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Abstract
We investigate online Markov Decision Processes (MDPs) with adversarially changing loss
functions and known transitions. We choose dynamic regret as the performance measure,
defined as the performance difference between the learner and any sequence of feasible
changing policies. The measure is strictly stronger than the standard static regret that
benchmarks the learner’s performance with a fixed compared policy. We consider three
foundational models of online MDPs, including episodic loop-free Stochastic Shortest Path
(SSP), episodic SSP, and infinite-horizon MDPs. For these three models, we propose novel
online ensemble algorithms and establish their dynamic regret guarantees respectively, in
which the results for episodic (loop-free) SSP are provably minimax optimal in terms of
time horizon and certain non-stationarity measure. Furthermore, when the online envi-
ronments encountered by the learner are predictable, we design improved algorithms and
achieve better dynamic regret bounds for the episodic (loop-free) SSP; and moreover, we
demonstrate impossibility results for the infinite-horizon MDPs.
Keywords: online MDP, online learning, dynamic regret, non-stationary environments

1. Introduction

Markov Decision Processes (MDPs) are widely used to model decision-making problems,
where a learner interacts with the environments sequentially and aims to improve the learned
strategy over time. The MDPs model is very general and encompasses a variety of ap-
plications, including games (Silver et al., 2016), robotic control (Schulman et al., 2015),
autonomous driving (Kendall et al., 2019), etc.

In this paper, we focus on the online MDPs framework with adversarially changing loss
functions and known transitions, which has attracted increasing attention in recent years
due to its generality (Even-Dar et al., 2009; Zimin and Neu, 2013; Rosenberg and Mansour,
2019a; Jin et al., 2020a; Cohen et al., 2021; Chen et al., 2021a). Let T be the total time
horizon. The general procedures of the online MDPs are as follows: at each round t ∈ [T ],
the learner observes the current state xt and decides a policy πt : X × A → [0, 1], where
πt(a|x) is the probability of taking action a ∈ A at state x ∈ X. Then, the learner draws
and executes an action at from πt(·|xt) and suffers a loss ℓt(xt, at). The environments
subsequently transit to the next state xt+1 according to the transition kernel P (·|xt, at). We
focus on the full-information loss (reward) feedback setting where the entire loss function
is revealed to the learner. The standard measure for online MDPs is the regret defined
as the performance difference between learner’s policy and that of the best fixed policy in
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hindsight, namely,

RegretT =
T∑
t=1

ℓt (xt, πt(xt))−min
π∈Π

T∑
t=1

ℓt (xt, π(xt)) , (1)

where Π is a certain policy class. There are many efforts devoted to optimizing the measure,
yielding fruitful results (Even-Dar et al., 2009; Neu et al., 2010a, 2012; Zimin and Neu,
2013; Neu et al., 2014; Rosenberg and Mansour, 2019a, 2021; Chen et al., 2021a). However,
one caveat in the performance measure in Eq. (1) is that the measure only benchmarks
the learner’s performance with a fixed strategy, so it is usually called the static regret in
the literature. The fact makes the static regret metric not suitable to guide the algorithm
design for online decision making in open and non-stationary environments (Zhou, 2022),
which is often the case in many real-world applications such as online recommendations and
autonomous driving (Grzywaczewski, 2017; Shi et al., 2019; Chen et al., 2018; Zhao et al.,
2021b). In particular, in online MDPs model the loss functions encountered by the learner
can be adversarially changing, it is thus unrealistic to assume the existence of a single fixed
strategy in the policy class that can perform well over the horizon in such scenarios. To this
end, in this paper we introduce the dynamic regret as the performance measure to guide
the algorithm design for online MDPs, which competes the learner’s performance against a
sequence of changing policies, defined as

D-RegretT (π
c
1:T ) =

T∑
t=1

ℓt (xt, πt(xt))−
T∑
t=1

ℓt (xt, π
c
t (xt)) , (2)

where πc1, . . . , πcT ∈ Π is any sequence of compared policies in the policy class Π, which can
be chosen with the complete foreknowledge of all the online loss functions. We use πc1:T as a
shorthand of the compared policies. An upper bound of dynamic regret usually scales with
a certain variation quantity of the compared policies denoted by PT (π

c
1, . . . , π

c
T ) that can

reflect the non-stationarity of environments.
We note that the dynamic regret measure in Eq. (2) is in fact very general due to

the flexibility of compared policies. For example, it immediately recovers the standard
regret notion defined in Eq. (1) when choosing the single best compared policy in hindsight,
namely, choosing πc1:T = π∗ ∈ argminπ∈Π

∑T
t=1 ℓt(xt, π(xt)). Hence, any dynamic regret

upper bound directly implies a static regret upper bound by substituting a fixed compared
policy. Another typical choice is setting the compared policies as the sequence of the best
policy of each round, namely, choosing πct = π∗t ∈ argminπ∈Π ℓt(xt, π(xt)), and the resulting
dynamic regret measure is sometimes referred to as the worst-case dynamic regret in the
literature (Zhang et al., 2018). It is noteworthy to emphasize that the dynamic regret
measure in Eq. (2) does not assume prior information of the compared policies, which is
certainly also unknown to the online algorithms. As a result, the measure is also called
universal dynamic regret (or general dynamic regret) in the sense that the regret bound
holds for any feasible compared policies. Both static regret and the aforementioned worst-
case dynamic regret are two special cases of the universal dynamic regret by configuring
different choices of compared policies.

In this paper, focusing on the dynamic regret measure presented in Eq. (2), we inves-
tigate three foundational and well-studied models of online MDPs: (i) episodic loop-free
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Table 1: Summary of our main results. For three models of online MDPs (episodic loop-free SSP,
episodic SSP, and infinite-horizon MDPs), we establish their dynamic regret guarantees, and better
rates can be achieved for the episodic (loop-free) SSP when the environments are predicable. Our
obtained dynamic regret bounds immediately recover the best known static regret presented in the
last column, when choosing a fixed compared policy and the non-stationarity measure PT or P̄K then
equals to zero. Besides, VK measures the variation of loss functions and reflects the predictability
of environments. Note that all our results are achieved by parameter-free algorithms in the sense
that they do not require the knowledge of unknown quantities related to the environmental non-
stationarity or adaptivity.

MDP Model Ours Result (dynamic regret) Previous Work (static regret)

Episodic loop-free SSP
Õ(H

√
K(1 + PT )) [Theorem 1]

Õ(H
√
K) (Zimin and Neu, 2013)

Õ(H
√
VK(1 + PT )) [Theorem 3]

Episodic SSP
Õ(
√
BK(H∗ + P̄K) + P̄K) [Theorem 4]

Õ(
√
Hπ∗DK) (Chen et al., 2021a)

Õ(
√
VK(H∗ + P̄K) + P̄K) [Theorem 6]

Infinite-horizon MDPs Õ(
√
τT (1 + τPT ) + τ2PT ) [Theorem 8] Õ(

√
τT ) (Zimin and Neu, 2013)

Stochastic Shortest Path (SSP) (Zimin and Neu, 2013), (ii) episodic SSP (Rosenberg and
Mansour, 2021; Chen et al., 2021a), and (iii) infinite-horizon MDPs (Even-Dar et al., 2009).
The first two SSP models belong to episodic MDPs, in which the learner interacts with
environments in episodes and aims to reach a goal state with minimum total loss. The
distinction lies in that the learner is guaranteed to reach the goal state within a fixed num-
ber of steps in the loop-free SSP model; by contrast, the horizon length in general SSP
model depends on the learner’s policies, which could potentially be infinite (if the goal is
not reached). In infinite-horizon MDPs, there is no goal state and the horizon can be never
end and the goal of the learner is to minimize the average loss over time. For all those
three models, we propose novel online algorithms and provide the corresponding expected
dynamic regret guarantees. We also establish several lower bound results and show that the
obtained upper bounds for episodic loop-free SSP and general SSP are minimax optimal in
terms of time horizon and non-stationarity measure. Furthermore, when the online envi-
ronments are not fully adversarial and have some patterns that are predictable, we develop
optimistic variants for episodic (loop-free) SSP and prove that the enhanced algorithms
enjoy problem-dependent dynamic regret bounds, which scale with the variation of online
functions and thereby achieve better result than the minimax rate. We also demonstrate
impossibility results on attaining similar problem-dependent guarantees for infinite-horizon
MDPs. Notably, all our algorithms are parameter-free in the sense that they do not require
knowing the non-stationarity quantity or the variation quantity of online functions ahead of
time. Table 1 summarizes our main results.

Technical contributions. Similar to prior studies of non-stationary online learning (Hazan
and Seshadhri, 2009; Daniely et al., 2015; Zhang et al., 2018; Zhao et al., 2020b), our pro-
posed algorithms fall into the online ensemble framework with a meta-base two-layer struc-
ture. While the general framework is standard in modern online learning, several important
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new ingredients are required to achieve minimax and adaptive dynamic regret guarantees
for online MDPs. We highlight the main technical challenges and contributions as follows.

• For all three models, algorithms are performed over the “occupancy measure” space, so
dynamic regret inevitably scales with the variation of occupancy measures induced by
compared policies, making it necessary to establish relationships between the variation
of occupancy measures and that of compared policies.

• Achieving minimax and adaptive dynamic regret bounds for episodic (non-loop-free)
SSP is one of the most challenging parts of this paper due to the complicated structure
of this model and also the requirement of handling dual uncertainties of unknown hori-
zon length and unknown non-stationarity. This motivates a novel groupwise scheduling
for base-learners and a new weighted entropy regularizer for the meta-algorithm. Ad-
ditionally, appropriate correction terms in the feedback loss and carefully designed
step sizes for both base-algorithm and meta-algorithm are also important.

• For learning in infinite-horizon MDPs, we reduce it to the problem of switching-cost
penalized prediction with expert advice (or simply called switching-cost expert prob-
lem). We prove an impossibility result for problem-dependent (static/dynamic) regret
of switching-cost expert problem, which might be of independent interest.

Notations. We present several general notations used throughout the paper. We use
ℓ ∈ Rd[a,b] to denote a vector whose each element satisfies ℓi ∈ [a, b] for i ∈ [d]. For a
vector a ∈ Rd, a2 denotes the vector (a21, . . . , a

2
d)

⊤ ∈ Rd. Besides, ei ∈ Rd denotes the i-th
standard basis vector. For a convex function ψ, its induced Bregman divergence is defined
as Dψ(u,w) = ψ(u)− ψ(w)− ⟨∇ψ(w), u− w⟩. Given two policies π and π′, ∥π − π′∥1,∞ =

maxx∥π(·|x)− π′(·|x)∥1. Õ(·) omits the logarithmic factors on horizon length T .

Organization. The rest of the paper is organized as follows. Section 2 reviews the related
work. In Section 3 and Section 4, we establish the minimax dynamic regret and present
problem-dependent adaptive results for episodic loop-free and general (non-loop-free) SSP
respectively. In Section 5, we provide dynamic regret upper bounds and impossibility results
for the infinite-horizon online MDPs. Section 6 presents the empirical studies. Section 7
concludes the paper and discusses the future work. We defer all the proofs to the appendices.

2. Related Work

This section presents discussions on several topics related to this work. The first part is
about the development of static regret for online adversarial MDPs, and the second part
reviews related advance of dynamic regret minimization in non-stationary online learning.

2.1 Online Adversarial MDPs

Learning with adversarial MDPs has attracted much attention in recent years. We briefly
discuss related works on three models of online MDPs studied in this paper, including
episodic loop-free SSP, episodic (non-loop-free) SSP, and infinite-horizon MDPs.
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Episodic loop-free SSP. Neu et al. (2010a) first study learning in the episodic SSP with
a loop-free structure and known transition, where an Õ(H2

√
K) regret is achieved in the full

information setting and K is the number of the episodes and H is the horizon length in each
episode. Later Zimin and Neu (2013) propose the O-REPS algorithm which applies mirror
descent over occupancy measure space and achieves the optimal regret of order Õ(H

√
K).

