
Near-Optimal Dynamic Regret for Adversarial
Linear Mixture MDPs

Long-Fei Li, Peng Zhao, Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University, China

School of Artificial Intelligence, Nanjing University, China
{lilf, zhaop, zhouzh}@lamda.nju.edu.cn

Abstract

We study episodic linear mixture MDPs with the unknown transition and adver-
sarial rewards under full-information feedback, employing dynamic regret as the
performance measure. We start with in-depth analyses of the strengths and limita-
tions of the two most popular methods: occupancy-measure-based and policy-based
methods. We observe that while the occupancy-measure-based method is effective
in addressing non-stationary environments, it encounters difficulties with the un-
known transition. In contrast, the policy-based method can deal with the unknown
transition effectively but faces challenges in handling non-stationary environments.
Building on this, we propose a novel algorithm that combines the benefits of both
methods. Specifically, it employs (i) an occupancy-measure-based global optimiza-
tion with a two-layer structure to handle non-stationary environments; and (ii) a
policy-based variance-aware value-targeted regression to tackle the unknown tran-
sition. We bridge these two parts by a novel conversion. Our algorithm enjoys an
Õ(d
√
H3K+

√
HK(H + P̄K)) dynamic regret, where d is the feature dimension,

H is the episode length, K is the number of episodes, P̄K is the non-stationarity
measure. We show it is minimax optimal up to logarithmic factors by establishing
a matching lower bound. To the best of our knowledge, this is the first work that
achieves near-optimal dynamic regret for adversarial linear mixture MDPs with
the unknown transition without prior knowledge of the non-stationarity measure.

1 Introduction

Reinforcement Learning (RL) studies the problem where a learner interacts with the environments
and aims to maximize the cumulative reward [Sutton and Barto, 2018], which has achieved significant
success in games [Silver et al., 2016], robotics [Kober et al., 2013], large language model [Ouyang
et al., 2022] and so on. The interaction is usually modeled as Markov Decision Processes (MDPs).
Research on MDPs can be broadly divided into two lines based on the reward generation mechanism.
The first line of work [Jaksch et al., 2010, Azar et al., 2013, 2017, He et al., 2021] considers the
stochastic MDPs where the reward is sampled from a fixed distribution. In many real-world scenarios,
however, the assumption of fixed reward distributions may not hold, as rewards can vary over time.
This motivates the study on adversarial MDPs [Even-Dar et al., 2009, Yu et al., 2009, Zimin and
Neu, 2013, Jin et al., 2020a], where rewards might change in an adversarial manner. To address the
challenges of large-scale MDPs, recent studies have extended these two frameworks to incorporate
function approximation, allowing RL algorithms to handle large state and action spaces. Two popular
models are linear mixture MDPs [Ayoub et al., 2020] and linear MDPs [Jin et al., 2020b].

In this work, we focus on linear mixture MDPs with adversarial rewards, unknown transition and
full-information feedback. Though significant advances have been achieved for this setting [Cai et al.,
2020, He et al., 2022], they choose static regret as the performance measure, which benchmarks the
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Table 1: Comparisons of dynamic regret guarantees with previous works studying adversarial linear
mixture MDPs with the unknown transition and full-information feedback. Here, d is the feature
mapping dimension, H is the episode length, K is the number of episodes, PK and P̄K are two kinds
of non-stationarity measure defined in (3) satisfying P̄K ≤ HPK [Zhao et al., 2022, Lemma 6].

Reference Dynamic Regret PK or P̄K

Zhong et al. [2021] Õ
(
dH7/4K3/4 +H2K2/3P

1/3
K

)
Known

Li et al. [2023] Õ
(
d
√
H3K +H2

√
(K + PK)(1 + PK)

)
Known

Li et al. [2024b] Õ
(
dHS

√
K +

√
HK(H + P̄K)

)
Unknown

Upper Bound (Theorem 1) Õ
(
d
√
H3K +

√
HK(H + P̄K)

)
Unknown

Lower Bound (Theorem 2) Ω
(
d
√
H3K +

√
HK(H + P̄K)

)
/

learner’s policies π1, . . . , πK against the best-fixed policy in hindsight, namely,

RegK = max
π∈Π

K∑
k=1

V πk,1(sk,1)−
K∑
k=1

V πk

k,1(sk,1), (1)

where V πk,1(sk,1) is the expected cumulative reward of policy π starting from initial state sk,1 at
episode k and Π is the policy set. While static regret is a natural choice for online MDPs, the best-
fixed policy may perform poorly when the rewards change adversarially. To this end, an enhanced
measure called dynamic regret is proposed in the literature [Zhao et al., 2022, Li et al., 2023], which
benchmarks the learner’s policies against a sequence of changing policies. This measure is defined as

D-RegK(πc1:K) =

K∑
k=1

V
πc
k

k,1(sk,1)−
K∑
k=1

V πk

k,1(sk,1), (2)

where πc1, . . . , π
c
K is any sequence of policies in the policy set that can be chosen with complete

foreknowledge of online reward functions. The dynamic regret in (2) is a stronger notation as it
recovers the static regret in (1) directly by setting πc1:K ∈ argmaxπ∈Π

∑K
k=1 V

π
k,1(sk,1). An ideal

dynamic regret bound should scale with a certain variation quantity of compared policies denoted by
PK(πc1, . . . , π

c
K) or P̄K(πc1, . . . , π

c
K) that can reflect the degree of environmental non-stationarity.

While the flexibility of dynamic regret makes it well-suited for adversarial settings, it also presents
significant challenges. The dynamic regret of tabular MDPs with full-information feedback has been
thoroughly studied by Zhao et al. [2022] and Li et al. [2024b], who achieved optimal dependence
on K and P̄K for the known and unknown transition settings, respectively, without requiring prior
knowledge of the non-stationarity measure. However, the dynamic regret of adversarial linear mixture
MDPs is still understudied. With the prior knowledge of the non-stationarity measure, Zhong et al.
[2021] proposed a policy optimization algorithm with the restart strategy [Zhao et al., 2020], achieving
a result with suboptimal dependence in H , K and PK . Later, Li et al. [2023] significantly improved
their results by designing an algorithm with the optimal dynamic regret in K and PK , though the
dependence on H remains suboptimal. For the more challenging scenarios where non-stationarity is
unknown, Li et al. [2023] made an initial solution by introducing a two-layer policy optimization
algorithm, albeit with an additional term in the dynamic regret involving the switching number of the
best base-learner. To address this limitation, Li et al. [2024b] developed an occupancy-measure-based
algorithm with two-layer structure that achieves optimal dynamic regret in K and P̄K . However, their
result incurs a polynomial dependence on the state space size S, which is statistically undesirable.

In this work, we propose an algorithm that achieves the near-optimal dynamic regret in d, H , K and
P̄K simultaneously for adversarial linear mixture MDPs with the unknown transition, without prior
knowledge of the non-stationarity measure. We begin with in-depth analyses of the strengths and
limitations of two most popular methods: occupancy-measure-based and policy-based methods. We
find that while the occupancy-measure-based method is effective in addressing the non-stationary
environments, it encounter difficulties with the unknown transition. In contrast, the policy-based
method can deal with the unknown transition effectively but faces challenges in handling non-
stationary environments. To this end, we propose a novel algorithm that combines the benefits of both
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methods. Specifically, our algorithm employs (i) an occupancy-measure-based global optimization
with a two-layer framework to handle the non-stationary environments; and (ii) a policy-based
variance-aware value-targeted regression to handle the unknown transition. We bridge these two parts
through a novel conversion. We show our algorithm achieves an Õ(d

√
H3K +

√
HK(H + P̄K))

dynamic regret and prove it is minimax optimal up to logarithmic factors by establishing a matching
lower bound. Table 1 presents the comparison between our result and previous works. Our result
surpasses all previous results, even those that require prior knowledge of the non-stationarity measure.

We note a similar combination was firstly employed in Ji et al. [2024], but for distinctly different
purposes. In their work, the occupancy-measure-based component is used to provide a horizon-free
(independent of horizon length H) static regret whereas our objective is to address non-stationary
environments. One limitation of this hybrid approach is the computational complexity, which is
dominated by the occupancy-measure-based component and thus expensive compared to policy-based
method. This issue is the inherent challenge for occupancy-measure-based method and also appears
in several studies [Zhao et al., 2023, Ji et al., 2024]. Nevertheless, our analyses suggest that the
occupancy-measure-based method offers unique advantages in handling non-stationary environments.
Investigating whether similar results can be attained by other computationally efficient methods is an
important future work. We believe our work represents a significant step forward, as it is reasonable
to prioritize achieving statistical optimality before focusing on computational efficiency.

Organization. We review the related work in Section 2 and formulates the setup in Section 3. We
analyze the challenges and introduce our algorithm in Section 4 and present the dynamic regret in
Section 5. Section 6 concludes the paper. Due to the page limits, we defer all proofs to the appendices.

