π′
k,h(a | sh)

]

≤ Eπc
1

[∑
a∈A

πc
1,h(a | sh) log

1

π′
1,h(a | sh)

]
+

K∑
k=1

H∑
h=1

Eπc
k−πc

k−1

[∑
a∈A

πc
k−1,h(a | sh) log

1

π′
k,h(a | sh)

]

≤ H logA+ log
4A

γ

K∑
k=1

H∑
h=1

Eπc
k−πc

k−1
[1(sh) | s1 = sk,1]

≤ H logA+ log
4A

γ
HPT , (20)

where the second inequality holds by the telescoping sum and the third inequality holds because
π′
1,h = π1,h is the uniform distribution and π′

k,h(a | s) ≥
γ
4A by the multiplicative stability lemma in

Lemma 3 and the last inequality holds by Lemma 4.

Combining (19) and (20), we have

D-Regret(K) ≤ ηKH3

2
+

1

η

(
H logA+ (1 +H) log

4A

γ
PT +KH log

1

1− γ

)
,

which finishes the proof. ■

C.6 Proof of Theorem 2

To prove Theorem 2, we first introduce the following key lemma omitted in the main paper due to the
space limit, which shows the guarantee of the confidence set.

Lemma 8 (Zhou et al. [31, Lemma 5]). Let Ĉk,h be defined in (10) and set β̂k as

β̂k = 8
√

d log(1 + k/λ) log (4k2H/δ) + 4
√
d log

(
4k2H/δ

)
+
√
λB.

Then, with probability at least 1− 3δ, we have that simultaneously for all h ∈ [H] and k ∈ [K],

θ∗h ∈
{
θ
∣∣∥∥Σ̂1/2

k,h(θ − θ̂k,h)
∥∥
2
≤ β̂k

}
,
∣∣∣ [V̄k,hVk,h+1

]
(sk,h, ak,h)− [VhVk,h+1] (sk,h, ak,h)

∣∣∣ ≤ Ek,h,

where Ek,h is defined as follows:

min
{
H2, 2Hβ̌k

∥∥∥Σ̂−1/2
k,h ϕVk,h+1

(sk,h, ak,h)
∥∥∥
2

}
+min

{
H2, β̃k

∥∥∥Σ̃−1/2
k,h ϕV 2

k,h+1
(sk,h, ak,h)

∥∥∥
2

}
with

β̌k = 8d
√
log(1 + k/λ) log (4k2H/δ) + 4

√
d log

(
4k2H/δ

)
+
√
λB,

β̃k = 8
√

dH4 log (1 + kH4/(dλ)) log (4k2H/δ) + 4H2 log
(
4k2H/δ

)
+
√
λB. (21)

We denote by E the event when the result of Lemma 8 holds, we have Pr(E) ≥ 1− 3δ.

Then we present the following lemma that shows the value function difference can be decomposed
into two parts, one is a martingale sequence and the other is the estimation error.
Lemma 9. For all k ∈ [K], h ∈ [H], it holds that

Vk,h(sk,h)− V πk

k,h(sk,h) =

H∑
h′=h

(
Mk,h′,1 +Mk,h′,2 − ιk,h′(sk,h′ , ak,h′)

)
,
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with

Mk,h,1 = Ea∼πk(· | sk,h)[Qk,h(sk,h, a)−Qπk

k,h(sk,h, a)]− (Qk,h(sk,h, ak,h)−Qπk

k,h(sk,h, ak,h)),

Mk,h,2 = [Ph(Vk,h+1 − V πk

k,h+1)](sk,h, ak,h)− (Vk,h+1(sk,h+1)− V πk

k,h+1(sk,h+1)).

Proof. By the definition Vk,h(sk,h) = Ea∼πk(· | sk,h)[Qk,h(sk,h, a)], we have

Vk,h(sk,h)− V πk

k,h(sk,h)

= Ea∼πk(· | sk,h)

[
Qk,h(sk,h, a)−Qπk

k,h(sk,h, a)
]

= Ea∼πk(· | sk,h)

[
Qk,h(sk,h, a)−Qπk

k,h(sk,h, a)
]
−
(
Qk,h(sk,h, ak,h)−Qπk

k,h(sk,h, ak,h)
)

+
(
Qk,h(sk,h, ak,h)−Qπk

k,h(sk,h, ak,h)
)

= Ea∼πk(· | sk,h)