Neu et al. (2010a); Zimin and Neu (2013) also consider the bandit feedback setting. Neu
et al. (2012); Rosenberg and Mansour (2019a) investigate the unknown transition kernel and
full-information setting. Rosenberg and Mansour (2019b) and Jin et al. (2020a) further con-
sider the harder unknown transition kernel and bandit-feedback setting. The linear function
approximation setting is also studied (Cai et al., 2020). Notably, our results for episodic
loop-free SSP (see Section 3) focus on known transition and full-information feedback set-
ting. Different from all mentioned results minimizing static regret, our proposed algorithm
is equipped with dynamic regret guarantee, which can recover the Õ(H

√
K) minimax op-

timal static regret when choosing compared policies as the best fixed policy in hindsight.
Furthermore, when the environments are predictable, we enhance the algorithm to capture
such adaptivity and hence enjoy better dynamic regret guarantees than the minimax rate.

Episodic SSP. Rosenberg and Mansour (2021) first consider learning in episodic (non-
loop-free) SSP with full-information loss feedback. Their algorithm achieves an Õ( D

cmin

√
K)

regret for the known transition setting, where cmin ∈ (0, 1] is the lower bound of the loss
function and D is the diameter of the MDP. They also study the zero costs case and un-
known transition setting. Chen et al. (2021a) develop algorithms that significantly improve
the results and achieve minimax regret Õ(

√
Hπ∗DK) for the full information with known

transition setting, where Hπ∗ is the hitting time of the optimal policy. They also investigate
the unknown transition setting. Our results for episodic SSP (see Section 4) focus on the
known transition and full-information setting. We develop an algorithm with optimal dy-
namic regret guarantees. Our result immediately recovers the optimal Õ(

√
Hπ∗DK) static

regret when setting comparators as the best fixed policy in hindsight. We further enhance
our algorithm to achieve a more adaptive bound when the environments are predictable.

Infinite-horizon MDPs. Even-Dar et al. (2009) consider learning in unichain MDPs
with known transition and full-information feedback, they propose the algorithm MDP-E
that enjoys Õ(

√
τ3T ) regret, where τ is the mixing time. Another work (Yu et al., 2009)

achieves Õ(T 2/3) regret in a similar setting. The O-REPS algorithm of Zimin and Neu
(2013) achieves an Õ(

√
τT ) regret. Neu et al. (2010b, 2014) consider the known transition

kernel and bandit feedback setting. These studies focus on the MDPs with uniform mixing
properties, which could be strong. Recent study tries to relax the assumption by considering
the larger class of communicating MDPs (Chandrasekaran and Tewari, 2021). Our results
for infinite-horizon MDPs (see Section 5) focus on the known transition and full-information
feedback setting and propose an algorithm that enjoys dynamic regret which can recover
the best-known Õ(

√
τT ) static regret.

Discussion. We note that all those works focus on the static regret minimization, and
our work establishes the dynamic regret for all the three online MDPs models. In a setting
most similar to ours, Fei et al. (2020) investigate the dynamic regret of episodic loop-free
SSP (with function approximation). They propose two model-free algorithms and prove the
dynamic regret bound scaling with non-stationarity of environments. However, we note that
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their algorithms require the prior knowledge of non-stationarity measure PT as input, which
is generally unavailable to the learner in practice. By contrast, our proposed algorithms
are parameter-free to those unknown quantities related to the underlying environments (in-
cluding non-stationarity measure PT and adaptivity quantity VT ). More importantly, we
also consider dynamic regret of two more challenging settings of online MDPs — episodic
(non-loop-free) SSP and infinite-horizon MDPs.

2.2 Non-stationary Online Learning

In this part, we first discuss related works of non-stationary MDPs (whose online loss func-
tions are stochastic, whereas our paper studies the adversarial setting) and then discuss
dynamic regret of online convex optimization whose techniques are related to us.

Online Non-stationary MDPs. Another related line of research is on the online non-
stationary MDPs. More specifically, in contrast to learning with adversarial MDPs where
the online loss functions are generated in an adversarial way, online non-stationary MDPs
consider the setting where reward (loss) functions are generated in a stochastic way according
to a certain reward distribution that might be non-stationary over the time. For infinite-
horizon MDPs, Jaksch et al. (2010) consider the piecewise-stationary setting where the losses
and transition kernels are allowed to change a fixed number and then propose UCRL2 with
restarting mechanism to handle the non-stationarity. Later, Gajane et al. (2018) propose
an alternative approach based on the sliding-window update for the same setting, and is
later generalized to more general non-stationary setting with gradual drift (Ortner et al.,
2019). However, all above approaches require the prior knowledge on the degree of non-
stationarity, either the number of piecewise changes or the tensity of gradual drift. Recently,
Cheung et al. (2020) propose the Bandit-over-RL algorithm to remove the requirement
of unknown non-stationarity measure, but nevertheless can only obtain suboptimal result.
Other results for non-stationary MDPs includes episodic non-stationary MDPs (Mao et al.,
2021; Domingues et al., 2021) and episodic non-stationary linear MDPs (Touati and Vincent,
2020; Zhou et al., 2020). The techniques in those studies are related to the thread of
stochastic linear bandits (Jin et al., 2020b; Yang and Wang, 2020; Zhao et al., 2020a). A
recent breakthrough is made by Wei and Luo (2021), who propose a black-box approach
that can turn a certain algorithm with optimal static regret in a stationary environment
into another algorithm with optimal dynamic regret in a non-stationary environment, and
more importantly, the overall approach does not require any prior knowledge on the degree
of non-stationarity. They achieve optimal dynamic regret for episodic tabular MDPs (Mao
et al., 2021; Zhou et al., 2020; Touati and Vincent, 2020). For infinite-horizon MDPs, they
can achieve optimal dynamic regret when the maximum diameter of MDP is known or the
degree of non-stationarity is known (Gajane et al., 2018; Cheung et al., 2020); when none
of them is know, they attain suboptimal regret but is still the best-known result.

Non-stationary Online Convex Optimization. Online convex optimization (OCO) is
a fundamental and versatile framework for modeling online prediction problems (Hazan,
2016). Dynamic regret of OCO has drawn increasing attention in recent years, and tech-
niques are highly related to ours. We here briefly review some related results and refer the
reader to the latest paper (Zhao et al., 2021c) for a more thorough treatment. Dynamic

6



Dynamic Regret of Online Markov Decision Processes

regret ensures the online learner to be competitive with a sequence of changing comparators,
and is sometimes called tracking regret or switching regret in the study of prediction with
expert advice setting (Cesa-Bianchi et al., 2012). As mentioned in Section 1, this paper
focuses on the general dynamic regret that allows the any feasible comparators in the deci-
sion set, which is also called universal dynamic regret. A special variant is called worst-case
dynamic regret, which only competes with the sequence of minimizers of online functions
and has gained much attention in the literature (Besbes et al., 2015; Jadbabaie et al., 2015;
Yang et al., 2016; György and Szepesvári, 2016; Chen et al., 2019; Baby and Wang, 2019;
Zhang et al., 2020; Zhao and Zhang, 2021). However, the worst-case dynamic regret would
be problematic or even misleading in many cases, for example, approaching the minimizer
of each-round online function would lead to overfitting when the environments admit some
noise (Zhang et al., 2018). Thus, the universal dynamic regret is generally more desired to
be performance measure for algorithm design in non-stationary online learning. We now
introduce the results in this regard. Zinkevich (2003) first considers the universal dynamic
regret of OCO and shows that Online Gradient Descent (OGD) enjoys O(

√
T (1 + PT )) dy-

namic regret, where PT is the path length of the comparators reflecting the non-stationarity
of the environments. Later, Zhang et al. (2018) propose a novel algorithm and prove a mini-
max optimal O(

√
T (1 + PT )) dynamic regret guarantee without requiring the knowledge of

unknown PT . Their proposed algorithm employs the meta-base structure, which turns out
to be a key component to handle unknown non-stationarity measure PT . When the envi-
ronments are predictable and the loss functions are convex and smooth, Zhao et al. (2020b,
2021c) develop an algorithm, achieving problem-dependent dynamic regret which could be
much smaller than the minimax rate. Baby and Wang (2021, 2022) consider OCO with
exp-concave or strongly convex loss functions. Dynamic regret of bandit online learning is
studied for adversarial linear bandits (Luo et al., 2022) and bandit convex optimization (Zhao
et al., 2021a). More discussions can be found in the latest advance (Zhao et al., 2021c).

3. Episodic Loop-free Stochastic Shortest Path

This section presents our results for episodic loop-free SSP, a foundational and conceptually
simple model of online MDPs. We first introduce the problem setup, then establish the
minimax dynamic regret, and finally provide the adaptive results.

3.1 Problem Setup

An episodic online MDP is specified by a tuple M = (X, g,A, P, {ℓk}Kk=1), where X and A
are the finite state and action spaces, g /∈ X is the goal state, P : X ×A×X ∪ {g} → [0, 1]

is the transition kernel, K is the number of episodes and ℓk ∈ R|X||A|
[0,1] is the loss function

in episode k ∈ [K]. An episodic loop-free SSP is an instance of episodic online MDPs
and further satisfies the following conditions: state space X ∪ {g} can be decomposed into
H + 1 non-intersecting layers denoted by X0, . . . , XH−1, g such that X0 = {x0} and g are
singletons, and transitions are only possible between the consecutive layers. Notice that the
total horizon is T = KH.

The learning protocol of episodic loop-free SSP proceeds in K episodes. In each episode
k ∈ [K], environments decide a loss ℓk : X × A → [0, 1], and simultaneously the learner
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starts from state x0 and moves forward across consecutive layers until reaching the goal
state g. We focus on the full-information setting, namely, the loss is revealed to the learner
after the episode ends. Notably, no statistical assumption is imposed on the loss sequence,
which means the online loss functions can be chosen in an adversarial manner.

Occupancy measure. Existing studies reveal the importance of the concept “occupancy
measure” in handling online MDPs (Zimin and Neu, 2013; Rosenberg and Mansour, 2019a),
which deeply connects the problem of online MDPs with online convex optimization. Given
a policy π and transition kernel P , the occupancy measure qπ ∈ R|X||A|

[0,1] is defined as
the probability of visiting state-action pair (x, a) by executing policy π, i.e., qπ(x, a) =
Pr
[
xl(x) = x, al(x) = a | P, π

]
, where l(x) is the index of the layer that x belongs to. For

an episode loop-free SSP instance M , its occupancy measure space is defined as ∆(M) =

{q | q ∈ R|X||A|
≥0 and q satisfies constraints (C1) and (C2)}, where the two constraints are

described below. First, (C1) requires that for all layer l = 0, . . . ,H − 1,∑
x∈Xl

∑
a∈A

q(x, a) = 1,

and second (C2) requires that for every x ∈ X \ {x0} the following equation holds:∑
a∈A

q(x, a) =
∑

x′∈Xl(x)−1

∑
a′∈A

P (x|x′, a′)q(x′, a′)

For any occupancy measure q ∈ ∆(M), it induces a policy π such that

π(a|x) = q(x, a)∑
b∈X q(x, b)

(3)

holds for all (x, a) ∈ X ×A. Existing study shows that there exists a unique induced policy
for all measures in ∆(M) and vice versa (Zimin and Neu, 2013). Then, the expected loss of
any policy π at episode k can be written as

E

[
H−1∑
l=0

ℓk(xl, al | P, π)

]
=

H−1∑
l=0

∑
x∈Xl

∑
a∈A

qπ(x, a)ℓt(x, a) =
∑
x∈X

∑
a∈A

qπ(x, a)ℓt(x, a) = ⟨qπ, ℓk⟩,

where the expectation is taken over the randomness of the policy and transition kernel.
Note the total horizon T of episodic loop-free SSP can be divided into K episodes, each
with horizon length H, i.e., T = KH. Denote by πk,l the policy at layer l ∈ {0} ∪ [H −
1] in episode k ∈ [K], the policy sequence π1, . . . , πT in Eq. (1) can be represented by
π1,0, . . . , π1,H−1, π2,0, . . . , πK,H−1. We use the notation πk as a shorthand of πk,0:H−1 for
notational simplicity. Then we can rewrite the expected static regret in Eq. (1) as follows:

E [RegretK ] ≜ E

[
K∑
k=1

H−1∑
l=0

ℓk(xl, πk,l(xl))

]
−min

π∈Π
E

[
K∑
k=1

H−1∑
l=0

ℓk(xl, πl(xl))

]
(4)

=
K∑
k=1

⟨qπk , ℓk⟩ − min
q∈∆(M)

K∑
k=1

⟨q, ℓk⟩.
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Dynamic regret. As discussed before, the static regret metric not suitable to guide the
algorithm design in non-stationary environments. To this end, we focus on the expected
dynamic regret that competes the learner’s performance against any sequence of changing
policies πc1:K , as defined in Eq. (2). Similar to the derivation in Eq. (4), we can also rewrite
the expected dynamic regret into a form with respect to the occupancy measure:

E [D-RegretK(πc1:K)] ≜ E

[
K∑
k=1

H−1∑
l=0

ℓk(xl, πk,l(xl))

]
− E

[
K∑
k=1

H−1∑
l=0

ℓk(xl, π
c
k,l(xl))

]

=
K∑
k=1

⟨qπk , ℓk⟩ −
K∑
k=1

⟨qπck , ℓk⟩, (5)

where qπck is the occupancy measure of the compared policy πck for all k ∈ [K]. The non-
stationarity measure is naturally defined as PT =

∑K
k=2

∑H−1
l=0 ∥πck,l − πck−1,l∥1,∞.