Notations. We denote by [n] the set {1, . . . , n} and define [x][a,b] = min{max{x, a}, b}. For vector
x ∈ Rd and positive semi-definite matrix Σ ∈ Rd×d, define ∥x∥Σ =

√
x⊤Σx. For policies π and π′,

define ∥π− π′∥1,∞ = maxs∥π(·|s)− π′(·|s)∥1. The notation Õ(·) hides all polylogarithmic factors.

2 Related Work

In this section, we review related works on the dynamic regret of MDPs in non-stationary environ-
ments. The studies can be divided into two lines: non-stationary stochastic MDPs and non-stationary
adversarial MDPs. These two categories address distinct challenges and are studied separately.

Non-stationary Stochastic MDPs. Non-stationary stochastic MDPs address scenarios where tran-
sitions and rewards are stochastically generated from varying distributions. The non-stationarity
measure is typically defined as the total variation of the transitions or rewards over time. For infinite-
horizon MDPs, the seminal work of Jaksch et al. [2010] investigates the piecewise stationary setting
where both the transitions and rewards are subject to changes at specific time and remain fixed in
between. Ortner et al. [2019] further advance the field by allowing for changes at every step. Subse-
quently, Cheung et al. [2020] introduce the Bandit-over-RL algorithm, which addresses the limitations
of earlier works by eliminating the need for prior knowledge about the non-stationarity. Additional
advancements have been made in episodic non-stationary MDPs [Mao et al., 2021, Domingues et al.,
2021] and episodic non-stationary linear MDPs [Touati and Vincent, 2020, Zhou et al., 2022]. A
breakthrough is the black-box method by Wei and Luo [2021], which can transform any algorithm
with the optimal static regret under certain conditions, into another one that achieves optimal dynamic
regret without prior knowledge of the non-stationarity. However, this method is inapplicable in adver-
sarial settings. The limitation arises from its dependence on an optimistic estimator, constructed via a
Upper Confidence Bound (UCB)-based algorithm for environmental change detection, a technique
that performs well in stochastic environments but is less effective in adversarial scenarios.

Non-stationary Adversarial MDPs. Non-stationary adversarial MDPs consider settings where
the rewards are generated in an adversarial manner. The non-stationarity measure is defined as the
variation of arbitrary changing compared policies, allowing the policy to adapt to non-stationary
environments implicitly. An illustrative difference between non-stationary stochastic and adversarial
MDPs is that, in some cases, even if the rewards and transitions change over time, the optimal policy
may remain fixed. The dynamic regret of tabular MDPs with full-information feedback has been
thoroughly studied by Zhao et al. [2022] and Li et al. [2024b], who achieved optimal dependence
on K and P̄K for the known and unknown transition settings respectively, without requiring prior
knowledge of the non-stationarity measure. However, the dynamic regret of adversarial linear mixture
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MDPs is still understudied. With the prior knowledge about the non-stationarity measure, Zhong et al.
[2021] proposed a policy optimization algorithm with restart strategy [Zhao et al., 2020], achieving a
result with suboptimal dependence in H , K and PK . Later, Li et al. [2023] significantly improved
their results by designing an algorithm with optimal dynamic regret in terms of K and PK , though
the dependence on H remains suboptimal. For the more challenging scenarios where non-stationarity
is unknown, Li et al. [2023] made an initial solution by introducing a two-layer policy optimization
algorithm, albeit with an additional term in the dynamic regret involving the switching number of the
best base-learner. To address this limitation, Li et al. [2024b] developed an occupancy-measure-based
algorithm with two-layer structure [Zhang et al., 2018, Yan et al., 2023, Zhao et al., 2024] that
achieves optimal dynamic regret in K and P̄K . However, their dynamic regret incurs a polynomial
dependence on the state space size S, which is undesirable. In this work, we propose an algorithm
that achieves near-optimal dynamic regret in d, H , K and P̄K simultaneously for adversarial linear
mixture MDPs with the unknown transition, without prior knowledge of the non-stationarity measure.

3 Problem Setup

We focus on episodic MDPs with the unknown transition and adversarial reward functions in the
full-information feedback setting. We introduce the problem formulation in the following.

Inhomogeneous, Episodic Adversarial MDPs. We denote an inhomogeneous, episodic adversarial
MDP by a tupleM = {S,A, H, {Ph}h∈[H], {rk,h}k∈[K],h∈[H]}, where S is the state space with
cardinality |S| = S, A is the action space with cardinality |A| = A, H is the length of each episode,
Ph(·|·, ·) : S ×A×S → [0, 1] is the transition with Ph(s′|s, a) denoting the probability of transiting
to state s′ given the state s and action a at stage h, and rk,h : S ×A → [0, 1] is the reward function
for episode k at stage h chosen by the adversary. A policy π = {πh}Hh=1 is a collection of h
functions, where each πh : S → ∆(A) maps a state s to a distribution over action space A. For any
(s, a) ∈ S ×A, the state-action value function Qπk,h(s, a) and value function V πk,h(s) are defined as:

Qπk,h(s, a) = Eπ

[
H∑

h′=h

rk,h′(sh′ , ah′)
∣∣∣ sh = s, ah = a

]
, V πk,h(s) = Ea∼πh(·|s)[Q

π
k,h(s, a)],

where the expectation is taken over the randomness of π and P. For any function V : S → R, we
define [PhV ](s, a) = Es′∼Ph(·|s,a)[V (s′)] and [VhV ](s) = [PhV 2](s, a)− ([PhV ](s, a))2.

The interaction protocol is given as follows. At the beginning of episode k, the environment chooses
the reward functions {rk,h}h∈[H] and decides the initial state sk,1, where the reward function may
be chosen in an adversarial manner. Simultaneously, the learner decides a policy πk = {πk,h}h∈[H].
Starting from the initial state sk,1, the learner chooses an action ak,h ∼ πk,h(·|sk,h), obtains the
reward rk,h(sk,h, ak,h), and transits to the next state sk,h+1 ∼ Ph(·|sk,h, ak,h) for h ∈ [H]. After
the episode k ends, the learner observes the entire reward function {rk,h}h∈[H]. The goal of the
learner is to minimize the dynamic regret in (2). Denote by T = KH the total steps.

Linear Mixture MDPs. We focus on linear mixture MDPs, which was introduced by Ayoub et al.
[2020] and has been studied by subsequent works [Cai et al., 2020, Zhou et al., 2021, Li et al., 2024c].
Definition 1 (Linear Mixture MDPs). An MDP M = {S,A, H, {Ph}h∈[H], {rk,h}k∈[K],h∈[H]} is
called an inhomogeneous, episode B-bounded linear mixture MDP, if there exist a known feature
mapping ϕ(s′|s, a) : S ×A×S → Rd and an unknown vector θ∗h ∈ Rd with ∥θ∗h∥2 ≤ B, ∀h ∈ [H],
such that (i) Ph(s′|s, a) = ϕ(s′|s, a)⊤θ∗h, (ii) ∥ϕV (s, a)∥2 ≜ ∥

∑
s′∈S ϕ(s

′|s, a)V (s′)∥2 ≤ 1 for any
(s, a) ∈ S ×A and any bounded function V : S → [0, 1].

Occupancy Measure. We introduce the concept of occupancy measure [Altman, 1998, Zimin and
Neu, 2013]. Given a policy π and a transition P, the occupancy measure q is defined as the probability
of visiting state-action-state triple (s, a, s′) under transition P and policy π, that is,

qP,πh (s, a, s′) = Pr[sh = s, ah = a, sh+1 = s′ | P, π].

A valid occupancy measure q = {qh}Hh=1 satisfies the following properties. First, each stage is visited
exactly once and thus ∀h ∈ [H],

∑
s∈S

∑
a∈A

∑
s′∈S qh(s, a, s

′) = 1. Second, the probability
of entering a state when coming from the previous stage equals to the probability of leaving from
that state to the next stage, i.e., ∀s ∈ S,

∑
a∈A

∑
s′∈S q1(s, a, s

′) = 1{s = s1} and ∀h ∈ [2, H],
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∑
a∈A

∑
s′∈S qh(s, a, s

′) =
∑
s′′∈S

∑
a∈A qh−1(s

′′, a, s). For any occupancy measure q satisfying
the above two properties, it induces a transition Pq = {Pqh}Hh=1 and a policy πq = {πqh} such that

Pqh(s
′|s, a) = qh(s, a, s

′)∑
s′′ qh(s, a, s

′′)
, πqh(a|s) =

∑
s′ qh(s, a, s

′)∑
a′,s′ qh(s, a

′, s′)
,∀(s, a, s′, h) ∈ S ×A× S × [H].