[
Qk,h(sk,h, a)−Qπk

k,h(sk,h, a)
]
−
(
Qk,h(sk,h, ak,h)−Qπk

k,h(sk,h, ak,h)
)

+ [Ph(Vk,h+1 − V πk

k,h+1)](sk,h, ak,h)− ιk,h(sk,h, ak,h)

= Ea∼πk(· | sk,h)

[
Qk,h(sk,h, a)−Qπk

k,h(sk,h, a)
]
−
(
Qk,h(sk,h, ak,h)−Qπk

k,h(sk,h, ak,h)
)︸ ︷︷ ︸

Mk,h,1

+ [Ph(Vk,h+1 − V πk

k,h+1)](sk,h, ak,h)−
(
Vk,h+1(sk,h+1)− V πk

k,h+1(sk,h+1)
)︸ ︷︷ ︸

Mk,h,2

+
(
Vk,h+1(sk,h+1)− V πk

k,h+1(sk,h+1)
)
− ιk,h(sk,h, ak,h)

where the third equality holds by the fact Qk,h = rk,h+PhVk,h+1−ιk,h and Qπk

k,h = rk,h+PhV
πk

k,h+1.
Summing up the above equation from h to H recursively finishes the proof. ■

Note Mk,h,1 is the noise from the stochastic policy and Mk,h,2 is the noise from the state transition,
Let Mk,h = Mk,h,1 +Mk,h,2,∀k ∈ [K], h ∈ [H], we define two following high probability events:

E1 =

{
∀h ∈ [H],

K∑
k=1

H∑
h′=h

Mk,h′ ≤ 4

√
H3K log

H

δ

}
, E2 =

{ K∑
k=1

H∑
h=1

Mk,h,2 ≤
√
8H3K log

1

δ

}
.

According to the Azuma-Hoeffding inequality, we have Pr(E1) ≥ 1− δ and Pr(E2) ≥ 1− δ.

Then, we show the model prediction error ιk,h can be upper and lower bounded both.
Lemma 10. Define prediction error ιk,h = rk,h + PhVk,h+1 −Qk,h, on the event E , it holds that

−2β̂k

∥∥Σ̂−1/2
k,h ϕVk,h+1

(·, ·)
∥∥
2
≤ ιk,h(·, ·) ≤ 0,∀k ∈ [K], h ∈ [H].

Proof. First, we prove the left-hand side inequality. By the definition of ιk,h, we have

− ιk,h(s, a)

= Qk,h(s, a)− (rk,h + PhVk,h+1)(s, a)

≤ rk,h(s, a) +
〈
θ̂k,h, ϕVk,h+1

(s, a)
〉
+ β̂k

∥∥Σ̂−1/2
k,h ϕVk,h+1

(s, a)
∥∥
2
− (rk,h + PhVk,h+1)(s, a)

=
〈
θ̂k,h − θ∗h, ϕVk,h+1

(s, a)
〉
+ β̂k

∥∥Σ̂−1/2
k,h ϕVk,h+1

(s, a)
∥∥
2

≤ 2β̂k

∥∥Σ̂−1/2
k,h ϕVk,h+1

(s, a)
∥∥
2
,

where the first inequality holds by the configuration of Qk,h in Algorithm 1, the second equality
holds by the definition of linear mixture MDP such that [PhVk,h+1](s, a) = ⟨ϕVk,h+1

(s, a), θ∗h⟩ and
the last inequality holds by the configuration of confidence set in Lemma 8.

Next, we prove the right-hand side inequality. By the definition of ιk,h, we have

ιk,h(s, a)

= (rk,h + PhVk,h+1)(s, a)−Qk,h(s, a)

≤ (rk,h + PhVk,h+1)(s, a)−
[
rk,h(s, a) +

〈
θ̂k,h, ϕVk,h+1

(s, a)
〉
+ β̂k

∥∥Σ̂−1/2
k,h ϕVk,h+1

(s, a)
∥∥
2

]
[0,H−h+1]
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= max
{〈

θ̂k,h − θ∗h, ϕVk,h+1
(s, a)

〉
− β̂k

∥∥Σ̂−1/2
k,h ϕVk,h+1

(s, a)
∥∥
2
, (rk,h + PhVk,h+1)(s, a)− (H − h+ 1)

}
≤ 0,

where the first inequality holds by the configuration of Qk,h in Algorithm 1, the second equality
holds by the definition of linear mixture MDP such that [PhVk,h+1](s, a) = ⟨ϕVk,h+1

(s, a), θ∗h⟩ and
the last inequality holds by the configuration of confidence set in Lemma 8. ■

Next, we show the prediction error can be bounded by the cumulative estimate variance.