3.2 Minimax Dynamic Regret

Before presenting our algorithm for dynamic regret of episodic loop-free SSP, we first briefly
review the O-REPS algorithm of Zimin and Neu (2013) developed for minimizing the static
regret. The key idea of O-REPS is to perform the online mirror descent over the occupancy
measure space ∆(M), specifically, at episode k + 1, the learner updates the prediction by

qk+1 = argmin
q∈∆(M)

η⟨q, ℓk⟩+Dψ(q, qk),

where η > 0 is the step size, ψ(q) =
∑

x,a q(x, a) log q(x, a) is the standard negative entropy,
and Dψ(·, ·) is the induced Bregman divergence. Zimin and Neu (2013) prove that O-REPS
enjoys an O(H

√
K log (|X||A|)) static regret.

By slightly modifying the algorithm, in following lemma we show O-REPS over a clipped
occupancy measure space can achieve dynamic regret guarantees. Specifically, define the
clipped space as ∆(M,α) = {q | q ∈ ∆(M), and q(x, a) ≥ α,∀x, a} with 0 < α < 1
being the clipping parameter, we prove that performing O-REPS over ∆(M,α) ensures the
following dynamic regret, whose proof can be found in Appendix B.2.

Lemma 1. Set q1 = argminq∈∆(M,α) ψ(q). For any compared policies πc1, . . . , π
c
K ∈ {π |

qπ ∈ ∆(M,α)}, O-REPS over a clipped occupancy measure space ∆(M,α) ensures

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤ ηT +

1

η

(
H log

|X||A|
H

+ P̄T log
1

α

)
,

where P̄T = P̄T (π
c
1, . . . , π

c
K) =

∑K
k=2∥qπ

c
k −qπ

c
k−1∥1 is the path length of occupancy measures.

To achieve a favorable dynamic regret, we need to set the step size η optimally to balance
time horizon T and the path length of occupancy measures P̄T . However, we actually do
not have prior knowledge of P̄T even after the horizon ends since the compared policies
can be arbitrarily chosen in the feasible set. Thus, we cannot apply the standard adaptive
step size tuning techniques such as doubling trick (Cesa-Bianchi et al., 1997) or self-confident

9
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Algorithm 1 DO-REPS
Input: step size pool H = {η1, . . . , ηN}, learning rate ε and clipping parameter α.
1: Define: ψ(q) =

∑
x,a q(x, a) log q(x, a), ∀q ∈ ∆(M,α).

2: Initialization: set q1,i = argminq∈∆(M,α) ψ(q) and p1,i = 1/N,∀i ∈ [N ].
3: for k = 1 to K do
4: Receive qk,i from base-learner Bi for i ∈ [N ].
5: Compute the occupancy measure qk =

∑N
i=1 pk,iqk,i.

6: Play the induce policy πk(a|x) = qk(x, a)/
∑

b∈X qk(x, b), ∀x ∈ X, a ∈ A.
7: Suffer losses {ℓk(x0, a0), . . . ℓk(xH−1, aH−1)} and observe loss function ℓk.
8: Update the weight by pk+1,i ∝ exp(−ε

∑k
s=1 hs,i) where hk,i = ⟨qk,i, ℓk⟩,∀i ∈ [N ].

9: Each base-learner Bi updates qk+1,i = argminq∈∆(M,α) ηi⟨q, ℓk⟩+Dψ(q, qk,i).
10: end for

tuning (Auer et al., 2002) to remove the dependence on P̄T . To address the issue, we employ
a meta-base two-layer structure to handle the uncertainty (Zhang et al., 2018; Zhao et al.,
2020b). Specifically, we first construct a step size pool H = {η1, · · · , ηN} (N is the number
of candidate step sizes and is of order O(log T ) whose configuration will be specified later)
to discretize value range of the optimal step size; and then initialize multiple base-learners
simultaneously, denoted by B1, · · · ,BN , where Bi returns her prediction qk,i by performing
O-REPS with step size ηi ∈ H; finally a meta-algorithm is used to combine predictions of
all base-learners and yield the final output {qk}Kk=1. Below, we specify the details.

At episode k ∈ [K], the learner receives the decision qk,i from each base-learner Bi,∀i ∈
[N ] and the weight vector pk ∈ ∆N from meta-algorithm. Then the learner outputs the
decisions by qk =

∑N
i=1 pk,iqk,i, plays the corresponding policy πk(a|x) ∝ qk(x, a), ∀x, a, suf-

fers loss {ℓk(x0, a0), . . . ℓk(xH−1, aH−1)} where {(x0, a0), . . . (xH−1, aH−1)} is the traversed
trajectory and observes the loss function ℓk.

After that, the base-algorithm updates by performing O-REPS over the clipped occu-
pancy space ∆(M,α) with a customized step size in pool H. Concretely, for i ∈ [N ],
denote by {qk,i}Kk=1 the occupancy measure sequence returned by the base-learner Bi, and
the base-learner Bi updates according to

qk+1,i = argmin
q∈∆(M,α)

ηi⟨q, ℓk⟩+Dψ(q, qk,i),

where ηi ∈ H is the step size associated with the base-learner Bi.
The meta-algorithm aims to track the unknown best base-learner. We employ the Hedge

algorithm (Freund and Schapire, 1997) that updates the weight pk+1 ∈ ∆N by pk+1,i ∝
exp(−ε

∑k
s=1 hs,i) where ε > 0 is the learning rate of the meta-algorithm, hk ∈ RN evaluates

the performance of the base-learners and is set as hk,i = ⟨qk,i, ℓk⟩ for i ∈ [N ].
Algorithm 1 summarizes our proposed Dynamic O-REPS (DO-REPS) algorithm. In the

following, we present the dynamic regret guarantee for the proposed algorithm.

Theorem 1. Set the step size pool H = {ηi = 2i−1
√
K−1 log(|X||A|/H) | i ∈ [N ]}, where

N = ⌈12 log(1+
4K log T

log(|X||A|/H))⌉+1, the learning rate of meta-algorithm as ε =
√
(logN)/(HT )

10
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and the clipping parameter α = 1/T 2. DO-REPS (Algorithm 1) satisfies

E[D-RegretK(πc1:K)] ≤ O
(√

T (H log |X||A|+ P̄T log T )
)
≤ O

(
H
√
K(log |X||A|+ PT log T )

)
,

where P̄T = P̄T (π
c
1, . . . , π

c
K) =

∑K
k=2∥qπ

c
k − qπ

c
k−1∥1 is the path length of occupancy measures

and PT =
∑K

k=2

∑H−1
l=0 ∥πck,l − πck−1,l∥1,∞ is the path length of the compared policies.

Remark 1. Setting compared policies πc1:K = π∗ (then PT = 0 and also P̄T = 0), Theorem 1
recovers the O(H

√
K log |X||A|) minimax optimal static regret of Zimin and Neu (2013).

The proof can be found in Appendix B.3. Note that Theorem 1 presents two dynamic
regret bounds in terms of either the path length of occupancy measures P̄T or the path
length of compared policies PT (see definition at the end of Section 3.1). To achieve the
latter one, we establish the relationship of path length variations between compared policies
and their induced occupancy measures. Indeed, we prove that P̄T ≤ HPT holds in the
episode loop-free SSP, and a formal description can be found in Lemma 7 of Appendix B.1.

We finally establish the lower bound in Theorem 2, which indicates the minimax opti-
mality of our attained upper bound in terms of T and P̄T (up to logarithmic factors). The
proof of Theorem 2 can be found in Appendix B.4.

Theorem 2. For any online algorithm and any γ ∈ [0, 2T ], there exists an episode loop-
free SSP with K episodes, H layers, |X| states and |A| actions and a sequence of compared
policies πc1, . . . , π

c
K such that

P̄T (π
c
1, . . . , π

c
K) ≤ γ and E[D-RegretK(πc1:K)] ≥ Ω(

√
T (H + γ) log |X||A|)

under the full-information and known transition setting.

3.3 More Adaptive Results

In previous subsection, online loss functions are supposed to be chosen in a possibly adver-
sarial manner. However, in certain applications, they might have some patterns and could be
predictable. In such cases, there is a chance to enhance our algorithm to enjoy an adaptive
bound better than the minimax rate. Thus, we propose the Optimistic DO-REPS algorithm
that can exploit the predictability of environments to obtain more adaptive bounds.

The Optimistic DO-REPS algorithm follows the meta-base two-layer structure similar
to the DO-REPS algorithm proposed in the last subsection. We adopt the optimistic on-
line learning framework (Chiang et al., 2012; Rakhlin and Sridharan, 2013) to exploit the
predictability of the environments. Specifically, let mk be the prior knowledge (or called op-
timism) at the beginning of episode k, serving as a guess of the loss ℓk. Optimistic DO-REPS
maintains N base-learners denoted by B1, . . . ,BN , where the base-learner Bi updates by

qk,i = argmin
q∈∆(M,α)

ηi⟨q,mk⟩+Dψ(q, q̂k,i), and q̂k+1,i = argmin
q∈∆(M,α)

ηi⟨q, ℓk⟩+Dψ(q, q̂k,i). (6)

Here ηi is the associated step size from step size pool H. The meta-algorithm also takes the
optimism into account and updates the weight vector pk ∈ ∆N by pk,i ∝ exp

(
−ε(

∑k−1
s=1 hs,i+

Mk)
)
, where hs,i = ⟨qs,i, ℓk⟩, ∀i ∈ [N ] evaluates the performance of the base-learner Bi, and
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Algorithm 2 Optimistic DO-REPS
Input: size pool H = {η1, . . . , ηN}, learning rate ε and clipping parameter α.
1: Define: ψ(q) =

∑
x,a q(x, a) log q(x, a),∀q ∈ ∆(M,α).

2: Initialization: q̂1,i = argminq∈∆(M,α) ψ(q), and p1,i = 1/N,∀i ∈ [N ].
3: for k = 1 to K do
4: Receive optimism mk ∈ R|X||A|

[0,1] and feed it to all base-learners.
5: Each base-learner Bi updates qk,i = argminq∈∆(M,α) ηi⟨q,mk⟩+Dψ(q, q̂k,i).
6: Update the weight pk ∈ ∆N by pk,i ∝ exp

(
−ε(

∑k−1
s=1 hs,i+Mk)

)
, where hk,i = ⟨qk,i, ℓk⟩

and Mk,i = ⟨qk,i,mk⟩,∀i ∈ [N ].
7: Compute the occupancy measure qk =

∑N
i=1 pk,iqk,i.

8: Play the induce policy πk(a|x) = qk(x, a)/
∑

b∈X qk(x, b), ∀x ∈ X, a ∈ A.
9: Suffer losses {ℓk(x0, a0), . . . ℓk(xH−1, aH−1)} and observe loss function ℓk.