We denote by ∆ the set of all occupancy measures satisfying the above two properties. For a transition
P, denote by ∆(P) ∈ ∆ the set of occupancy measures whose induced transition Pq is exactly P. For
a collection of transitions P , denote by ∆(P) ∈ ∆ the set of occupancy measures whose induced
transition Pq is in the transition set P . We use qk = qP,πk , qck = qP,π

c
k to simplify the notation.

Non-stationarity measure. The non-stationarity measure aims to quantify the non-stationarity of
the environments. We introduce two kinds of non-stationarity measures widely used in the literature:

PK =

K∑
k=2

H∑
h=1

∥πck,h − πck−1,h∥1,∞, P̄K =

K∑
k=2

H∑
h=1

∥qck,h − qck−1,h∥1. (3)

They quantify the difference between the compared policies and the compared occupancy measures,
respectively. Zhao et al. [2022, Lemma 6] show it holds that P̄K ≤ HPK . Thus, we focus on the
P̄K-type upper bound in this work as it implies an upper bound in terms of HPK directly.

4 The Proposed Algorithm

In this section, we first analyze the strengths and limitations of two most popular methods for
adversarial MDPs. Then we propose a novel algorithm that combines the benefits of both approaches.

4.1 Analysis of Two Popular Methods

Occupancy-measure-based and policy-based methods are the two most popular approaches for solving
adversarial MDPs. Both methods have been extensively studied in the literature and shown to enjoy
favorable static regret guarantees [Zimin and Neu, 2013, Cai et al., 2020]. However, when it comes
to dynamic regret, both methods face significant challenges. We introduce the details below.

4.1.1 Framework I: Occupancy-measure-based Method

The first line of work [Zimin and Neu, 2013, Rosenberg and Mansour, 2019, Jin et al., 2020a] em-
ployed the occupancy-measure-based method for adversarial MDPs. This method use the occupancy
measure as a proxy for the policy, optimizing over the occupancy measure rather than the policy di-
rectly. While the value function is not convex in the policy space, it becomes convex in the occupancy
measure space, making this approach theoretically more attractive compared to policy-based method.
However, this shift introduces new challenges for dynamic regret analysis, as discussed below.

Using the concept of the occupancy measure, the dynamic regret in (2) can be rewritten as
D-RegK(πc1:K) =

∑K
k=1 V

πc
k

k,1(sk,1) −
∑K
k=1 V

πk

k,1(sk,1) =
∑K
k=1⟨qck − qk, rk⟩. By this conver-

sion, the online MDP problem is reduced to the standard online linear optimization problem over
the occupancy measure set ∆(P) induced by the true transition P. However, the true transition P is
unknown and thus the decision set ∆(P) is inaccessible. To address this issue, a general idea is to
construct a confidence set Pk at episode k that contains the true transition with high probability then
replace the decision set by ∆(Pk). Then the dynamic regret can be decomposed into:

D-RegK(πc1:K) =

K∑
k=1

⟨qck − qk, rk⟩ =
K∑
k=1

⟨qck − q̂k, rk⟩︸ ︷︷ ︸
D-Regret-OLO

+

K∑
k=1

⟨q̂k − qk, rk⟩︸ ︷︷ ︸
approximation-error

, (4)

where q̂k is an occupancy measure in the decision set ∆(Pk). The first term is the dynamic regret
of online linear optimization over the decision set ∆(Pk), which has been explored in the known
transition setting [Zhao et al., 2022]. This term can be well controlled by a two-layer structure, as
demonstrated in the online learning literature [Zhang et al., 2018, Yan et al., 2023, Zhao et al., 2024].
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The second term reflects the approximation error introduced by using the confidence set Pk as a
surrogate for the true transition P, which constitutes the primary challenge of this approach.

Key Difficulties. To control the approximation error in (4), previous works [Rosenberg and Mansour,
2019, Jin et al., 2020a] proposed to bound the term

∑K
k=1∥q̂k − qk∥1, leveraging Hölder’s inequality:

⟨q̂k − qk, rk⟩ ≤ ∥q̂k − qk∥1∥rk∥∞ and rk ∈ [0, 1]SA. While this approach is effective for tabular
MDPs, it fails to exploit the inherent structure of linear mixture MDPs. Although the transition kernel
P exhibit a linear structure, the occupancy measure is not linear and retains a complex recursive
form, as highlighted in Zhao et al. [2023]. Consequently, the regret bound resulting from this method
depends on the state space size S, which is undesirable for linear mixture MDPs.
Remark 1. Occupancy-measure-based method optimizes a global object that encodes the entire
policy across all states, which sacrifices some computational efficiency to better handle non-stationary
environments. Thanks to their global optimization property, these methods offer favorable dynamic
regret guarantees. However, they struggle to address the unknown transition in linear mixture MDPs
and suffer from an undesirable dependence on the state space size S in the dynamic regret bound.

4.1.2 Framework II: Policy-based Method

Policy-based method directly optimizes the policy, making it easier to implement and computationally
more efficient than occupancy-measure-based method. More importantly, it shows advantages in
handling unknown transitions, as it only requires estimating the value function, bypassing the need
to estimate the transition kernel explicitly. However, due to their inherent local-search nature, this
method faces challenges in adapting to non-stationary environments and providing favorable dynamic
regret guarantees. We outline the key challenges below.

By the performance difference lemma [Kakade and Langford, 2002, Cai et al., 2020], the dynamic
regret in (2) can be rewritten as the following formulation:

D-RegK(πc1:K) =

K∑
k=1

H∑
h=1

Eπc
k

[
⟨Qπk

k,h(sh, ·), π
c
k,h(·|sh)− πk,h(·|sh)⟩

]
, (5)

where the expectation is taken over the changing policy sequence πc1, . . . , π
c
K . For each state sh, the

term
∑K
k=1

∑H
h=1⟨Qπk,h(sh, ·), πck,h(·|sh) − πk,h(·|sh)⟩ is exactly the regret of a A-armed bandit

problem, with Qπk

k,h(sh, ·) being the “reward vector”. Thus, it indicates the dynamic regret of online
MDPs can be written as the weighted average of MAB dynamic regret over all states, where the
weight for each state is its (unknown and time-varying) probability of being visited by πc1, . . . , π

c
K .

Since the transition is unknown, the policy-based method need to estimate the value function Qπk

k,h at
each state. By the definition of linear mixture MDPs in Definition 1, for any Vk,h(·), it holds that
[PhVk,h+1](s, a) = ⟨ϕVk,h+1

(s, a), θ∗h⟩. Therefore, learning the underlying transition parameters θ∗h
can be regarded as solving a “linear bandit” problem where the context is ϕVk,h+1

(sk,h, ak,h) and
the noise is Vk,h+1(sk,h, ak,h)− [PhVk,h+1](sk,h, ak,h). This observation enables the application of
“linear bandits” techniques to learn the value function effectively for the policy-based method.

The key challenge for the policy-based method lies in handling the non-stationarity of environment.
Even with accurate estimates of Qπk

k,h at each state, optimizing the dynamic regret remains difficult.
To optimize (5), Li et al. [2023] proposed running the Exp3 algorithm [Auer et al., 2002] at each state
and employing the fixed-share technique [Herbster and Warmuth, 2001, Cesa-Bianchi et al., 2012],
forcing uniform exploration to deal with non-stationary environments. They update policies by

π′
k,h(·|s) ∝ πk−1,h(·|s) exp

(
η ·Qπk−1

k−1,h(s, ·)
)
, πk,h(·|s) = (1− γ)π′

k,h(·|s) + γπu(·|s),
where η is the step size, πu(·|s) is uniform distribution, and γ is the fixed-share parameter. They show
it ensures D-RegK(πc1:K) ≤ Õ(ηKH3+H(1+PK)/η). To achieve a favorable dynamic regret, the
step size η needs to be set as η ≈

√
(1 + PK)/(KH2), which is impractical as the non-stationarity

measure PK is unknown. The standard approach to address this issue in the online learning literature
is to adopt the online ensemble framework [Zhao et al., 2024]. However, this approach encounters
challenges in online MDPs as the dynamic regret in (5) involves the expectation of changing policies,
which does not appear in the standard online learning setting. We elaborate on this issue below.

Specifically, the standard procedure of the two-layer framework is as follows. First, we construct a
step size pool H = {η1, . . . , ηN} (N = O(logK)) to discretize the range of the optimal step size.
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Subsequently, multiple base-learners B1, . . . ,BN are maintained, with each associated with a step
size ηi ∈ H. Finally, a meta-algorithm is employed to track the unknown best base-learner. Then, the
dynamic regret can be decomposed into two parts: (i) the dynamic regret of the best base-learner; and
(ii) the regret of the meta-algorithm to track the best-learner. Formally,
K∑

k=1

Eπc
k

[
H∑

h=1

⟨Qπk
k,h(sh, ·), π

c
k,h(·|sh)− πi

k,h(·|sh)⟩

]
︸ ︷︷ ︸

base-regret

+

K∑
k=1

Eπc
k

[
H∑

h=1

⟨Qπk
k,h(sh, ·), π

i
k,h(·|sh)− πk,h(·|sh)⟩

]
︸ ︷︷ ︸

meta-regret

.