Lemma 11. Define prediction error ιk,h = rk,h + PhVk,h+1 −Qk,h, on the event E , it holds that

−
K∑

k=1

H∑
h=1

ιk,h(sk,h, ak,h) ≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ).

Proof. By Lemma 10 and the definition of ιk,h = rk,h + PhVk,h+1 −Qk,h, we have

−
K∑

k=1

H∑
h=1

ιk,h(sk,h, ak,h)

≤
K∑

k=1

H∑
h=1

2min{β̂k

∥∥Σ̂−1/2
k,h ϕVk,h+1

(sk,h, ak,h)
∥∥
2
, H}

≤
K∑

k=1

H∑
h=1

2β̂kσ̄k,h min
{∥∥Σ̂−1/2

k,h ϕVk,h+1
(sk,h, ak,h) /σ̄k,h

∥∥
2
, 1
}

≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√√√√ K∑
k=1

H∑
h=1

min
{∥∥∥Σ̂−1/2

k,h ϕVk,h+1
(sk,h, ak,h) /σ̄k,h

∥∥∥
2
, 1
}

≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ),

where the second inequality holds by 2β̂kσ̄k,h ≥
√
dH/
√
d = H , the third inequality is by Cauchy-

Schwarz inequality and the last inequality holds by the elliptical potential lemma in Lemma 16. ■

Define the event

E3 =

{ K∑
k=1

H∑
h=1

[VhV
πk

h+1](s
k
h, a

k
h) ≤ 3(HK +H3 log(1/δ))

}
,

by the law of total variance in Lemma 15, we have Pr(E3) ≥ 1 − δ. Then, we have the following
lemma which bounds the estimated variance of the value function.

Lemma 12 (He et al. [33, Lemma 6.5]). On the events E ∩ E1 ∩ E2 ∩ E3, it holds that

K∑
k=1

H∑
h=1

σ̄2
k,h ≤ 2H3K/d+ 179H2K + 165d3H4 log2

(
4K2H/δ

)
log2

(
1 +KH4/λ

)
+ 2062d2H5 log2

(
4K2H/δ

)
log2(1 +K/λ).

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. On the events E ∩ E1 ∩ E2 ∩ E3, for any h ∈ [H], it holds that

K∑
k=1

Vk,h(sk,h)−
K∑

k=1

V πk

k,h(sk,h)
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≤
K∑

k=1

H∑
h=1

(Mk,h,1 +Mk,h,2 − ιk,h(sk,h, ak,h))

≤ 4
√
H3K log(H/δ) + 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ)

≤ Õ
(√

dH4K + d2H3K
)
,

where the first equality holds by Lemma 9, the second inequality holds by Lemma 11, and the last
inequality holds by Lemma 12. This finishes the proof. ■

C.7 Proof of Theorem 3

Proof. By Lemma 5, we can rewrite the dynamic regret as follows.

D-Regret(K) =

K∑
k=1

V
πc
k

k,1(sk,1)−
K∑

k=1

V πk

k,1(sk,1)

=

K∑
k=1

H∑
h=1

Eπc
k
[⟨Qk,h(sh, ·), πc

k,h(· | sh)− πk,h(· | sh)⟩]

+

K∑
k=1

H∑
h=1

(Eπc
k
[ιk,h(sh, ah)]− ιk,h(sk,h, ak,h)) +MK,H . (22)

By Lemma 10, we have ιk,h(s, a) ≤ 0 for any k ∈ [K], h ∈ [H], s ∈ S, a ∈ A. Thus, we have

K∑
k=1

H∑
h=1

Eπc
k
[ιk,h(sh, ah)] ≤ 0. (23)

By Theorem 2, we have

K∑
k=1

H∑
h=1

(−ιk,h(sk,h, ak,h)) +MK,H ≤ Õ
(√

dH4K + d2H3K
)
. (24)

It remains to bound the first term. Note our algorithm is indeed updated based on the estimated
action-value function Qk,h. By Theorem 1, set γ = 1/KH and note that log(1/(1−γ)) ≤ γ/(1−γ)
for all γ > 0. Then, we have