10: Each base-learner Bi updates q̂k+1,i = argminq∈∆(M,α) ηi⟨q, ℓk⟩+Dψ(q, q̂k,i).
11: end for

Mk is set as Mk,i = ⟨qk,i,mk⟩, ∀i ∈ [N ], serving as the hint of the next-round hk for meta-
algorithm’s update. Algorithm 2 summarizes the procedures, and the improved algorithm
enjoys the following adaptive bound.

Theorem 3. Set the step size pool H = {ηi = 2i−1
√
K−1 log(|X||A|/H) | i ∈ [N ]}, where

N = ⌈12 log(K + 4K2 log T
log(|X||A|/H))⌉ + 1, learning rate ε =

√
(logN)/(H2(1 + VK)) and the

clipping parameter α = 1/T 2. Optimistic DO-REPS (Algorithm 2) satisfies

E[D-RegretK(πc1:K)] ≤ O
(
H
√
VK(log |X||A|+ PT log T )

)
,

where VK =
∑K

k=1∥ℓk −mk∥2∞ measures the quality of optimism. In particular, setting the
optimism as the last-round loss (namely, mk = ℓk−1) yields the dynamic regret scaling with
variations in online loss functions, i.e.,

∑K
k=1∥ℓk − ℓk−1∥2∞.

Remark 2. Note that the meta-algorithm’s learning rate depends on VK , which can be easily
removed by the standard self-confident tuning (Auer et al., 2002). In addition, compared with
the minimax result in Theorem 1, Theorem 3 exhibits more adaptivity in the sense that the
upper bound depends on VK rather than K, which can be much tighter when environments are
predictable (for example, online loss functions evolve gradually and we choose mk = ℓk−1)
and at the same time safeguards the worst-case rate due to the fact VK ≤ O(K).

4. Episodic Stochastic Shortest Path

In this section, we consider the episodic SSP, which does not necessarily satisfy the loop-free
structure and is thus more general and difficult than the loop-free SSP studied in Section 3.
For this model, we first introduce the formal problem setup and then establish minimax
dynamic regret and finally provide adaptive results.

4.1 Problem Setup

An episodic SSP instance is defined by a tuple M = (X, g,A, P, {ℓk}Kk=1), as the same as
introduced in Section 3.1, x0 ∈ X is the initial state and g /∈ X is the goal state. The
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learning protocol proceeds in K episodes. In each episode k ∈ [K], environments decide a
loss ℓk : X × A → [0, 1], and simultaneously the learner starts from the initial state x0 and
moves to the next state until reaching the goal state g. Thus, the horizon in each episode
depends on the learner’s policy and is unfixed and can be even infinite, leading to inherent
difficulties compared with episodic loop-free SSP. The learner aims to reach the goal state
with a cumulative loss as small as possible. Again, we focus on the full-information setting,
namely, the entire loss is revealed to the learner after the episode ends. Below we introduce
several key concepts and we refer the reader to the work (Chen et al., 2021a) for more details.

Proper policy. A policy is called proper if playing it ensures that the goal state is reached
within a finite number of steps with probability 1 starting from any state, otherwise it
is called improper. The set of all proper policies is denoted by Πproper. Following prior
studies (Rosenberg and Mansour, 2021; Chen et al., 2021a), we assume Πproper ̸= ∅.

Hitting time. Denote by Hπ(x) the expected hitting time of g when executing policy π
and starting from state x. If π is proper, Hπ(x) is finite for any x ∈ X. Let Hπ ≜ Hπ(x0)
be the hitting time of policy π from the initial state x0 to simplify notation. Another useful
concept in SSP is the fast policy πf , defined as the (deterministic) policy that achieves the
minimum expected hitting time starting from any state. The diameter of the SSP is defined
as D ≜ maxx∈X minπ∈Πproper H

π(x) = maxx∈X H
πf
(x). Note that both πf and D can be

computed ahead of time as the transition kernel is known (Bertsekas and Tsitsiklis, 1991).

Cost-to-go function. Given a loss function ℓ and a policy π, the induced cost-to-go
function Jπ : X → [0,∞) is defined as Jπ(x) = E[

∑I
i=1 ℓ(xi, ai) | P, π], where I denotes the

number of steps before reaching g of policy π and the expectation is over the randomness of
the stochastic policy and transition kernel. Denote by Jπk the cost-to-go function for policy
π with respect to loss ℓk from the initial state x0.

Occupancy measure. For the episodic SSP, the occupancy measure qπ ∈ R|X||A| is
defined as the expected number of visits to (x, a) from x0 to g when executing π, i.e.,
qπ(s, a) = E[

∑I
t=1 1{xt = x, at = a} | P, π, x1 = x0]. Similar to the case in loop-free SSP,

the induced policy of a given occupancy measure q : X × A → [0,∞) can be calculated by
π(a|x) ∝ q(x, a),∀x ∈ X, a ∈ A. It holds that Hπ =

∑
x,a q

π(x, a). Based on the occupancy
measure, we can rewrite the cost-to-go function Jπk as follows:

Jπk = E
[ Ik∑
i=1

ℓk(xi, ai) | P, πk
]
=
∑
x,a

qπ(x, a)ℓk(x, a) = ⟨qπ, ℓk⟩,

where Ik denotes the number of steps before reaching g of policy π in episode k. Then the
expected static regret in Eq. (1) for episodic SSP can be written as

E [RegretK ] ≜ E
[ K∑
k=1

(Jπkk − Jπ
∗

k )

]
= E

[ K∑
k=1

⟨qπk − qπ
∗
, ℓk⟩

]
,

where π∗ = argminπ∈Πproper

∑K
k=1 J

π
k . Two important quantities related to π∗ are commonly

used in the analysis: (i) its hitting time Hπ∗ from initial state x0; and (ii) the cumulative
loss

∑K
k=1 J

π∗
k during K episodes. The cumulative loss of the best policy is smaller than the
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fast policy, i.e.,
∑K

k=1 J
π∗
k ≤

∑K
k=1 J

πf

k ≤ DK, where the last inequality holds due to the
definition of the fast policy and the boundedness of the loss range in [0, 1].

Dynamic regret. To handle non-stationary environments, we employ the dynamic regret
as the performance measure to compete against a sequence of changing policies πc1, . . . , πcK ,
as defined in Eq. (2). Similar to the derivation in the episodic loop-free SSP, we can also
rewrite the dynamic regret of episodic (general) SSP in terms of the occupancy measure as

E[D-RegretK(πc1:K)] ≜ E
[ K∑
k=1

(Jπkk − J
πck
k )

]
= E

[ K∑
k=1

⟨qπk − qπ
c
k , ℓk⟩

]
.

Similarly, we generalize the two crucial quantities to accommodate changing compara-
tors: the largest hitting time starting from the initial state H∗ = maxk∈[K]H

πck and the
cumulative loss of compared policies BK =

∑K
k=1 J

πck
k =

∑K
k=1⟨qπ

c
k , ℓk⟩. It is clear that

BK ≤ H∗K. Notably, the sequence of compared policies can be arbitrarily chosen in the
feasible set Π, so it is unknown to the learner even at the end of episodes. Consequently,
both quantities H∗ and BK are unknown to the learner. In addition, we remark that the
inequality of

∑K
k=1 J

πck
k ≤

∑K
k=1 J

πf

k is not necessarily true due to the different possibility
of compared polices, in stark contrast to the analysis in the static regret that competes
with the fixed optimal policy in hindsight (see the counterpart inequality at the end of last
paragraph). For the episodic (non-loop-free) SSP, the non-stationarity measure is naturally
defined as PK =

∑K
k=2∥πck − πck−1∥1,∞.

4.2 Minimax Dynamic Regret

Before introducing our approach, we first review existing works studying static regret and
then illustrate that several crucial ingredients are required to achieve dynamic regret.

To resolve episodic (non-loop-free) SSP, Rosenberg and Mansour (2021) propose to de-
ploy Online Mirror Descent (OMD) over the parametrized occupancy measure space. For
an MDP instance M and a given horizon length H, the parameterized space is defined as
∆(M,H) = {q ∈ R|X||A|

≥0 |
∑

x,a q(x, a) ≤ H and
∑

a q(x, a) =
∑

x′,a′ P (x|x′, a′)q(x′, a′),∀x ∈
X}. The authors prove that OMD enjoys an Õ(H

√
K) static regret as long as qπ∗ ∈

∆(M,H). Therefore, if the largest hitting time Hπ∗ were known ahead of time, a simple
choice of H = Hπ∗ would attain the favorable static regret. However, such information is in
fact unavailable in advance, which motivates a two-layer approach deal with this uncertainty.

Specifically, Chen et al. (2021a) maintain multiple base-learners B1, . . . ,BN , where Bi
works with an occupancy measure space ∆(M,Hi) and a step size ηi and returns her indi-
vidual occupancy measure qik; and then a certain meta-algorithm is employed to combine
predictions of base-learners to produce final decisions qk. Let Bi∗ be the base-learner whose
space size Hi∗ well approximates the unknown Hπ∗ . Denote by LK =

∑K
k=1⟨qk, ℓk⟩, Li

∗
K =∑K

k=1⟨qi
∗
k , ℓk⟩, Lc

K =
∑K

k=1⟨qπ
c
k , ℓk⟩1 the cumulative loss of final decisions, base-learner Bi∗

1. Here we define Lc
K in a general way to accommodate changing comparators, which will be later used in the

explanation of dynamic regret analysis. For this static regret statement, it becomes Lc
K =

∑K
k=1⟨q

π∗
, ℓk⟩.
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and the compared policy, respectively. Then, the overall regret can be decomposed as

E[RegretK ] = E
[ K∑
k=1

⟨qk − qπ
c
k , ℓk⟩

]
= E

[
(LK − Li

∗
K)
]
+ E

[
(Li

∗
K − Lc

K)
]
, (7)

where the two terms are called meta-regret (that captures the regret overhead due to the two-
layer ensemble) and base-regret (that measures the regret of the unknown best base-learner).
To achieve a favorable regret, they propose two mechanisms to control base-regret and meta-
regret respectively. First, they pick the base-algorithm with an Õ(Hi∗/ηi∗+ηi∗L

c
K) small-loss

static regret, which ensures an Õ(
√
Hπ∗DK) base-regret by setting ηi = O(

√
Hi/DK) as

the cumulative loss of the best policy in hindsight satisfies Lc
K ≤ DK. Second, they design

a small-loss type multi-scale online algorithm (roughly, OMD with weighted entropy ψ̄(p) =∑N
i=1

1
εi
pi log pi) as the meta-algorithm to make meta-regret adaptive to the individual loss

range of experts, so that meta-regret is at most Õ(1/εi∗ + εi∗Hi∗L
i∗
K). Combining the base-

regret we further have Li∗K ≤ Lc
K + Õ(

√
Hπ∗DK) ≤ DK + Õ(

√
Hπ∗DK) = Õ(DK) as

Hπ∗ ≤ DK. So an Õ(
√
Hπ∗DK) meta-regret is achievable by setting εi = Õ(1/

√
HiDK),

which in conjunction with the base-regret yields an Õ(
√
Hπ∗DK) static regret.