Key Difficulties. Though the base-regret above involves the expectation of changing policies, it can
be effectively controlled as the decomposition holds for any base-learner Bi, allowing us to select the
one with the optimal step size for analysis. However, controlling the meta-regret remains challenging
as it still involves the expectation of changing policies and the optimal tuning is hindered.
Remark 2. By solely optimizing the policy at the visited states, the computational complexity
of the policy-based method is independent of the state number S, offering a notable advantage.
However, due to the non-stationary environments, more specifically, changing weights of different
states, only caring about the visited states without considering their importance is not enough to
achieve favorable dynamic regret. Thus, the local-search property enhances computational efficiency
but poses difficulties in handling non-stationary environments. This reveals a significant trade-off
between computational efficiency and the ability to manage non-stationary environments.

4.2 Our Method: A Novel Combination

By the analysis in Section 4.1, we observe that the occupancy-measure-based method is proficient in
addressing non-stationary environments but shows limited compatibility with unknown transitions. In
contrast, the policy-based method can deal with unknown transitions efficiently but faces challenges
in handling non-stationary environments. To this end, we propose a new algorithm named Occupancy-
measure-based Optimization with Policy-based Estimation (OOPE), which combines the benefits
of both methods. At a high level, OOPE algorithm consists of two components: (i) an occupancy-
measure-based global optimization with a two-layer framework to deal with the non-stationarity of
environments; and (ii) a policy-based value-targeted regression to handle the unknown transition.
We bridge the two components through a novel analysis that converts the occupancy-measure-based
approximation error into the policy-based estimation error. We elaborate on the details below.

4.2.1 Occupancy-measure-based Global Optimization

The occupancy-measure-based optimization follows Li et al. [2024b], using online mirror descent for
updating the occupancy measure and a two-layer structure to manage non-stationary environments.

We first construct a step size poolH = {η1, . . . , ηN} to discretize the range of the optimal step size,
then maintain multiple base-learners B1, . . . ,BN , each of which is associated with a step size ηi ∈ H.
Finally, we use a meta-algorithm to track the best base-learner. At each episode k, we construct
a confidence set Ck such that θ∗h ∈ Ck,h with high probability. The details of the construction of
confidence set will be introduced later. Then, the base-learner Bi updates the occupancy measure by

q̂ik = argmax
q∈∆(Ck,α)

ηi⟨q, rk⟩ −Dψ(q∥q̂ik−1), (6)

where Dψ(q∥q′) =
∑
s,a,s′ q(s, a, s

′) ln q(s,a,s′)
q′(s,a,s′) is the KL-divergence and the decision set is set as

∆(Ck, α) = {qh ∈ [α, 1]S
2A,∀h ∈ [H] | q satisfies constraints (C1) and (C2)} where

(C1) :
∑
a,s′

q1(s, a, s
′) = 1{s = sk,1},∀s ∈ S;

∑
a,s′

qh
(
s, a, s′

)
=

∑
a,s′

qh−1

(
s′, a, s

)
∀(s, h) ∈ S × [2, H];

(C2) : ∀(s, a, h) ∈ S ×A× [H],∃θ ∈ Ck,h,
qh(s, a, ·)∑
s′ qh(s, a, s

′)
= ⟨ϕ(· | s, a), θ⟩.

The meta-algorithm updates weights by

pik ∝ pik−1 exp(ε⟨q̂ik−1, rk−1⟩), (7)

where ε > 0 is the learning rate, ⟨q̂ik−1, rk−1⟩ evaluates the performance of the base-learner Bi at
episode k − 1. The final occupancy measure is given by q̂k =

∑N
i=1 p

i
kq̂
i
k and the learner plays the

policy πq̂k . Algorithm 1 summarizes the details. We show it enjoys the following guarantee.
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Algorithm 1 OOPE
Input: step size pool H, learning rate ε, and

clipping parameter α.
1: Set q̂i1,h(s, a, s

′) = 1/(SAS),∀i ∈ [N ].
2: Set pi1 = 1/N,∀i ∈ [N ].
3: for k = 1 to K do
4: Receive q̂ik by (6) from Bi for i ∈ [N ].
5: Receive pk from meta-algorithm by (7).
6: Compute q̂k =

∑N
i=1 p

i
kq̂
i
k.

7: Play policy πk = πq̂k .
8: Observe reward rk and trajectory Uk.
9: Ck+1 ← CompConfSet (πk, Uk, rk).

10: end for

Algorithm 2 CompConfSet
Input: Policy πk, trajectory Uk, and reward rk.
1: for h = H,H − 1, · · · , 1 do
2: Set Qk,h(·, ·) and Vk,h(·) as in (9).
3: Σ̂k+1,h ← Σ̂k,h + σ̄−2

k,hϕk,h,0ϕ
⊤
k,h,0.

4: b̂k+1,h ← b̂k,h + σ̄−2
k,hϕk,h,0Vk,h+1(sk,h+1).

5: Σ̃k+1,h ← Σ̃k,h + ϕk,h,1ϕ
⊤
k,h,1.

6: b̃k+1,h ← b̃k,h + ϕk,h,1V
2
k,h+1 (sk,h+1).

7: θ̂k+1,h ← Σ̂−1
k+1,hb̂k+1,h.

8: θ̃k+1,h ← Σ̃−1
k+1,hb̃k+1,h.

9: Compute confidence set Ck+1 by (10).
10: end for

Lemma 1. Suppose θ∗h ∈ Ck,h,∀k ∈ [K], h ∈ [H]. Set the clipping parameter α = 1/T 2, the step
size pool asH = {ηi = 2i−1

√
K−1 log(S2A/H) | i ∈ [N ]}, whereN = ⌈ 12 log(1+

4K log T
log(S2A/H) )⌉+

1, and the learning rate ε =
√
(logN)/(HT ). Algorithm 1 ensures the following guarantee:

K∑
k=1

⟨qck − q̂k, rk⟩ ≤ O
(√

T (H log (S2A) + P̄K log T )
)
.

Remark 3. By the occupancy-measure-based optimization with a two-layer structure, we can handle
the first term in (4) well. It remains to bound the approximation-error term

∑K
k=1⟨q̂k − qk, rk⟩,

which arises from employing the confidence set Ck as a surrogate for true transition parameter θ∗.

Implementation Details of Algorithm 1. The main computation complexity arises from the online
mirror descent step of (6) in Line 4. This step can be divided into into an unconstrained optimization
problem and a projection problem. The unconstrained optimization problem can be solved by the
closed-form solution and the main computational cost lies in the projection step. Ji et al. [2024] show
that though such a projection can not be formulated as a linear program, they can be efficiently solved
by the Dysktra’s algorithm as the decision set is an intersection of convex sets of explicit linear or
quadratic forms. We refer the readers to Appendix D of Ji et al. [2024] for more details.

4.2.2 Occupancy Measure to Policy Conversion

As discussed in Section 4.1.1, previous works [Rosenberg and Mansour, 2019, Jin et al., 2020a, Li
et al., 2024b] propose to control the approximation error by bounding the term

∑K
k=1∥q̂k − qk∥1.

However, though the transition P admits a linear structure, the occupancy measure does not and
retains a complex recursive form, which introduces an undesired dependence on the state number S
in the final regret. To take advantage of strength of policy-based method in integrating with linear
function approximation, we propose to learn value functions as a whole instead of directly controlling
the occupancy measure discrepancies. This strategy diverges from traditional methods that bound
⟨q̂k − qk, rk⟩ by the transition discrepancies

∑H
h=1

∑
s,a∥Ph(·|s, a) − P̄k,h(·|s, a)∥1, where P̄k is

the estimated transition in episode k. Instead, we opt to constrain ⟨q̂k − qk, rk⟩ through the value
difference, which effectively integrates reward information. We introduce the details below.

Denote by V̂k,1(sk,1) =
∑
h,s,a,s′ q̂k,h(s, a, s

′)rk,h(s, a) the expected reward given the occupancy
measure q̂k,h. Then, the approximation error can be rewritten as

K∑
k=1

⟨q̂k − qk, rk⟩ =
K∑
k=1

(
V̂k,1(sk,1)− Vk,1(sk,1)

)
︸ ︷︷ ︸

occupancy-policy-gap

+

K∑
k=1

(
Vk,1(sk,1)− V πk

k,1(sk,1)
)

︸ ︷︷ ︸
estimation-error

, (8)

where Vk,1 is an intermediate value we define later. Our key idea is building an optimistic estimator
Vk,1 to ensure the first term is non-positive while controlling the second term. This bypasses the need
to bound occupancy measure discrepancies, allowing us to focus solely on the value estimation error.
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4.2.3 Policy-based Value-targeted Regression

It remains to build the value function to ensure V̂k,h ≤ Vk,h. A key observation is that the occupancy
measure q̂k induces a new MDP whose transition lies in the confidence set Ck with high probability.
Thus, it suffices to ensure that Vk,h is an overestimate of the true value function in the confidence set.