K∑
k=1

H∑
h=1

Eπc
k
[⟨Qk,h(sh, ·), πc

k,h(· | sh)− πk,h(· | sh)⟩]

≤ ηKH3

2
+

1

η

(
H logA+ (1 +H) log

A

γ
PT + 2

)
It is clear that the optimal step size is η∗ =

√
(PT + logA)/(KH2). Note our step size is set as

η = min{
√
(PT + logA)/K, 1}/H to ensure η ≤ 1/H . We consider the following two cases:

Case 1: η∗ ≤ 1/H . In this case, our step size is set as η =
√
(PT + logA)/(KH2). We have

ηKH3

2
+

1

η

(
H logA+ (1 +H) log

A

γ
PT + 2

)
≤ Õ(

√
KH4(1 + PT )).

Case 2: η∗ > 1/H . In this case, our step size is set as η = 1/H . Therefore, we have

ηKH3

2
+

1

η

(
H logA+ (1 +H) log

A

γ
PT + 2

)
≤ Õ(H2PT ),
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where the equality holds by PT ≥ K in this case. Combining these two cases, we have

K∑
k=1

H∑
h=1

Eπc
k
[⟨Qk,h(sh, ·), πc

k,h(· | sh)− πk,h(· | sh)⟩] ≤ Õ(
√

H4(K + PT )(1 + PT )). (25)

Combining (22), (23), (24) and (25), we obtain

D-Regret(K) ≤ Õ
(√

dH4K + d2H3K +
√

H4(K + PT )(1 + PT )
)
.

This finishes the proof. ■

C.8 Proof of Theorem 4

Proof. At a high level, we prove this lower bound by noting that optimizing the dynamic regret of
linear mixture MDPs is harder than (i) optimizing the static regret of linear mixture MDPs with the
unknown transition kernel, (ii) optimizing the dynamic regret of linear mixture MDPs with the known
transition kernel, both. Thus, we can consider the lower bound of these two problems separately
and combine them to obtain the lower bound of the dynamic regret of linear mixture MDPs with the
unknown transition kernel. We present the details below.

First, we consider the lower bound of optimizing the static regret of adversarial linear mixture MDPs
with the unknown transition kernel. From lower bound in He et al. [33, Theorem 5.3], we have the
following lower bound in this case since the dynamic regret is no smaller than the static regret.

D-Regret(K) ≥ Ω(
√
d2H3K). (26)

Then, we consider the lower bound of optimizing the dynamic regret of adversarial linear mix-
ture MDPs with the known transition kernel. We note that Zimin and Neu [12] show the lower
bound of the static regret for adversarial episodic loop-free SSP with known transition kernel is
Ω(H

√
K log (SA)), we utilize this lower bound to establish our lower bound as the episodic loop-

free SSP is a special case of linear mixture MDPs with d = S2A. We consider two cases:

Case 1: Γ ≤ 2H . In this case, we can directly utilize the established lower bound of static regret as
a natural lower bound of dynamic regret,

D-Regret(K) ≥ Ω(H
√
K log (SA)). (27)

Case 2: Γ > 2H . Without loss of generality, we assume L = ⌈Γ/2H⌉ divides K and split the
whole episodes into L pieces equally. Next, we construct a special policy sequence such that the
policy sequence is fixed within each piece and only changes in the split point. Since the sequence
changes at most L − 1 ≤ Γ/2H times and the path length of the policy sequence at each change
point is at most 2H , the total path length in K episodes does not exceed Γ. As a result, we have

D-Regret(K) ≥ LH
√
K/L log (SA) = H

√
KL log (SA) ≥ Ω(

√
KHΓ log (SA)). (28)

Combining (27) and (28), we have the following lower bound for the dynamic regret of adversarial
linear mixture MDPs with the known transition kernel,

D-Regret(K) ≥ Ω
(
max{H

√
K log (SA),

√
KHΓ log (SA)}

)
≥ Ω(

√
KH(H + Γ) log(SA)),

(29)

where the last inequality holds by max{a, b} ≥ (a+ b)/2.

Combining two lower bounds (26) and (29), we have the lower bound of the dynamic regret of
adversarial linear mixture MDPs with the unknown transition kernel,

D-Regret(K) ≥ Ω
(
max{

√
d2H3K,

√
KH(H + Γ) log(SA)}

)
≥ Ω

(√
d2H3K +

√
KH(H + Γ) log(SA)

)
.