However, it becomes more involved for dynamic regret. First of all, in addition to
the uncertainty of unknown horizon length H∗, the base level also needs to deal with the
unknown environmental non-stationarity PK . Conceptually, this can be handled by main-
taining more base-learners, which will be specified later. Second and more importantly,
it is challenging to design a compatible meta-algorithm. To see this, suppose we already
have an Õ(

√
BK(PK +H∗)) small-loss dynamic regret for the base-algorithm, where BK =∑K

k=1 J
πck
k is the cumulative loss of compared policies, we then continue the above recipe and

see the issue in meta-regret. Indeed, the meta-regret is at most Õ(1/εi∗+εi∗Hi∗L
i∗
K), and by

the base-regret bound we have Li∗K ≤ Lc
K + base-regret ≤ BK + Õ(

√
BK(PK +H∗)). The

natural upper bound of BK depends on H∗ (recall that BK ≤ H∗K) due to the arbitrary
choice of compared policies. An important technical caveat is that as mentioned earlier
we cannot simply assume the cost-to-go functions of the compared policies {Jπ

c
k

k }1,...,K are
bounded by that of fast policy Jπf

k , in contrast to the static regret analysis where we have∑K
k=1 J

π∗
k ≤

∑K
k=1 J

πf

k due to the optimality of the compared offline policy. Hence, even
with a multi-scale meta-algorithm, meta-regret will be Õ(H∗

√
K) and become the dominat-

ing term, making the final dynamic regret linear in H∗ and thus suboptimal.
To address above issues in both base and meta levels, building upon the structure of Chen

et al. (2021a), we propose a novel two-layer approach to deal with the dual uncertainties
of unknown horizon length and unknown non-stationarity. Specifically, we introduce three
crucial ingredients: groupwise scheduling for base-learners, injecting corrections in feedback
loss of both base and meta levels, and a new multi-scale meta-algorithm. Below, we first de-
scribe the base-algorithm, then introduce the scheduling method that instantiates a bunch of
base-learners with different parameter configurations, and finally design the meta-algorithm
that adaptively combines all the base-learners.
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Base-algorithm. The base-algorithm performs OMD over a clipped occupancy measure
space. At each episode k ∈ [K], the base-algorithm receives the online loss ℓk and performs

qk+1 = argmin
q∈∆(M,H,α)

η⟨q, ℓk + ak⟩+Dψ(q, qk), (8)

where η > 0 is the step size, ∆(M,H,α) = {q ∈ ∆(M,H) | q(x, a) ≥ α,∀x, a} is the clipped
space with α ∈ (0, 1), ψ is the standard negative-entropy regularizer. Notably, we inject
a correction term ak ∈ R|X||A| to the loss, set as ak = 32ηℓ2k, ∀k ∈ [K]. The purpose is
to ensure a small-loss dynamic regret and simultaneously introduce an additional negative
term that will be crucial to address the difficulty occurred in controlling meta-regret (as
mentioned earlier). The base-algorithm enjoys the following dynamic regret.

Lemma 2. Set q1 = argminq∈∆(M,H,α) ψ(q). Suppose η ≤ 1
64 , for any compared policies

πc1, . . . , π
c
K ∈ {π | qπ ∈ ∆(M,H,α)}, the base-algorithm in Eq. (8) ensures

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤

1

η

(
P̄K log

H

α
+H

(
1 + log(|X||A|H)

))
+ 32ηBK − 16η

K∑
k=1

⟨qk, ℓ2k⟩,

where P̄K = P̄K(πc1, . . . , π
c
K) =

∑K
k=2∥qπ

c
k −qπ

c
k−1∥1 is the path length of occupancy measure.

Scheduling. Lemma 2 indicates that given a horizon length H, it is crucial to set step
size properly to achieve tight dynamic regret. Since H affects the base-learner’s feasible
domain (i.e., the parametrized occupancy measure space), we propose a groupwise scheduling
scheme to simultaneously adapt to unknown non-stationarity P̄K and horizon length H∗.
Specifically, due to Hπf ≤ H∗ ≤ K, we first construct a horizon length pool H = {Hi =

2i−1 · Hπf | i ∈ [G]} where G = 1 + ⌈log((K + 1)/Hπf
)⌉ to exponentially discretize the

possible range; and for each Hi in the pool, we further design a step size grid Ei = {ηi,j =
1/(32 · 2j) | j ∈ [Ni]} where Ni = ⌈12 log (

4K
1+log (|X||A|Hi)

)⌉ to search the optimal optimal step

size associated with Hi. Overall, we maintain N =
∑G

i=1Ni base-learners, each of which
associates with a specific space size and step size. More precisely, let Bi,1:Ni be a shorthand
of the i-th group of base-learners Bi,1, . . . ,Bi,Ni , in which they use the same space size Hi

yet different step sizes (see the configuration of Ei). Thus, the set of all base-learners can
be denoted as {B1,1:N1 , . . . ,Bi,1:Ni , . . . ,BG,1:NG

}. The decision of the base-learner Bi,j in
episode k is denoted by qi,jk , with i ∈ [G] and j ∈ [Ni].

Meta-algorithm. The meta-algorithm requires a careful design to achieve a favorable re-
gret. We propose a new meta-algorithm under the standard OMD framework, where addi-
tional designs are required including a novel weighted entropy regularizer and an appropriate
correction term. Specifically, the meta-algorithm updates the weight vector pk+1 ∈ ∆N by

pk+1 = argmin
p∈∆N

⟨p, hk + bk⟩+Dψ̄(p, pk), (9)

where hk ∈ RN is the loss of meta-algorithm, defined as hi,jk = ⟨qi,jk , ℓk⟩,∀i ∈ [G], j ∈ [Ni].
Moreover, there are two important features in the design: (i) an injected correction term
bk ∈ RN ; and (ii) a weighted entropy regularizer ψ̄(p) =

∑N
i=1

1
εi
pi log pi to realize the
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Algorithm 3 CODO-REPS
Input: horizon length pool H = {H1, . . . ,HG}, step size grid Ei = {εi,1, . . . , εi,Ni}, ∀i ∈ [G]

and clipping parameter α.
1: Define ψ(q) =

∑
x,a q(x, a) log q(x, a) and ψ̄(p) as in Eq. (11).

2: Initialize qi,j1 = argminq∈∆(M,H,α) ψ(q), p
i,j
1 ∝ ε2i,j , ∀i ∈ [G], j ∈ [Ni].

3: for k = 1, . . . ,K do
4: Receive qi,jk from base-learner Bi,j ,∀i ∈ [G], j ∈ [Ni].
5: Sample (ik, jk) ∼ pk, play the induced policy πk(a|x) ∝ qik,jkk (x, a), ∀x, a.
6: Suffer losses {ℓk(x1, a1), . . . , ℓk(xIk , aIk)}, receive ℓk, and feed it to all base-learners.
7: Define hi,jk = ⟨qi,jk , ℓk⟩, b

i,j
k = 32εi,j(h

i,j
k )2, ai,jk = 32ηi,jℓ

2
k,∀i ∈ [G], j ∈ [Ni].

8: Each base-learner Bi,j updates qi,jk+1 = argminq∈∆(M,H,α) ηi,j⟨q, ℓk+a
i,j
k ⟩+Dψ(q, q

i,j
k ).

9: Update weight by pk+1 = argminp∈∆N
⟨p, hk + bk⟩+Dψ̄(p, pk).

10: end for

multi-scale online learning, where εi > 0 is a multi-scale learning rate for i ∈ [N ]. Below we
specify the details and explain the motivation behind such designs.

First, in the meta level we inject a correction term bk ∈ RN set as

bi,jk = 32εi,j(h
i,j
k )2, ∀i ∈ [G], j ∈ [Ni]. (10)

Let Bi∗,j∗ be the base-learner whose space size Hi∗ well approximates the unknown H∗
and step size ηi∗,j∗ well approximates the unknown optimal step size. Although injecting
a correction term for the meta-algorithm was also used in (Chen et al., 2021a) to ensure
a small-loss type meta-regret of the form Õ(1/εi∗,j∗ + εi∗,j∗Hi∗L

i∗,j∗

K ), as aforementioned,
this will not lead to an optimal meta-regret in our case due to the undesired upper bound
of Li

∗,j∗

K . Asides from that, our key novelty is to simultaneously exploit the correction
term in the base level, which contributes to an additional negative term in the base-regret
Õ((P̄K + Hi∗)/ηi∗,j∗ + ηi∗,j∗BK − ηi∗,j∗

∑K
k=1⟨q

i∗,j∗

k , ℓ2k⟩). By a careful design of step size
ηi,j and learning rate εi,j , we can successfully cancel the positive term εi∗,j∗Hi∗L

i∗,j∗

K in the
meta-regret by the negative term in the base-regret.

Second, it is known that OMD with a weighted entropy regularizer leads to a multi-scale
expert-tracking algorithm (Bubeck et al., 2019). In our case, we set the weighted entropy
regularizer ψ̄ : ∆N → R as

ψ̄(p) =

G∑
i=1

Ni∑
j=1

1

εi,j
pi,j log pi,j , with εi,j =

ηi,j
2Hi

. (11)

In above, ηi,j is the step size employed by the base-learner Bi,j as specified earlier. Note that
the weighted entropy regularizer depends on both space size and step size such that the final
meta-algorithm can successfully handle the groupwise scheduling over the base-learners.

Combining all above ingredients yields our COrrected DO-REPS (CODO-REPS) algo-
rithm, as summarized in Algorithm 3. We have the following dynamic regret guarantee.

Theorem 4. Set the horizon length pool H = {Hi = 2i−1 · Hπf | i ∈ [G]} with G =

⌈log((K + 1)/Hπf
)⌉, the step size grid Ei = {ηi,j = 1/(32 · 2j) | j ∈ [Ni]} with Ni =
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⌈12 log (
4K

1+log (|X||A|Hi)
)⌉, and the clipping parameter α = 1/K3. CODO-REPS (Algorithm 3)

enjoys the following dynamic regret guarantee,

E[D-RegretK(πc1:K)] ≤ Õ
(√

(H∗ + P̄K)(H∗ + P̄K +BK)
)
.

Remark 3. Setting compared policies πc1:K = π∗ (then PT = 0 and BK =
∑K

k=1 J
π∗
k ),

Theorem 4 implies an Õ(
√
H∗BK) static regret, which gives a small-loss type bound for the

episodic SSP and is new to the literature to the best of our knowledge. The bound is no
worse the minimax rate Õ(

√
H∗DK) of Chen et al. (2021a) as BK =

∑K
k=1 J

π∗
k ≤ DK in

the static case, and can be much better than theirs when best policy behaves well.

Below we show that the result in Theorem 4 is actually minimax in terms of BK and
P̄K up to logarithmic factors.

Theorem 5. For any online algorithm and any γ ∈ [0, 2T ], there exists an episodic SSP
instance with diameter D and a sequence of compared policies πc1, . . . , π

c
K with the largest

hitting time H∗ such that

P̄K ≤ γ and E[D-RegretK(πc1:K)] ≥ Ω(
√
DH∗K(1 + γ/H∗))

under the full-information and known transition setting.

We finally remark that the upper bound in Theorem 4 depends on the path length of
occupancy measures P̄K rather than the path length of compared policies PK . A natural
question is how to upper bound P̄K by PK (up to multiplicative dependence on H∗). How-
ever, we show that this is generally impossible for the episodic (non-loop-free) SSP as stated
in Theorem 10 of Appendix C.1.

4.3 More Adaptive Results

In this part, we design more adaptive algorithm for episodic SSP to achieve better guarantees
in predictable environments.

Similar to the problem setup for episodic loop-free SSPs in Section 3.3, the online learner
receives an optimism mk at the beginning of episode k ∈ [K] as the additional prior knowl-
edge of loss ℓk. A natural motivation is to design algorithms with regret scaling with an
adaptive quantity such as VK =

∑K
k=1∥ℓk − mk∥2∞. However, we point it out that this

quantity might be not suitable for the episodic (non-loop-free) SSP due to the complicated
structure of the model. Technically, even for the static regret, incorporating the optimistic
online learning into Algorithm 3 can only attain an Õ(Hπ∗√

VK) adaptive bound, which
leads to an Õ(Hπ∗√

K) suboptimal bound when mk = 0, ∀k ∈ [K]; recall that the minimax
(near-)optimal regret is of order Õ(

√
Hπ∗DK), and Hπ∗ can be much larger than D.