By the definition of linear mixture MDPs, for any Vk,h(·), it holds that [PhVk,h+1](s, a) =
⟨ϕVk,h+1

(s, a), θ∗h⟩. Thus, we compute the optimistic estimation as follows:

Qk,h(·, ·) =
[
rk,h(·, ·) + max

θ∈Ck,h

⟨θ, ϕVk,h+1
(·, ·)⟩

]
[0,H]

, Vk,h(·) = Ea∼πk,h(·|·)[Qk,h(·, a)]. (9)

where Ck,h is the confidence set. We introduce the details of constructing the confidence set below.

Following recent advances in linear mixture MDPs [Zhou et al., 2021, He et al., 2022], we estimate
the parameter θ∗h by the weighted ridge regression to utilize the variance information. Denote by
ϕk,h,0 = ϕVk,h+1

(sk,h, ak,h) and ϕk,h,1 = ϕV 2
k,h+1

(sk,h, ak,h). We construct the estimator θ̂k,h as

θ̂k,h = argmin
θ∈Rd

k−1∑
j=1

[⟨ϕj,h,0, θ⟩ − Vj,h+1 (sj,h+1)]
2

σ̄2
j,h

+ λ∥θ∥22,

where σ̄2
j,h is the upper confidence bound of the variance [VhVj,h+1](sj,h, aj,h) and is set as σ̄2

k,h =

max{H2/d, [V̄k,hVk,h+1] (sk,h, ak,h)+Ek,h}, where [V̄k,hVk,h+1](sk,h, ak,h) is an estimate for the
variance of value function Vk,h+1 under the transition Ph(·|sk, ak), andEk,h is the bonus term to guar-
antee the true variance [Vk,hVk,h+1](sk,h, ak,h) is upper bounded by [V̄k,hVk,h+1](sk,h, ak,h)+Ek,h
with high probability. By definition, we have [VhVk,h+1](sk,h, ak,h) = ⟨ϕk,h,1, θ∗h⟩− [⟨ϕk,h,0, θ∗h⟩]2.
Thus, we set [V̄k,hVk,h+1] (sk,h, ak,h) = [⟨ϕk,h,1, θ̃k,h⟩][0,H2] − [⟨ϕk,h,0, θ̂k,h⟩]2[0,H], where θ̃k,h is
used to estimate the second-order moment and is constructed as:

θ̃k,h = argmin
θ∈Rd

k−1∑
j=1

[⟨ϕj,h,1, θ⟩ − V 2
j,h+1(sj,h+1)]

2 + λ∥θ∥22.

The confidence set for the parameter θ∗h is constructed as

Ck,h =
{
θ | ∥Σ̂1/2

k,h(θ − θ̂k,h)∥2 ≤ β̂k
}
. (10)

where Σ̂k,h is a covariance matrix, and β̂k is a radius of the confidence set.

The algorithm is summarized in Algorithm 2. We show the approximation error is bounded as below.
Lemma 2. Set the parameters as follows:

β̂k = 8
√
d log(1 + k/λ) log (4k2H/δ) + 4

√
d log

(
4k2H/δ

)
+
√
λB.

β̄k = 8d
√
log(1 + k/λ) log (4k2H/δ) + 4

√
d log

(
4k2H/δ

)
+
√
λB,

β̃k = 8H2
√
d log (1 + kH4/(dλ)) log (4k2H/δ) + 4H2 log

(
4k2H/δ

)
+
√
λB.

Ek,h = min
{
H2, 2Hβ̄k

∥∥∥Σ̂−1/2
k,h ϕk,h,0

∥∥∥
2

}
+min

{
H2, β̃k

∥∥∥Σ̃−1/2
k,h ϕk,h,1

∥∥∥
2

}
.

Algorithm 2 ensures with probability at least 1− δ, it holds that

K∑
k=1

⟨q̂k − qk, rk⟩ ≤ Õ
(√

d2H3K +
√
dH4K

)
.

Remark 4. This bound can be further simplified as Õ(
√
d2H3K) when d ≥ H , which is a mild

assumption. Following previous work [Zhou et al., 2021], we only discuss the case d ≥ H below.

5 Theoretical Guarantees

In this section, we present the dynamic regret upper bound and the lower bound for this problem.
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5.1 Dynamic Regret Upper Bound and Lower Bound

The dynamic regret upper bound of our algorithm is guaranteed by the following theorem.
Theorem 1. Set the parameters as in Lemma 1 and Lemma 2. Algorithm 1 with Algorithm 2 as the
subroutine ensures with probability at least 1− δ, the dynamic regret is upper bounded by

D-RegK(πc1:K) ≤ Õ
(√

d2H3K +
√
HK(H + P̄K)

)
.

Remark 5. Compared with the dynamic regret of Õ
(√
d2H3K +H2

√
(K + PK)(1 + PK)

)
for

known non-stationarity measure cases in Li et al. [2023], our bound has a better dependence on H .
Compared with the dynamic regret of Õ

(
dHS

√
K+

√
HK(H + P̄K)

)
for unknown non-stationarity

measure cases in Li et al. [2024b], our bound removes the dependence on the state number S.

Then, we establish the dynamic regret lower bound for this problem.
Theorem 2. Suppose B ≥ 2, d ≥ 4, H ≥ 3, K ≥ (d− 1)2H/2, for any algorithm and any constant
Γ ∈ [0, 2KH], there exists an adversarial inhomogeneous linear mixture MDP and a policy sequence
πc1, . . . , π

c
K such that P̄K ≤ Γ and D-RegK(πc1:K) ≥ Ω(

√
d2H3K +

√
HK(H + Γ)).

Remark 6. Combining Theorem 1 and Theorem 2, our algorithm achieves the minimax optimal
dynamic regret in terms of d, H , K and P̄K simultaneously up to logarithmic factors.

5.2 Proof Overview

We provide the proof sketch of Theorem 1. The detailed proof can be found in the appendixes.
Proof Sketch (of Theorem 1). We can decompose the dynamic regret as the following four terms:

D-RegK(πc1:K) =

K∑
k=1

⟨qck − q̂ik, rk⟩︸ ︷︷ ︸
base-regret

+

K∑
k=1

⟨q̂ik − q̂k, rk⟩︸ ︷︷ ︸
meta-regret

+

K∑
k=1

(
V̂k,1 − Vk,1

)
︸ ︷︷ ︸
occupancy-policy-gap

+

K∑
k=1

(
Vk,1 − V πk

k,1

)
︸ ︷︷ ︸

estimation-error

.

• base-regret. By the analysis of OMD, it can be upper bounded by Õ
(
ηiKH + (H + P̄K)/ηi

)
.

Choosing the base-learner with the best step size leads to an upper bound of Õ(
√
KH(H + P̄K)).

• meta-regret. This term is the static regret of the expert-tracking problem. As our meta-algorithm is
the Hedge algorithm, by the standard analysis, this term can be upper bounded by Õ(H

√
K).

• occupancy-policy-gap. As the value functions are optimistic estimators over the confidence set Ck,
the value gap between the occupancy measure and the policy is guaranteed to be non-positive.

• estimation-error. Let ϵQk,h = Qk,h−Qπk

k,h and ϵVk,h = Vk,h−V πk

k,h, then define policy noiseMk,h,1 =

Ea∼πk(·|sk,h)[ϵ
Q
k,h(sk,h, a)] − ϵ

Q
k,h(sk,h, ak,h), transition noise Mk,h,2 = [Ph(ϵVk,h)](sk,h, ak,h) −

ϵVk,h(sk,h+1) and bonus ιk,h = Qk,h − (rk,h + PhVk,h+1). The estimation error can be decomposed
into transition noises, policy noises, and bonuses, i.e.,

∑K
k=1

∑H
h=1(Mk,h,1 +Mk,h,2 + ιk,h). The

transition and policy noises can be bounded by Õ(
√
KH3) using Azuma-Hoeffding’s inequalities.

The bonus term can be bounded by Õ(
√
d2H3K +

√
dH4K) according to Lemma 2. ■

6 Conclusion and Future Work

In this work, we study the dynamic regret of adversarial linear mixture MDPs with the unknown
transition. We observe the occupancy-measure-based method is effective in addressing non-stationary
environments but struggles with unknown transitions. In contrast, the policy-based method can deal
with unknown transitions effectively but faces challenges in handling non-stationary environments.
To this end, we propose a new algorithm that combines the benefits of both methods, achieving an
Õ(
√
d2H3K +

√
HK(H + P̄K)) dynamic regret without prior knowledge of the non-stationarity

measure. We show it is optimal up to logarithmic factors by establishing a matching lower bound.