This finishes the proof. ■
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C.9 Proof of Theorem 5

Proof. By Lemma 5, we can rewrite the dynamic regret as follows.

D-Regret(K) =

K∑
k=1

V
πc
k

k,1(sk,1)−
K∑

k=1

V πk

k,1(sk,1)

=

K∑
k=1

H∑
h=1

Eπc
k
[⟨Qk,h(sh, ·), πc

k,h(· | sh)− πk,h(· | sh)⟩]

+

K∑
k=1

H∑
h=1

(Eπc
k
[ιk,h(sh, ah)]− ιk,h(sk,h, ak,h)) +MK,H .

By Lemma 10, we have ιk,h(s, a) ≤ 0 for any k ∈ [K], h ∈ [H], s ∈ S, a ∈ A. Thus, we have
K∑

k=1

H∑
h=1

Eπc
k
[ιk,h(sh, ah)] ≤ 0.

By Theorem 2, we have
K∑

k=1

H∑
h=1

(−ιk,h(sk,h, ak,h)) +MK,H ≤ Õ
(√

dH4K + d2H3K
)
.

It remains to bound the first term. We decompose this term as follows.
K∑

k=1

H∑
h=1

Eπc
k

[
⟨Qπk

k,h(sh, ·), π
c
k,h(· | sh)− πk,h(· | sh)⟩

]
=

K∑
k=1

H∑
h=1

Eπc
k

[
⟨Qπk

k,h(sh, ·), π
c
k,h(· | sh)− πi

k,h(· | sh)⟩
]

︸ ︷︷ ︸
base-regret

+

K∑
k=1

H∑
h=1

Eπc
k

[
⟨Qπk

k,h(sh, ·), π
i
k,h(· | sh)− πk,h(· | sh)⟩

]
︸ ︷︷ ︸

meta-regret

, (30)

where the decomposition holds for any base-learner i ∈ N . Next, we bound the two terms separately.

Upper bound of base regret. From Theorem 1, we have

base-regret ≤ ηiKH3

2
+

1

ηi

(
H logA+ (1 +H) log

A

γ
PT +KH log

1

1− γ

)
Set γ = 1/KH and note that log(1/(1− γ)) ≤ γ/(1− γ) for all γ > 0. Then, we have

base-regret ≤ ηiKH3

2
+

1

ηi
(H logA+ (1 +H)PT log(KHA) + 2)

≤ ηiKH3

2
+

2H

ηi
(logA+ PT log(KHA)) .

It is clear that the optimal learning rate η∗ =
√

4(logA+ PT log(KHA))/(KH2). By the definition
PT =

∑K
k=1

∑H
h=1∥πc

k,h − πc
k−1,h∥1,∞, it holds that 0 ≤ PT ≤ 2KH . Therefore, the range of the

optimal learning rate is

ηmin =

√
4 logA

KH2
, and ηmax =

√
4 logA+ 8KH log(KHA)

KH2
.

From the construction of the step size pool H = {ηi = (2i/H)
√
(logA)/K | i ∈ [N ]} with

N = ⌊ 12 log(
K

logA )⌋, we know that the step size therein is monotonically increasing, in particular

η1 =

√
4 logA

KH2
, and ηN =

1

H
.

In the following, we consider two cases:

25



Case 1: η∗ ∈ [η1, ηN ]. In this case, we ensure there exists i∗ ∈ N such that ηi∗ ≤ η∗ ≤ 2ηi∗ . Note
the decomposition in (30) holds for any base-learner. Therefore, we choose the base-learner whose
step size is ηi∗ and have

base-regret ≤ ηi∗KH3

2
+

2H

ηi∗
(logA+ PT log(KHA))

≤ η∗KH3

2
+

4H

η∗
(logA+ PT log(KHA))

= 3
√
KH4 (logA+ PT log(KHA)),

where the second inequality holds by the condition that ηi∗ ≤ η∗ ≤ 2ηi∗ and the last equality holds
by substituting η∗ =

√
4(logA+ PT log(KHA))/(KH2).

Case 2: η∗ > ηN . In this case, we know that 4(logA + PT log(KHA)) > K. Therefore, we
choose the base-learner whose step size is ηN and have

base-regret ≤ ηNKH3

2
+

2H

ηN
(logA+ PT log(KHA))

=
KH2

2
+ 2H2 (logA+ PT log(KHA))

≤ 4H2 (logA+ PT log(KHA)) ,

where the last inequality holds by the condition that 4(logA+ PT log(KHA)) > K.