To this end, we introduce a novel problem-dependent quantity defined in the following
way to measure the quality of optimism m1, . . . ,mK ,

VK = min

{
K∑
k=1

⟨qπck , ℓ2k⟩,
K∑
k=1

⟨qπck , (ℓk −mk)
2⟩

}
. (12)
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We illustrate the advantages of this quantity. On one hand, it safeguards the small-loss
behavior as VK ≤

∑K
k=1 ⟨qπ

c
k , ℓ2k⟩ ≤

∑K
k=1 ⟨qπ

c
k , ℓk⟩ = BK holds for any optimism, which is

crucial in establishing the minimax bound for episodic SSP as presented in Section 4.2. On
the other hand, the quantity VK can be much smaller if the optimism sequence m1, . . . ,mK

is of high quality, for example VK = 0 when mk predicts ℓk perfectly at each episode.
To establish dynamic regret scaling with the desired quantity in Eq. (12), we substan-

tially modify the CODO-REPS algorithm to leverage the predictability of the environments.
First, both base-algorithm and meta-algorithm now use optimistic OMD to incorporate the
optimism, which also requires modifying the injected correction terms correspondingly. Sec-
ond, the quantity VK in fact depends on two optimistic sequences, i.e., {0}k∈K and {mk}k∈K .
To handle multiple optimistic sequences, a natural idea is to learn the best one via another
expert-tracking algorithm (Rakhlin and Sridharan, 2013). However, the critical challenge
is that the quantity VK depends on the unknown compared policies πc1, . . . , πcK , making it
impossible to evaluate the quality of the sequence even after the horizon ends; and thus,
learning the best optimism does not apply to our problem. To address the difficulty, we
propose to maintain two sets of base-learners with different optimism sequences {0}k∈K
and {mk}k∈K , in order to ensure the worst-case robustness; and importantly, an appropri-
ate meta-algorithm is needed to adaptively combine those heterogenous base-learners and
ensure the best-of-both-world result. In what follows, we introduce the details.

Base-algorithm. To exploit the predictability of the environments, the base-algorithm
employs Optimistic OMD over a clipped occupancy measure space. To obtain an appro-
priate base-regret, we incorporate the optimism in the construction of correction terms.
Specifically, let m′

k be the optimism received by the base-algorithm at the beginning of
episode k, the base-algorithm performs

qk = argmin
q∈∆(M,H,α)

η⟨q,m′
k⟩+Dψ(q, q̂k),

q̂k+1 = argmin
q∈∆(M,H,α)

η⟨q, ℓk + ak⟩+Dψ(q, q̂k) with ak = 32η(ℓk −m′
k)

2,
(13)

where η > 0 is the step size, ∆(M,H,α) = {q ∈ ∆(M,H) | q(x, a) ≥ α,∀x, a} is the clipped
space with α ∈ (0, 1), ψ is the negative-entropy regularizer. We incorporate the optimism
in the construction of correction term, namely, ak = 32η(ℓk −m′

k)
2, ∀k ∈ [K]. This aims to

ensure a small-loss dynamic regret and simultaneously introduce an additional negative term
that would be crucial to address the difficulty occurred in controlling meta-regret similar to
that in Section 4.2. Formally, the base-algorithm enjoys the following dynamic regret.

Lemma 3. Set q1 = argminq∈∆(M,H,α) ψ(q). Suppose η ≤ 1
64 , for any compared policies

πc1, . . . , π
c
K ∈ {π | qπ ∈ ∆(M,H,α)}, base-algorithm (13) ensures is upper bounded by

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤

1

η

(
P̄K log

H

α
+H(1 + log(|X||A|H))

)
+ 32η

K∑
k=1

⟨qπck , (ℓk −m′
k)

2⟩ − 16η
K∑
k=1

⟨qk, (ℓk −m′
k)

2⟩.
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Algorithm 4 Optimistic CODO-REPS
Input: horizon length pool H = {H1, . . . ,HG}, step size grid Ei = {εi,1, . . . , εi,Ni}, ∀i ∈ [G]

and clipping parameter α.
1: Define: ψ(q) =

∑
x,a q(x, a) log q(x, a) and ψ̄(p) as in (14).

2: Initialization: q̂ i,j
1 = argminq∈∆(M,Hi,α) ψ(q) and p̂ i,j

1 ∝ ε2i,j ,∀i ∈ [G], j ∈ [2Ni].
3: for k = 1 to K do
4: Receive optimism mk ∈ R|X||A|

[0,1] and feed it to all base-learners.
5: Set optimism for each base-learner Bi,j : m′

k = 0 if j ≤ Ni and m′
k = mk otherwise.

6: Each base-learner Bi,j updates qi,jk = argminq∈∆(M,Hi,α) ηi,j⟨q,m
′
k⟩+Dψ(q, q̂

i,j
k ).

7: Update pk = argminp∈∆N
⟨p,Mk⟩+Dψ̄(p, p̂k) where M i,j

k = ⟨qi,jk ,m
′
k⟩, ∀i, j.

8: Sample (ik, jk) ∼ pk, play the induced policy πk(a|x) ∝ qik,jkk (x, a), ∀x, a.
9: Suffer losses {ℓk(x1, a1), . . . , ℓk(xIk , aIk)}, receive ℓk, and feed it to all base-learners.

10: Define hi,jk = ⟨qi,jk , ℓk⟩, b
i,j
k = 32εi,j(h

i,j
k −M i,j

k )2, ai,jk = 32ηi,j(ℓk −m′
k)

2,∀i, j.
11: Each base-learner Bi,j updates q̂ i,j

k+1 = argminq∈∆(M,Hi,α) ηi,j⟨q, ℓk+a
i,j
k ⟩+Dψ(q, q̂

i,j
k ).

12: Update weight by p̂k+1 = argminp∈∆N
⟨p, hk + bk⟩+Dψ̄(p, p̂k).

13: end for

Scheduling. Similar to that in Section 4.2, we use the groupwise scheduling scheme to
simultaneously adapt to unknown non-stationary measure P̄K and horizon length H∗. The
constructions of the space pool and the step size pool are the same as that in Section 4.2.
We maintain two sets of base-learners with different settings of their optimism, in order to
ensure the worst-case robustness. Specifically, due to Hπf ≤ H∗ ≤ K, we first construct a
horizon length pool H = {Hi = 2i−1 ·Hπf | i ∈ [G]} with G = 1 + ⌈log((K + 1)/Hπf

)⌉ to
exponentially discretize the possible range; and for each Hi in the pool, we further design a
step size grid Ei = {ηi,j = 1/(32 · 2j) | j ∈ [Ni]} with Ni = ⌈12 log (

4K
1+log (|X||A|Hi)

)⌉ to search

the optimal step size associated with Hi. Hence, we maintain N = 2
∑G

i=1Ni base-learners
in total, each of which associates with a specific space size and step size and optimism. Let
Bi,1:2Ni be a shorthand of the i-th group of base-learners Bi,1, . . . ,Bi,2Ni . The configuration
of all those base-learners are as follows.

• For j ≤ Ni, the base-learner Bi,j uses the space size Hi ∈ H, the step size ηi,j ∈ Ei
and the optimism m′

k = 0.

• For j > Ni, the base-learner Bi,j uses the space size Hi ∈ H, the step size ηi,j−Ni ∈ Ei
and the optimism m′

k = mk.

Then the set of all the base-learners can be denoted as {B1,1:2N1 , . . . ,Bi,1:2Ni , . . . ,BG,1:2NG
}.

The decision returned by the base-learner Bi,j on episode k ∈ [K] is denoted by qi,jk , with
i ∈ [G] and j ∈ [2Ni].

Meta-algorithm. Similar to the base-algorithm, we incorporate the optimism in the up-
dates and the construction of the correction term. Specifically, the meta-algorithm updates
the weight vector pk ∈ ∆N by

pk = argmin
p∈∆N

⟨p,Mk⟩+Dψ̄(p, p̂k), p̂k+1 = argmin
p∈∆N

⟨p, hk + bk⟩+Dψ̄(p, p̂k)
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with bi,jk = 32εi,j(h
i,j
k −M i,j

k )2, ∀i ∈ [G], j ∈ [2Ni]. Moreover, hk,MK ∈ RN is the loss and
optimism of meta-algorithm, defined as hi,jk = ⟨qi,jk , ℓk⟩ and M i,j

k = ⟨qi,jk ,m
′
k⟩,∀i ∈ [G], j ∈

[2Ni]. Moreover, ψ̄ : ∆N → R is the weighted entropy regularizer defined as

ψ̄(p) =
G∑
i=1

2Ni∑
j=1

1

εi,j
pi,j log pi,j , with εi,j =

ηi,j
2Hi

. (14)

In above, ηi,j and Hi are the step size and space size employed by the base-learner Bi,j as
specified earlier. The weighted entropy regularizer depends on both space size and step size
such that the final meta-algorithm can successfully handle the groupwise scheduling over the
base-learners. The algorithm is shown in Algorithm 4, which enjoys the following guarantee.

Theorem 6. Under the same setting as Theorem 4, Optimistic CODO-REPS (Algorithm 4)
enjoys the following adaptive dynamic regret guarantee,

E[D-RegretK(πc1:K)] ≤ Õ
(√

(H∗ + P̄K)(H∗ + P̄K + VK)
)
. (15)

where P̄K = P̄K(πc1, . . . , π
c
K) =

∑K
k=2∥qπ

c
k −qπ

c
k−1∥1 is the path length of occupancy measure,

and VK = min{
∑K

k=1 ⟨qπ
c
k , ℓ2k⟩,

∑K
k=1 ⟨qπ

c
k , (ℓk −mk)

2⟩} is the adaptive quantity.

Remark 4. This adaptive bound in Theorem 6 is strictly no worse than the minimax result
in Theorem 4 since VK ≤ BK holds for any optimism sequence, and can become much
tighter if the optimism sequence m1, . . . ,mK is of high quality (for example VK = 0 when
mk predicts ℓk perfects at each episode).

5. Infinite-horizon MDPs

This section studies infinite-horizon MDPs. We begin with the problem setup and then
present our main results, including a reduction to the switching-cost expert problem, the
dynamic regret bound, and an impossibility result for the adaptive bound.

5.1 Problem Setup

An infinite-horizon MDP instance is specified by a tuple M = (X,A,P, {ℓt}∞t=1), where
X,A,P are the same as introduced in Section 3, ℓt ∈ R|X||A|

[0,1] is the loss function at time
t ∈ [T ]. Unlike episodic MDPs studied in previous two sections, infinite-horizon MDPs have
no goal state. The learner aims to minimize the cumulative loss over a T -step horizon in the
MDP. We investigate the uniform mixing MDPs (Even-Dar et al., 2009; Neu et al., 2010b).

Definition 1 (Uniform Mixing). There exists a constant τ ≥ 0 such that for any policy π
and any pair of distributions µ and µ′ over X, we have ∥(µ − µ′)P π∥1 ≤ e−1/τ∥µ − µ′∥1.
The smallest constant τ is called the mixing time.

We note that the uniform mixing assumption is standard and widely adopted in online
MDPs studies (Even-Dar et al., 2009; Neu et al., 2010b, 2014). Nevertheless, the assumption
could be strong in some sense, and recent study trying to relax the assumption by considering
a larger class of communicating MDPs (Chandrasekaran and Tewari, 2021). It would be
interesting to see whether our results can be extended to the communicating MDPs, and we
leave this as future work to investigate.
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Occupancy measure. For an infinite-horizon MDP, the occupancy measure qπ ∈ R|X||A|
[0,1]

is defined as the stationary state-action distribution when executing policy π, i.e., qπ(x, a) =
limT→∞

1
T

∑T
t=1 1{xt = x, at = a}. For an infinite-horizon MDP instance M , its occupancy

measure space is defined as ∆(M) = {q ∈ R|X||A|
[0,1] |

∑
x,a q(x, a) = 1 and

∑
a q(x, a) =∑

x′,a′ P (x|x′, a′)q(x′, a′), ∀x ∈ X}. For any occupancy measure q ∈ ∆(M), its induced
policy π can be obtained by π(a|x) ∝ q(x, a),∀x ∈ X, a ∈ A.

Dynamic regret. As defined in Eq. (2), the dynamic regret of infinite-horizon MDPs
benchmarks the learner’s performance against a sequence of compared policies πc1:T , namely,

E[D-RegretT (π
c
1:T )] = E

[ T∑
t=1

ℓt
(
xt, πt(xt)

)
−

T∑
t=1

ℓt
(
xt, π

c
t (xt)

)]
, (16)

The non-stationarity measure is naturally defined as PT =
∑T

t=2∥πct − πct−1∥1,∞.

5.2 Reduction to Switching-cost Expert Problem

In this part, we present a reduction to the switching-cost expert problem for infinite-horizon
MDPs. In fact, we have the following theorem.