Currently, we achieve this result by employing a hybrid method. Exploring whether similar results can
be attained using computationally more efficient methods is an important future work. Furthermore,
extending our results to other MDP classes, such as generalized linear function approximation [Wang
et al., 2021] and multinomial logit function approximation [Li et al., 2024a], is an interesting direction.
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A Proof of Lemma 1

Proof. Without loss of generality, we assume that all states are reachable with positive probability
under the uniform policy πu(a|s) = 1/A, ∀s ∈ S, a ∈ A. Otherwise, we can simply remove
the unreachable states from the state space. Assume K is large enough such that the occupancy
measure of qP,π

u ∈ ∆(P, 1/T ). We define uk = (1− 1
T )q

c
k +

1
T q

P,πu ∈ ∆(P, 1/T 2). Then, we can
decompose the first term as

K∑
k=1

⟨qck − q̂k, rk⟩ =
K∑
k=1

⟨qck − uk, rk⟩+
K∑
k=1

⟨uk − q̂k, rk⟩

=
1

T

K∑
k=1

⟨qck − qP,π
u

, rk⟩+
K∑
k=1

⟨uk − q̂k, rk⟩

≤ 1

T

K∑
k=1

∥qck − qP,π
u

∥1∥rk∥∞ +

K∑
k=1

⟨uk − q̂k, rk⟩

≤ 2 +

K∑
k=1

⟨uk − q̂k, rk⟩

= 2 +

K∑
k=1

⟨uk − q̂ik, rk⟩︸ ︷︷ ︸
base-regret

+

K∑
k=1

⟨q̂ik − q̂k, rk⟩︸ ︷︷ ︸
meta-regret

, (11)

which the first inequality follows from Holder’s inequality, the second holds by ∥qck − qP,π
u∥1 ≤ 2H ,

and the last holds for any i ∈ [N ]. Next, we bound base-regret and meta-regret separately.

Upper bound of base-regret. Since the true transition parameter θ∗ is contained in the confidence
set Ck by condition, we ensure that uk ∈ ∆(P, 1/T 2) ∈ ∆(Ck, 1/T 2). By the update rule of q̂ik
in (6), we ensure that q̂ik ∈ ∆(Ck, 1/T 2),∀i ∈ [K]. The update rule in (6) can be rewritten as:

q̄ik+1 = argmax
q∈RHSAS

ηi⟨q, rk⟩ −Dψ(q∥q̂ik), q̂ik+1 = argmin
q∈∆(Ck,α)

Dψ(q∥q̄ik+1),

or equivalently,

q̄ik+1,h(s, a, s) = q̂ik,h(s, a, s) exp(ηirk(s, a)), q̂ik+1 = argmin
q∈∆(Ck,α)

Dψ(q∥q̄ik+1).

By the three-point identity in Lemma 9, we have

ηi⟨uk − q̂ik, rk⟩ = Dψ(uk∥q̂ik)−Dψ(uk∥q̄ik+1) +Dψ(q̂
i
k∥q̄ik+1)

≤ Dψ(uk∥q̂ik)−Dψ(uk∥q̂ik+1) +Dψ(q̂
i
k∥q̄ik+1), (12)

where the inequality is due to the Pythagorean theorem.

For the last term of (12), summing over k, we have

K∑
k=1

Dψ(q̂
i
k∥q̄ik+1)

=

K∑
k=1

H∑
h=1

∑
s,a,s′

q̂ik(s, a, s
′)
(
− ηirk(s, a)− 1 + exp(ηirk(s, a))

)
≤ η2i

K∑
k=1

H∑
h=1

∑
s,a,s′

q̂ik(s, a, s
′)rk(s, a)

2

≤ η2iHK, (13)

where the first inequality is due to the fact ex − x− 1 ≤ x2 for x ∈ [0, 1].
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For the first two terms of (12), by the definition of KL-divergence, we have
K∑
k=1

(
Dψ(uk∥q̂ik)−Dψ(uk∥q̂ik+1)

)
= Dψ(u1∥q̂i1) +

K∑
k=2

(
Dψ(uk∥q̂ik)−Dψ(uk−1∥q̂ik)

)
= Dψ(u1∥q̂i1) +

K∑
k=2

H∑
h=1

∑
s,a,s′

(
uk,h(s, a, s

′) log
uk,h(s, a, s

′)

q̂ik,h(s, a, s
′)
− uk−1,h(s, a, s

′) log
uk−1,h(s, a, s

′)

q̂ik,h(s, a, s
′)

)

= Dψ(u1∥q̂i1) + ψ(uK)− ψ(u1) +
K∑
k=2

H∑
h=1

∑
s,a,s′

(uk,h(s, a, s
′)− uk−1,h(s, a, s

′)) log
1

q̂ik,h(s, a, s
′)

≤ Dψ(u1∥q̂i1) + ψ(uK)− ψ(u1)︸ ︷︷ ︸
I1

+2 log T

K∑
k=2

H∑
h=1

∑
s,a,s′

|uk,h(s, a, s′)− uk−1,h(s, a, s
′)|︸ ︷︷ ︸

I2

where the inequality holds by q̂ik ∈ ∆(Pk, 1/T 2). It remains to bound I1 and I2 separately.

For term I1, since q̂i1 minimize ψ over ∆(P1, 1/T
2), we have ⟨∇ψ(q̂i1), u1 − q̂i1⟩ ≥ 0, thus,

I1 ≤ ψ(uK)− ψ(q̂i1) ≤
H∑
h=1

∑
s,a,s′

q̂i1,h(s, a, s
′)

1

q̂i1,h(s, a, s
′)
≤ H log(S2A). (14)

For term I2, for any (s, a), we have∑
s′

|uk,h(s, a, s′)− uk−1,h(s, a, s
′)| =

∑
s′

|uk,h(s, a)Ph(s′|s, a)− uk−1,h(s, a, s
′)Ph(s′|s, a)|

=
∑
s′

|uk,h(s, a)− uk−1,h(s, a)|Ph(s′|s, a)

= |uk,h(s, a)− uk−1,h(s, a)|.
Thus, we have

I2 =

K∑
k=2

H∑
h=1

∑
s,a

|uk,h(s, a)− uk−1,h(s, a)| = (1− 1

T
)∥qck − qck−1∥1 = (1− 1

T
)P̄K ≤ P̄K .

(15)

Combining (12), (13), (14) and (15), we have

base-regret ≤ 1

ηi

K∑
k=1

(
Dψ(uk∥q̂ik)−Dψ(uk∥q̂ik+1) +Dψ(q̂

i
k∥q̄ik+1)

)
≤ ηiT +

1

ηi
(H log(S2A) + 2P̄K log T ).

It is easy to verify that the optimal step size is η∗ =
√
(H log(S2A) + 2P̄K log T )/T . Since

0 ≤ P̄K ≤ 2T , we ensure that√
H log(S2A)

T
≤ η∗ ≤

√
H log(S2A) + 4T log T

T
.

By the construction of the step size pool H = {ηi = 2i−1
√
K−1 log(S2A) | i ∈ [N ]} with

N = 1 + ⌈ 12 log(1 +
4K log T
log(S2A) )⌉, we know that the step size therein is monotonically increasing with

η1 =

√
H log(S2A)

T
, ηN ≥

√
H log(S2A) + 4T log T

T
.
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Thus, we ensure there exists an index i∗ such that ηi∗ ≤ η∗ ≤ 2ηi∗ = ηi∗+1. Since the decomposition
in (11) holds for any Bi, we choose Bi∗ to analyze the regret bound. By the definition of η∗, we have

base-regret ≤ ηi∗T +
1

ηi∗
(H log(S2A) + 2P̄K log T )

≤ η∗T +
2

η∗
(H log(S2A) + 2P̄K log T )

= 3
√
T (H log(S2A) + 2P̄K log T ), (16)

where the last equality holds by substituting η∗ =
√
(H log(S2A) + 2P̄K log T )/T .

Upper bound of meta-regret. Denote by hik = ⟨q̂ik, rk⟩ ∈ [0, H], we have

meta-regret =

K∑
k=1

⟨q̂ik −
N∑
i=1

pikq̂
i
k, rk⟩ =

K∑
k=1

⟨ei − pk, hk⟩,

where ei is the i-th standard basis vector in RN . This is a standard Prediction with Expert Advice
(PEA) problem and our algorithm is the well-known Hedge algorithm [Freund and Schapire, 1997,
Herbster and Warmuth, 1998]. By the standard analysis of Hedge [Cesa-Bianchi and Lugosi, 2006,
Theorem 2.2], we have

meta-regret ≤ logN

ε
+ εH2K =

√
HT logN, (17)

where the equality holds by setting ε =
√
(logN/HT ).