Summing over the two upper bounds yields

base-regret ≤ 3
√
KH4 (logA+ PT log(KHA)) + 4H2 (logA+ PT log(KHA))

≤ 4
√
H4(K + logA+ PT log(KHA))(logA+ PT log(KHA))

= Õ(
√
H4(K + PT )(1 + PT )), (31)

where the inequality holds by
√
a+
√
b ≤

√
2(a+ b),∀a, b ≥ 0.

Upper bound of meta regret. For meta-regret, we have

meta-regret =

K∑
k=1

H∑
h=1

Eπc
k

[
⟨Qk,h(sh, ·), πi

k,h(· | sh)− πk,h(· | sh)⟩
]

=

K∑
k=1

H∑
h=1

Eπc
k

[
⟨ei(sh)− pik,h(sh), Qk,h(sh, ·) · πi

k,h(· | sh)⟩
]

≤
K∑

k=1

H∑
h=1

Eπc
k

[
⟨ei

∗
k,h(sh)− pik,h(sh), Qk,h(sh, ·) · πi

k,h(· | sh)⟩
]

≤
K∑

k=1

H∑
h=1

Eπc
k

[
⟨ei

∗
k,h(sh)− ei

∗
k−1,h(sh), Qk,h(sh, ·) · πi

k,h(· | sh)⟩
]

≤ H

K∑
k=1

H∑
h=1

Eπc
k

[
∥ei

∗
k,h(sh)− ei

∗
k−1,h(sh)∥1

]
≤ 2HST , (32)

where the first inequality holds by the definition that i∗k,h = argmaxi∈[N ]⟨Qk,h(sh, ·), πi
k,h(· | sh)⟩,

the second inequality holds due to pik,h(sh) = ei
∗
k−1,h(sh), and the last equality holds by the definition

ST =
∑K

k=1

∑H
h=1 Eπc

k
1[i∗k,h(sh) ̸= i∗k−1,h(sh)].

Combining (31) and (32), by
√
a+
√
b ≤

√
2(a+ b),∀a, b ≥ 0, we have

D-Regret(K) ≤ Õ
(√

dH4K + d2H3K +
√

H4(K + PT )(1 + PT ) +H2S2
T

)
.

This finishes the proof. ■
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D Supporting Lemmas

In this section, we introduce the supporting lemmas used in the proofs.

First, we introduce the performance difference lemma which connects the difference between two
policies to the difference between their expected total rewards through the Q-function.
Lemma 13 (Cai et al. [32, Lemma 3.2]). For any policies π, π′ ∈ ∆(A | S, H), it holds that

V π′

k,1(sk,1)− V π
k,1(sk,1) = Eπ′

[
H∑

h=1

⟨Qπ
k,h(sh, ·), π′

h(· | sh)− πh(· | sh)⟩
∣∣∣ s1 = sk,1

]
.

Then, we introduce the following lemmas which show the “one-step descent” guarantee.
Lemma 14 (Cai et al. [32, Lemma 3.3]). For any distributions p∗, p ∈ ∆(A), state s ∈ S, and
function Q : S ×A → [0, H], it holds for p′ ∈ ∆(A) with p′(·) ∝ p(·) · exp(η ·Q(s, ·)) that

⟨Q(s, ·), p∗(·)− p(·)⟩ ≤ ηH2/2 + η−1 · (DKL (p
∗(·)∥p(·))−DKL (p

∗(·)∥p′(·))) .

Next, we introduce the law of total variance, which bounds the variance of the value function.
Lemma 15 (Jin et al. [55, Lemma C.5]). With probability at least 1− δ, it holds that

K∑
k=1

H∑
h=1

[
VhV

πk

h+1

] (
skh, a

k
h

)
≤ 3

(
HK +H3 log

1

δ

)
.

Finally, we introduce the elliptical potential lemma, which is a key lemma in online linear regression.
Lemma 16 (Abbasi-Yadkori et al. [51, Lemma 11]). Let {xt}∞t=1 be a sequence in Rd space,
V0 = λI and define Vt = V0 +

∑t
i=1 xix

⊤
i . If ∥xi∥2 ≤ L,∀i ∈ Z+, then for each t ∈ Z+,

t∑
i=1

min
{
1, ∥xi∥V−1

i−1

}
≤ 2d log

(
dλ+ tL2

dλ

)
.
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