Theorem 7. For infinite-horizon MDPs with a mixing time τ ≥ 0, the expected dynamic
regret against any compared policies πc1:T satisfies

E[D-RegretT (π
c
1:T )] ≤

T∑
t=1

⟨qt − qπ
c
t , ℓt⟩+ (τ + 1)

T∑
t=2

∥qt − qt−1∥1 + (τ + 1)2PT + 4(τ + 1).

(17)

where qt = qπt denotes the occupancy measure of the policy πt, qπ
c
t denotes the occupancy

measure of the compared policy πct , and PT =
∑T

t=2∥πct − πct−1∥1,∞ is the path length of the
sequence of compared policies.

Therefore, it suffices to design an algorithm to minimize the first two terms on the
right-hand side of (17), as the last two terms (τ + 1)2PT + 4(τ + 1) are not related to the
algorithm. This essentially provides a generic regret reduction from infinite-horizon MDPs to
the switching-cost expert problem (Merhav et al., 2002). Specifically, for the expert problem,
at each round t ∈ [T ], the learner chooses a decision qt ∈ ∆N as a weight over all N experts,
then receives the loss ℓt ∈ RN and suffers an instantaneous loss ⟨qt, ℓt⟩. In addition to the
cumulative loss

∑T
t=1⟨qt, ℓt⟩, the switching-cost expert problem further takes the actions’

switch into account by adding λ
∑T

t=2∥qt − qt−1∥1 as the penalty, λ > 0 is the coefficient.
Our reduction also holds for the static regret (simply choosing all compared policies as

a fixed one), perhaps surprisingly, there is no explicit reduction in the literature to the best
of our knowledge, though proof of Theorem 7 is simple and all the ingredients are already in
the pioneering work (Even-Dar et al., 2009) (see Appendix D.2). As another note, Agarwal
et al. (2019) study online non-stochastic control and give a reduction to the switching-cost
online learning problem (or called online convex optimization with memory), while their
reduction does not apply to infinite-horizon MDPs.
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5.3 Dynamic Regret

With the reduction on hand, we now consider the design of a two-layer approach to opti-
mize the dynamic regret of the switching-cost expert problem. It turns out that a recent
result (Zhao et al., 2022) has resolved that expert problem, building upon which we propose
our REgularized DO-REPS (REDO-REPS) algorithm for infinite-horizon MDPs.

As discussed before, it suffices to design an algorithm to minimize the first two terms
in (17), namely, the dynamic regret in terms of the occupancy measure and a switching cost
term. Notice that the first term also appears in optimizing dynamic regret of the episodic
loop-free SSP (see Eq. (5)). Thus, a natural idea is to run DO-REPS (Algorithm 1) over
the occupancy measure space ∆(M,α) = {q ∈ ∆(M) | q(x, a) ≥ α,∀x, a}. Specifically, we
maintain N base-learners denoted by B1, . . . ,BN , where Bi generates the prediction qt,i by
performing O-REPS with a particular step size ηi in the step size pool H; then a meta-
algorithm combines predictions to produce the final decision qt =

∑N
i=1 pt,iqt,i and updates

the weight pt. However, DO-REPS does not take the switching cost into account, leading to
undesired behavior in this problem. To see the reason, we decompose the switching cost as

T∑
t=2

∥qt − qt−1∥1 =
T∑
t=2

∥∥∥ N∑
i=1

pt,iqt,i −
N∑
i=1

pt−1,iqt−1,i

∥∥∥
1

≤
T∑
t=2

∥∥∥ N∑
i=1

pt,iqt,i −
N∑
i=1

pt,iqt−1,i

∥∥∥
1
+

T∑
t=2

∥∥∥ N∑
i=1

pt,iqt−1,i −
N∑
i=1

pt−1,iqt−1,i

∥∥∥
1

=
T∑
t=2

∥∥∥ N∑
i=2

pt,i(qt,i − qt−1,i)
∥∥∥
1
+

T∑
t=2

∥∥∥ N∑
i=1

(pt,i − pt−1,i)qt−1,i

∥∥∥
1

≤
T∑
t=2

N∑
i=1

pt,i∥qt,i − qt−1,i∥1 +
T∑
t=2

∥pt − pt−1∥1. (18)

The second term in the right-hand side of (18) is the meta-algorithm’s switching cost, which
can be easily bounded by O(

√
T ) for common expert-tracking algorithms. However, the first

term is the weighted switching cost of all base-learners, which could be very large and even
grow linearly with iterations due to the base-learners with large step sizes. For example,
when employing OMD as the base-algorithm, the switching cost of Bi is of order O(ηiT ).
Then, the construction of step size pool requires that ηN = O(1), leading to an O(T )
switching cost of the base-learner BN , which ruins the overall regret bound. To address
this, inspired by the recent progress on OCO with memory (Zhao et al., 2022), we add a
switching-cost regularization in evaluating each base-learner, namely, the feedback loss of
the meta-algorithm ht ∈ RN is constructed as

ht,i = ⟨qt,i, ℓt⟩+ λ∥qt,i − qt−1,i∥1. (19)

Set λ = τ + 1, it can be verified that the first two terms in (17) can be written as

T∑
t=1

⟨qt − qπ
c
t , ℓt⟩+ (τ + 1)

T∑
t=2

∥qt − qt−1∥1
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Algorithm 5 REDO-REPS
Input: step size pool H = {η1, . . . , ηN}, learning rate ε and clipping parameter α.
1: Define: ψ(q) =

∑
x,a q(x, a) log q(x, a).

2: Initialization: set q1,i = argminq∈∆(M,α) ψ(q) and p1,i = 1/N for ∀i ∈ [N ].
3: for t = 1 to T do
4: Receive qt,i from base-learner Bi,∀i ∈ [N ].
5: Compute qt =

∑N
i=1 pt,iqt,i, play the induced policy πt(a|xt) ∝ qt(xt, a), ∀a ∈ A.

6: Suffer loss ℓt(xt, at) and observe loss function ℓt.
7: Define the switching-cost-regularized loss as

ht,i = ⟨qt,i, ℓt⟩+ (τ + 1)∥qt,i − qt−1,i∥1, ∀i ∈ [N ].

8: Update weight by pt+1,i ∝ exp(−ε
∑t

s=1 hs,i),∀i ∈ [N ].
9: Each base-learner Bi updates qt+1,i = argminq∈∆(M,α) ηi⟨q, ℓt⟩+Dψ(q, qt,i).

10: end for

=
T∑
t=1

(⟨pt, ht⟩ − ht,i) + λ
T∑
t=2

∥pt − pt−1∥1︸ ︷︷ ︸
meta-regret

+
T∑
t=1

⟨qt,i − qπ
c
t , ℓt⟩+ λ

T∑
t=2

∥qt,i − qt−1,i∥1︸ ︷︷ ︸
base-regret

. (20)

As a result, we have decomposed the switching-cost dynamic regret into two parts — the first
part is the meta-regret regarding the regularized loss ht that measures the regret overhead of
the meta-algorithm penalized by the corresponding switching cost, and the second part is the
base-regret of a specific base-learner Bi taking her switching cost into account. Consequently,
by slightly modifying DO-REPS (Algorithm 1), we get REgularized DO-REPS (REDO-
REPS) algorithm as shown in Algorithm 5. The key difference is the designed switching-
cost-regularized loss for the meta-algorithm’s update in Lines 7–8, such that the overall
two-layer approach can achieve a desired dynamic regret with switching cost as shown below.

Theorem 8. Set the step size pool H =
{
2i−1

√
T−1 log |X||A| | i ∈ [N ]

}
where N =

⌈12 log(1 + 4T log T
log |X||A|)⌉ + 1, the learning rate ε = (2τ + 3)−1

√
(logN)/2T and the clipping

parameter α = 1/T 2. REDO-REPS (Algorithm 5) ensures

E[D-RegretT ] ≤ O
(√

τT (log |X||A|+ τPT log T ) + τ2PT

)
.

Remark 5. Set πc1:T = π∗ ∈ argminπ∈Π
∑T

t=1 ℓt(xt, π(xt)) (then PT = 0), Theorem 8
recovers the best known static regret O(

√
τT log |X||A|) (Zimin and Neu, 2013). Note that

the dynamic regret scales with the path length of compared policies rather than the path length
of occupancy measures. To achieve so, we establish relationships of path length variations
between compared policies and their induced occupancy measures, which can be found in
Lemma 12 of Appendix D.1.

5.4 More Adaptive Results

We finally consider whether it is possible to enhance our algorithm to achieve adaptive
dynamic regret bounds.
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Based on the reduction in Theorem 7, we naturally consider how to design adaptive
algorithms for the switching-cost problem that can exploit the predictability of environments.
Unfortunately, we only have a negative result in this regard.

Theorem 9. For any online algorithm, there exists a loss sequence ℓ1, . . . , ℓT such that the
returned decision sequence q1, . . . , qT satisfies

T∑
t=1

⟨qt, ℓt⟩ − min
q∈∆N

T∑
t=1

⟨q, ℓt⟩+
T∑
t=2

∥qt − qt−1∥1 ≥ Ω
(√√√√1 +

T∑
t=2

∥ℓt − ℓt−1∥2∞
)
.

Theorem 9 indicates that even for the static regret (a special case of our concerned
dynamic regret) of the switching-cost expert problem, it is impossible to obtain variation-
type adaptive bound, not to mention a general optimistic bound.

We note that a similar trade-off between adaptivity and switching cost was also con-
sidered by the prior work of Gofer (2014), who show that it is impossible to achieve an
adaptive bound scaling with the variance of gradients in online linear optimization with
switching cost. The caveat is that their lower bound argument crucially relies on the two
factors: (i) they require an adaptive adversary; (ii) the loss is required to a signed game
with the loss range in [−1, 1]. Unfortunately, this result does not apply to our case, in
that the online problem reduced from the online infinite-horizon MDPs does not satisfy the
two conditions — the loss functions are chosen in an oblivious way and lie in the range of
[0, 1]. Furthermore, the proof techniques of their result and our Theorem 9 exhibit salient
difference. Gofer (2014) rely on the adaptive adversary and use some flipping operation to
construct a hard instance to constitute a lower bound. By contrast, we only have an obliv-
ious adversary and thus the proof of lower bound is more challenging. To address this, we
connect the problem of adaptive OCO with switching cost to the problem of OCO with
switching budget (Altschuler and Talwar, 2018) and thus establish the desired lower bound.

We finally emphasize that Theorem 9 does not constitute a direct lower bound for dy-
namic regret of infinite-horizon MDPs. However, this suggests that significant new analyses
are required to obtain adaptive bounds for this problem, though it seems to be pessimistic.

6. Experiment

In this section, we present empirical studies to examine the performance of our algorithms.

6.1 Episodic loop-free SSP

We consider a GridWorld environment of size 10 × 10, where in each episode the learner
starts from the lower left corner x0 to the upper right corner g (Neu et al., 2010a), as shown
in Figure 1. The learner has 2 actions in each state: moving either up or right. Taking any
action leads to the corresponding direction with probability 0.9 and the other direction with
probability 0.1. If the learner tries to move out of the boundary, the attempt will not succeed
and the learner will move forward in the other direction. Thus, the problem satisfies the
requirements of episodic loop-free SSPs, where the horizon length in each episode is H = 20,
the state number is |X| = 99 and the action number is |A| = 2. The number of episodes is
set to K = 1000. The loss function ℓk ∈ R|X||A|

[0,1] is forced to be piecewise stationary and will
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Figure 1: GridWorld environment
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Figure 2: Cumulative loss of algorithms

change every 50 episodes to simulate the non-stationary environments with abrupt changes.
In each piece, we randomly choose an action a ∈ A for each state x ∈ X and set the loss as
ℓ(x, a) = 0 and ℓ(x, a′) = 1 for the other action a′.

We compare the performance of our proposed DO-REPS algorithm (Algorithm 1) and
Optimistic-DO-REPS algorithm (Algorithm 2) against O-REPS algorithm (Zimin and Neu,
2013) for this problem. For Optimistic-DO-REPS, we set the optimism mk = ℓk,∀k ∈ [K]
to show the benefit of the optimism with high quality.