Combining (11), (16) and (17), we have
K∑
k=1

⟨qck − q̂k, rk⟩ ≤ 3
√
T (H log(S2A) + 2P̄K log T ) + 2.

This finishes the proof. ■

B Proof of Lemma 2

In this section, we first provide the main proof of Lemma 2, and then present the proofs of the
auxiliary lemmas used in the main proof.

B.1 Main Proof

Proof. To prove Lemma 2, we first introduce the following lemma which shows the true parameter
θ∗h is contained in the confidence set Ck,h with high probability by such configuration.

Lemma 3 (Zhou et al. [2021, Lemma 5]). Let Ck,h be defined in (10) and set parameters as in
Lemma 2. Then, we have θ∗h ∈ Ck,h for all h ∈ [H] and k ∈ [K] with probability at least 1− 3δ.

Denote by E the event when Lemma 3 holds, then Pr(E) ≥ 1− 3δ. We are ready to prove Lemma 2.

First, we can rewrite the term
∑K
k=1⟨q̂k − qk, rk⟩ as

K∑
k=1

⟨q̂k − qk, rk⟩ =
K∑
k=1

V̂k,1(sk,1)− V πk

k,1(sk,1)

=

K∑
k=1

(
V̂k,1(sk,1)− Vk,1(sk,1)

)
︸ ︷︷ ︸

occupancy-policy-gap

+

K∑
k=1

(
Vk,1(sk,1)− V πk

k,1(sk,1)
)

︸ ︷︷ ︸
estimation-error

, (18)

Next, we bound these two terms separately.

Upper bound of occupancy-iteration-gap. This term is the gap between the value function computed
by the occupancy measure {q̂k}Kk=1 and the optimistic value function computed by backward iteration
defined in (9). Similar to Ji et al. [2024, Lemma 6.1], we show this term is non-positive.
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Lemma 4. For any episode k ∈ [K], define V̂k,1(sk,1) =
∑
h,s,a,s′ q̂k,h(s, a, s

′)rk,h(s, a) and

Vk,1(sk,1) the value function computed in (9), on the event E , it holds that V̂k,1(sk,1) ≤ Vk,1(sk,1).

Upper bound of estimation-error. First, we present the following lemma which shows this term
can be decomposed into three major terms, transition noise, policy noise and the sum of bonuses.

Lemma 5. For all k ∈ [K], h ∈ [H], it holds that

Vk,h(sk,h)− V πk

k,h(sk,h) =

H∑
h′=h

(
Mk,h′,1 +Mk,h′,2 − ιk,h′(sk,h′ , ak,h′)

)
,

with

Mk,h,1 = Ea∼πk(· | sk,h)[Qk,h(sk,h, a)−Q
πk

k,h(sk,h, a)]− (Qk,h(sk,h, ak,h)−Qπk

k,h(sk,h, ak,h)),

Mk,h,2 = [Ph(Vk,h+1 − V πk

k,h+1)](sk,h, ak,h)− (Vk,h+1(sk,h+1)− V πk

k,h+1(sk,h+1))

ιk,h(·, ·) = Qk,h(·, ·)− (rk,h(·, ·) + PhVk,h+1(·, ·)).

Note Mk,h,1 is the noise from the stochastic policy and Mk,h,2 is the noise from the state transition,
Let Mk,h =Mk,h,1 +Mk,h,2,∀k ∈ [K], h ∈ [H], we define two following high probability events:

E1 =

{
∀h ∈ [H],

K∑
k=1

H∑
h′=h

Mk,h′ ≤ 4

√
H3K log

H

δ

}
, E2 =

{ K∑
k=1

H∑
h=1

Mk,h,2 ≤
√
8H3K log

1

δ

}
.

According to the Azuma-Hoeffding inequality, we have Pr(E1) ≥ 1 − δ and Pr(E2) ≥ 1 − δ. It
remains to bound the model prediction error ιk,h.

Next, we show the prediction error depends on the width of the confidence set and the cumulative
estimate variance by the following lemma.

Lemma 6. Define prediction error ιk,h = Qk,h − (rk,h + PhVk,h+1), on the event E , it holds that

K∑
k=1

H∑
h=1

ιk,h(sk,h, ak,h) ≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ).

Here, σ̄2
k,h is the estimated variance, for the total true variance

∑K
k=1

∑H
h=1[VhV π

k

h+1](sk,h, a
k
h), we

introduce the high probability event E3:

E3 =

{ K∑
k=1

H∑
h=1

[VhV π
k

h+1](sk,h, a
k
h) ≤ 3(HK +H3 log(1/δ))

}
.

Lemma C.5 in Jin et al. [2018] suggests that Pr(E3) ≥ 1− δ. Based on the events E ∩ E1 ∩ E2 ∩ E3,
we have the following lemma which bounds the estimated variance of the value function.

Lemma 7 (He et al. [2022, Lemma 6.5]). On the events E ∩ E1 ∩ E2 ∩ E3, it holds that

K∑
k=1

H∑
h=1

σ̄2
k,h ≤

2H3K

d
+ 179H2K + (165d3H4 + 2062d2H5) log2

(
4K2H

δ

)
log2

(
1 +

KH4

λ

)
.

Combining Lemma 5, Lemma 6 and Lemma 7, we can bound the estimation-error as follows.

Lemma 8. On the events E ∩ E1 ∩ E2 ∩ E3, for any h ∈ [H], it holds that

K∑
k=1

Vk,h(sk,h)−
K∑
k=1

V πk

k,h(sk,h) ≤Õ
(√
dH4K +

√
d2H3K

)
.

Finally, we finish the proof of Lemma 2 by combining Lemma 4 and Lemma 8. ■
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B.2 Proofs of Auxiliary Lemmas

In this section, we proof the auxiliary lemmas used in the proof of Lemma 2 in Appendix B.1.

B.2.1 Proof of Lemma 4

Proof. The proof is similar to that of Ji et al. [2024, Lemma 6.1]. The only difference is that q̂k is
a weighted combination rather than a single occupancy measure in the decision set. For k ∈ [K],
the occupancy measure q̂k is given by q̂k =

∑N
i=1 p

i
kq̂
i
k. Since q̂ik ∈ ∆(Pk, α), we ensure that

q̂k ∈ ∆(Pk, α). Thus, for occupancy measure q̂k, there exist θ̄ such that

P̂k,h(s′|s, a) =
qk,h(s, a, s

′)∑
s′ qk,h(s, a, s

′)
= ⟨ϕ(s′|s, a), θ̄k,h(s, a)⟩,∀(s, a, h) ∈ S ×A× [H].

It is easy to verify that the update rule V̂k,1(sk,1) =
∑
h,s,a,a′ q̂k,h(s, a, s

′)rk,h(s, a) computed by
the occupancy measure is the same as the following backward iteration:

Q̂k,h(s, a) = rh(s, a) + ⟨ϕV̂k,h+1
(s′|s, a), θ̄k,h(s, a)⟩,

V̂k,h(s) = Ea∼πk(·|s)Q̂k,h(s, a), V̂k,H+1(s) = 0.

Then, we can prove this lemma by induction. The conclusion trivially holds for n = H + 1.
Suppose the statement holds for n = h+ 1, we prove it for n = h. For any (s, a) ∈ S × A, since
Q̂k,h(s, a) ≤ H , so if Qk,h(s, a) = H , then it holds directly. Otherwise, we have

Qk,h(s, a)− Q̂k,h(s, a)

= ⟨ϕVk,h+1
(s, a), θ̂k,h⟩+ β̂∥ϕVk,h+1

(s, a)∥Σ̂−1
k,h
− ⟨ϕV̂k,h+1

(s′|s, a), θ̄k,h(s, a)⟩

≥ ⟨ϕVk,h+1
(s, a), θ̂k,h⟩+ β̂∥ϕVk,h+1

(s, a)∥Σ̂−1
k,h
− ⟨ϕVk,h+1

(s′|s, a), θ̄k,h(s, a)⟩

= ⟨ϕVk,h+1
(s, a), θ̂k,h − θ̄k,h(s, a)⟩+ β̂∥ϕVk,h+1

(s, a)∥Σ̂−1
k,h

≥ β̂∥ϕVk,h+1
(s, a)∥Σ̂−1

k,h
− ∥θ̂k,h − θ̄k,h(s, a)∥Σ̂k,h

∥ϕVk,h+1
(s, a)∥Σ̂−1

k,h

≥ 0,

where the first inequality holds by the inductive hypothesis, the second holds due to Holder’s
inequality, and the last holds due to θ̄k,h(s, a) ∈ Ck,h. By induction, we finish the proof. ■

B.2.2 Proof of Lemma 5

Proof. By the definition Vk,h(sk,h) = Ea∼πk(· | sk,h)[Qk,h(sk,h, a)], we have

Vk,h(sk,h)− V πk

k,h(sk,h)

= Ea∼πk(· | sk,h)

[
Qk,h(sk,h, a)−Qπk

k,h(sk,h, a)
]

= Ea∼πk(· | sk,h)

[
Qk,h(sk,h, a)−Qπk

k,h(sk,h, a)
]
−
(
Qk,h(sk,h, ak,h)−Qπk

k,h(sk,h, ak,h)
)

+
(
Qk,h(sk,h, ak,h)−Qπk

k,h(sk,h, ak,h)
)

= Ea∼πk(· | sk,h)

[
Qk,h(sk,h, a)−Qπk

k,h(sk,h, a)
]
−
(
Qk,h(sk,h, ak,h)−Qπk

k,h(sk,h, ak,h)
)

+ [Ph(Vk,h+1 − V πk

k,h+1)](sk,h, ak,h) + ιk,h(sk,h, ak,h)

= Ea∼πk(· | sk,h)

[
Qk,h(sk,h, a)−Qπk

k,h(sk,h, a)
]
−
(
Qk,h(sk,h, ak,h)−Qπk

k,h(sk,h, ak,h)
)︸ ︷︷ ︸

≜Mk,h,1

+ [Ph(Vk,h+1 − V πk

k,h+1)](sk,h, ak,h)−
(
Vk,h+1(sk,h+1)− V πk

k,h+1(sk,h+1)
)︸ ︷︷ ︸

≜Mk,h,2

+
(
Vk,h+1(sk,h+1)− V πk

k,h+1(sk,h+1)
)
+ ιk,h(sk,h, ak,h)

where the third equality holds by the factQk,h = rk,h+PhVk,h+1+ιk,h andQπk

k,h = rk,h+PhV πk

k,h+1.
Summing up the above equation from h to H recursively finishes the proof. ■
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B.2.3 Proof of Lemma 6

Proof. By the definition of ιk,h = Qk,h − (rk,h + PhVk,h+1), we have

ιk,h(s, a)

= Qk,h(s, a)− (rk,h + PhVk,h+1)(s, a)

= rk,h(s, a) +
〈
θ̂k,h, ϕVk,h+1

(s, a)
〉
+ β̂k

∥∥Σ̂−1/2
k,h ϕVk,h+1

(s, a)
∥∥
2
− (rk,h + PhVk,h+1)(s, a)

=
〈
θ̂k,h − θ∗h, ϕVk,h+1

(s, a)
〉
+ β̂k

∥∥Σ̂−1/2
k,h ϕVk,h+1

(s, a)
∥∥
2

≤ 2β̂k
∥∥Σ̂−1/2

k,h ϕVk,h+1
(s, a)

∥∥
2
,

where the first inequality holds by the configuration of Qk,h in (9), the second inequality holds by
the definition of linear mixture MDP such that [PhVk,h+1](s, a) = ⟨ϕVk,h+1

(s, a), θ∗h⟩ and the last
inequality holds by the construction of the confidence set in Lemma 3.

Then, we have
K∑
k=1

H∑
h=1

ιk,h(sk,h, ak,h)

≤
K∑
k=1

H∑
h=1

2min{β̂k
∥∥Σ̂−1/2

k,h ϕVk,h+1
(sk,h, ak,h)

∥∥
2
, H}

≤
K∑
k=1

H∑
h=1

2β̂kσ̄k,hmin
{∥∥Σ̂−1/2

k,h ϕVk,h+1
(sk,h, ak,h) /σ̄k,h

∥∥
2
, 1
}

≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√√√√ K∑
k=1

H∑
h=1

min
{∥∥∥Σ̂−1/2

k,h ϕVk,h+1
(sk,h, ak,h) /σ̄k,h

∥∥∥
2
, 1
}

≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ),

where the first inequality holds by Qk,h ∈ [0, H], the second holds by 2β̂kσ̄k,h ≥
√
dH/
√
d = H ,

the third inequality is by Cauchy-Schwarz inequality and the last inequality holds by the elliptical
potential lemma in Lemma 10. This finishes the proof. ■

B.2.4 Proof of Lemma 8

Proof. The proof can be obtained by combining Lemma 5, 6 and 7. Specifically, we have
K∑
k=1

Vk,h(sk,h)−
K∑
k=1

V πk

k,h(sk,h)

≤2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ) + 4

√
H3K log

H

δ
+

√
8H3K log

1

δ

≤Õ
(√
dH4K +

√
d2H3K

)
.

where the first inequality holds by Lemma 5 and Lemma 6 and the last inequality holds by Lemma 7.
This finishes the proof. ■

C Proof of Theorem 1

Proof. Combining Lemma 1 and Lemma 2, we have

D-RegK(πc1:K) ≤ O
(√

T (H log (S2A) + P̄K log T )
)
+ Õ

(√
dH4K +

√
d2H3K

)
.

This finishes the proof. ■
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D Proof of Theorem 2

Proof. Our proof is similar to that of Li et al. [2023, Theorem 4]. At a high level, we prove this
lower bound by noting that optimizing the dynamic regret of linear mixture MDPs is harder than (i)
optimizing the static regret of linear mixture MDPs with the unknown transition, (ii) optimizing the
dynamic regret of linear mixture MDPs with the known transition. Thus, we can consider the lower
bound of these two problems separately and combine them to obtain the lower bound of the dynamic
regret of linear mixture MDPs with the unknown transition.

First, we consider the lower bound of the static regret of adversarial linear mixture MDPs with the
unknown transition. From lower bound in He et al. [2022, Theorem 5.3], since the dynamic regret
recovers the static regret by choosing the best-fixed policy, we have the following lower bound for
dynamic regret in this case:

D-RegK(πc1:K) ≥ Ω(
√
d2H3K). (19)

Then, we consider the lower bound of the dynamic regret of adversarial linear mixture MDPs with
the known transition. Zimin and Neu [2013] show the lower bound of the static regret for adversarial
episodic loop-free MDP with known transition is Ω(H

√
K log (SA)). We note that though our MDP

model is different from the episodic loop-free MDP, we can treat our MDP model to the episodic
loop-free MDP with an expanded state space S ′ = S × [H]. Thus, Ω(H

√
K log (SA)) is also a

lower bound of the static regret for the MDP in our work. We consider the following two cases:

Case 1: Γ ≤ 2H . In this case, we can directly utilize the lower bound of static regret as a lower
bound of dynamic regret, i.e.,

D-RegK(πc1:K) ≥ Ω(H
√
K log (SA)). (20)

Case 2: Γ > 2H . Without loss of generality, we assume L = ⌈Γ/2H⌉ divides K and split the whole
episodes into L pieces equally. Next, we construct a special policy sequence such that the policy
sequence is fixed within each piece and only changes in the split point. Since the sequence changes
at most L− 1 ≤ Γ/2H times and the occupancy measure difference at each change point is at most
2H , the total path length in K episodes does not exceed Γ. As a result, we have

D-RegK(πc1:K) ≥ LH
√
K/L log (SA) = H

√
KL log (SA) ≥ Ω(

√
KHΓ log (SA)). (21)

Combining (20) and (21), we have the following lower bound for the dynamic regret of adversarial
linear mixture MDPs with the known transition kernel,

D-RegK(πc1:K) ≥ Ω
(
max{H

√
K log (SA),

√
KHΓ log (SA)}

)
≥ Ω(

√
KH(H + Γ) log(SA)), (22)

where the last inequality holds by max{a, b} ≥ (a+ b)/2.

Combining two lower bounds (19) and (22), we have the lower bound of the dynamic regret of
adversarial linear mixture MDPs with the unknown transition kernel,

D-RegK(πc1:K) ≥ Ω
(
max{

√
d2H3K,

√
KH(H + Γ) log(SA)}

)
≥ Ω

(√
d2H3K +

√
KH(H + Γ) log(SA)

)
.

This finishes the proof. ■

E Supporting Lemmas

In this section, we introduce the supporting lemmas used in the proofs.
Lemma 9 (Three-point identity). Let X be a closed and convex set. For any x ∈ X and y, z ∈ intX ,
it holds that

Dψ(x, y) +Dψ(y, z)−Dψ(x, z) = ⟨∇ψ(z)−∇ψ(y), x− y⟩.
Lemma 10 (Abbasi-Yadkori et al. [2011, Lemma 11]). Let {xt}∞t=1 be a sequence in Rd space,
V0 = λI and define Vt = V0 +

∑t
i=1 xix

⊤
i . If ∥xi∥2 ≤ L,∀i ∈ Z+, then for each t ∈ Z+,

t∑
i=1

min
{
1, ∥xi∥V−1

i−1

}
≤ 2d log

(
dλ+ tL2

dλ

)
.
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