Figure 2 shows the cumulative loss of all algorithms. The performance of the algorithms
are evaluated by running the corresponding policies in the environment 10 times and we
report the mean and the standard deviation to show the effect of the stochastic policies
and transition kernel. We can observe that O-REPS incurs a large cumulative loss over
the episodes and can not effectively learn from the non-stationary environments. By con-
trast, DO-REPS and Optimistic-DO-REPS achieve small cumulative loss in the changing
environment and outperforms O-REPS significantly. Moreover, Optimistic-DO-REPS can
exploit the knowledge of the optimism and achieve extremely small cumulative loss with
high quality optimism, which supports our theoretical findings.

6.2 Episodic SSP

To simulate an episodic (non-loop-free) SSP, we again use the GridWorld environment of size
10×10. In addition, we make slight modifications to enforce larger differences in the hitting
time of different polices, as shown in Figure 3. All states form a circle and transitions are
possible only along the circle and the learner starts from the lower left corner x0 to the upper
right corner g in each episode. The learner has 2 actions in each state: moving either in a
clockwise direction or the opposite. Taking any action leads to the corresponding direction
with probability 0.9 and the other one with probability 0.1. Thus, the state number is
|X| = 99 and the action number is |A| = 2. The number of episodes is set to K = 1000.
The loss function ℓk ∈ R|X||A|

[0,1] is forced to be piecewise stationary and will change every 50
episodes to simulate the non-stationary environments with abrupt changes. We randomly
choose an action a ∈ A and set the losses ℓ(x, a) = 0 and ℓ(x, a′) = 1 for the other action a′

for all states x ∈ X in the first piece and swap losses for two actions after each piece ends.

26



Dynamic Regret of Online Markov Decision Processes

a1

a2
𝑥𝑥0

𝑔𝑔

Figure 3: GridWorld environment
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Figure 4: Cumulative loss of algorithms

We compare the performance of our proposed CODO-REPS (Algorithm 3) and Optimistic-
CODO-REPS algorithm (Algorithm 4) against the following two contenders designed for op-
timizing the static regret: (i) SSP-O-REPS algorithm (Rosenberg and Mansour, 2021), on-
line mirror descent on largest possible occupancy measure space with H = D

cmin
for cmin > 0

and H = DK
3
4 for cmin = 0 where cmin is minimum loss. (ii) Ada-O-REPS algorithm (Chen

et al., 2021a), which employs a meta-base two-layer structure to learn the unknown hitting
time of the optimal policy Hπ∗ on the fly. For Optimistic-DO-REPS, we set the opti-
mism as mk = 2ℓk,∀k ∈ [K] to make sure the correction terms of Optimistic-CODO-REPS
are the same as CODO-REPS (note that the correction term ak = 32η(ℓk − mk)

2, bk =
32ε(hk −Mk)

2,∀k ∈ [K]) while ensuring the high quality of the optimism.
Figure 2 shows the cumulative loss of all algorithms. The performance of the algorithms

are evaluated by running the corresponding policies in the environment 10 times and we
report the mean and the standard deviation to show the effect of the stochastic policies
and transition kernel. It can be observed that our algorithms outperform the existing al-
gorithms significantly.Moreover, the cumulative losses of SSP-O-REPS and Ada-O-REPS
remain almost the same for odd pieces and grows linearly for even pieces. This is due to
these two algorithms fail to learn in the non-stationary environments and keep one direction
all the episodes. On the contrary, both our CODO-REPS and Optimistic-CODO-REPS can
adapt to the changes of the environments quickly and suffer almost zero losses after a little
episodes in each piece. Moreover, Optimistic-CODO-REPS can exploit the optimism and
suffer smaller cumulative loss than CODO-REPS if the optimism is of high quality.

6.3 Infinite-horizon MDPs

We consider the same GridWorld environment as that in Section 6.1, where the learner starts
from the initial state x0. The difference is that now there is not goal state g in infinite-
horizon MDPs and the learner keeps moving in the MDP to minimize the cumulative loss
over a T step horizon. The learner has 4 actions in each state: moving up, down, left or
right. Taking any action leads to the corresponding direction with probability 0.9 and other
undesired directions uniformly at random with probability 0.1. Any action leads the learner
to go out of the boundary will fail and the learner will not move. The number of steps is
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Figure 5: Cumulative surrogate loss
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Figure 6: Cumulative loss

set to T = 5000. The loss function ℓk ∈ R|X||A|
[0,1] is forced to be piecewise stationary and will

change every 500 steps to simulate the non-stationary environments with abrupt changes.
In each piece, we randomly choose an action a ∈ A for each state x ∈ X and set the loss as
ℓ(x, a) = 0 and ℓ(x, a′) = 1 for the other three actions a′ ∈ A.

We compare the performance of our proposed REDO-REPS (Algorithm 5) against the
following two contenders: (i) O-REPS (Zimin and Neu, 2013), online mirror descent over the
occupancy measure space, which is design for optimizing static regret; and (ii) DO-REPS
(Algorithm 1), which is designed to optimize the dynamic regret in a meta-base tow-layer
structure yet does not take the switching cost into consideration.

Since our algorithm REDO-REPS is designed to optimize the dynamic regret with switch-
ing cost

∑T
t=1⟨qt−qπ

c
t , ℓt⟩+(τ+1)

∑T
t=2∥qt−qt−1∥1 in Theorem 7, we define the cumulative

surrogate loss as
∑T

t=1⟨qt, ℓt⟩+(τ+1)
∑T

t=2∥qt−qt−1∥1 and report the cumulative surrogate
loss of difficult algorithms in Figure 5. Under this measure, we can see that REDO-REPS
clearly achieves the best, O-REPS is comparable, while DO-REPS is not well-behaved. Fur-
thermore, we run the policies of different algorithms in the MDP 10 times and Figure 6
show the the mean and the standard deviation of the cumulative loss. The result reveals
that though DO-REPS achieves largest stationary loss with switching cost, it performs best
in this problem. This is due to REDO-REPS is designed to optimize the worst case upper
bound of the true dynamic regret, which may be overly pessimistic and perform poorly in
some situations. How to give a refined and smoothed analysis beyond the worst-case upper
bound for infinite-horizon MDP is an interesting question and we leave this as the future
work. We note that though REDO-REPS and O-REPS perform close with respect to the
stationary loss with switching cost, the true performance of REDO-REPS in the MDP is
much better than O-REPS, which shows the effectiveness of our algorithm to some extent.

7. Conclusion

In this paper we investigate learning in three foundational online MDPs with adversarially
changing loss functions and known transition kernel. We propose novel online ensemble
algorithms and establish their dynamic regret guarantees. In particular, the results for
episodic (loop-free) SSP are provably minimax optimal in terms of time horizon and certain

28



Dynamic Regret of Online Markov Decision Processes

non-stationarity measure. Furthermore, when the environments are predictable, we enhance
our algorithms to achieve better regret for episodic (loop-free) SSP and present impossibility
results for infinite-horizon MDPs.

Our results present an initial resolution for dynamic regret of online MDPs, and there
remain many interesting open problems. For example, it remains open whether it is pos-
sible to obtain adaptive dynamic regret bound for infinite-horizon MDPs, as discussed in
Section 5.4. Moreover, extending our results to the bandit feedback and unknown transition
setting is an important and challenging future work.
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Appendix A. Useful Lemmas Related to Online Mirror Descent

In this section, we present several important lemmas used frequently in the analysis of
(optimistic) online mirror descent.

Lemma 4 (Lemma 3.2 of Chen and Teboulle (1993)). Define q∗ = argminq∈K η⟨q, ℓ⟩ +
Dψ(q, q̂) for some compact set K ⊆ Rd, convex function ψ, an arbitrary point ℓ ∈ Rd, and a
point q̂ ∈ K. Then for any u ∈ K,

⟨q∗ − u, ℓ⟩ ≤ 1

η
(Dψ(u, q̂)−Dψ(u, q

∗)−Dψ(q
∗, q̂)).

Lemma 5 (Lemma 5 and Proposition 7 of Chiang et al. (2012)). Let qt = argminq∈K η⟨q,mt⟩+
Dψ(q, q̂t) and q̂t+1 = argminq∈K η⟨q, ℓt⟩ + Dψ(q, q̂t) for some compact convex set K ⊆ Rd,
convex function ψ, arbitrary points ℓt,mt ∈ Rd, and a point q̂1 ∈ K. Then, for any u ∈ K,

⟨qt − u, ℓt⟩ ≤ ⟨qt − q̂t+1, ℓt −mt⟩+
1

η
(Dψ(u, q̂t)−Dψ(u, q̂t+1)−Dψ(q̂t+1, qt)−Dψ(qt, q̂t)),

and when ψ is λ-strongly convex function w.r.t. the norm ∥ · ∥, we have

∥qt − q̂t+1∥ ≤ 1

λ
∥ℓt −mt∥∗.

Lemma 6 (Lemma 1 of Chen et al. (2021b)). Define ψ(q) =
∑d

i=1
1
ηi
qi log qi, where d is the

dimension of q. Let at ∈ Rd with at,i = 32ηi(ℓt,i−mt,i)
2, qt = argminq∈K⟨q,mt⟩+Dψ(q, q̂t)

and q̂t+1 = argminq∈K⟨q, ℓt+at⟩+Dψ(q, q̂t) for some compact convex set K ⊆ Rd, arbitrary
points ℓt,mt ∈ Rd, and a point q̂t ∈ K. Suppose 32ηi|ℓt,i −mt,i| ≤ 1 holds for all i ∈ [d].
Then, for any u ∈ K,

⟨qt − u, ℓt⟩ ≤ Dψ(u, q̂t)−Dψ(u, q̂t+1) + 32
d∑
i=1

ηiui(ℓt,i −mt,i)
2 − 16

d∑
i=1

ηiqt,i(ℓt,i −mt,i)
2.

Proof. This lemma is originally proven by Chen et al. (2021b). For self-containedness, we
present their proof and adapt to our notations. By Lemma 5, we have

⟨qt − u, ℓt + at⟩ ≤ Dψ(u, q̂t)−Dψ(u, q̂t+1) + ⟨qt − q̂t+1, ℓt −mt + at⟩ −Dψ(q̂t+1, qt).

For the last two terms, define q∗ = argmaxq∈Rd
>0
⟨qt − q, ℓt −mt + at⟩ + Dψ(q, qt), by the

optimality of q∗, we have: ℓt−mt+at = ∇ψ(qt)−∇ψ(q∗) and thus q∗i = qt,ie
−ηi(ℓt,i−mt,i+at,i).

Therefore, we have

⟨qt − q̂t+1, ℓt −mt + at⟩ −Dψ(q̂t+1, qt)

≤ ⟨qt − q∗, ℓt −mt + at⟩ −Dψ(q
∗, qt)

= ⟨qt − q∗,∇ψ(qt)−∇ψ(q∗)⟩ −Dψ(q
∗, qt)

= Dψ(qt, q
∗) =

d∑
i=1

1

ηi

(
qt,i log

qt,i
q∗i

− qt,i + q∗i

)
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=

d∑
i=1

qt,i
ηi

(
ηi(ℓt,i −mt,i + at,i)− 1 + e−ηi(ℓt,i−mt,i+at,i)

)
≤

d∑
i=1

ηiqt,i(ℓt,i −mt,i + at,i)
2,

where the last inequality holds due to the fact e−x−1+x ≤ x2 for x ≥ −1 and the condition
that ηi|ℓt,i−mt,i| ≤ 1

32 such that ηi|ℓt,i−mt,i+at,i| ≤ ηi|ℓt,i−mt,i|+32η2i (ℓt,i−mt,i)
2 ≤ 1

16 .
Using the definition of at and the condition ηi|ℓt,i −mt,i| ≤ 1

32 , we have

⟨qt − q̂t+1, ℓt −mt + at⟩ −Dψ(q̂t+1, qt) ≤
d∑
i=1

ηiqt,i(ℓt,i −mt,i + 32ηi(ℓt,i −mt,i)
2)2

≤ 4
d∑
i=1

ηiqt,i(ℓt,i −mt,i)
2.

To sum up, we have

⟨qt − u, ℓt + at⟩ ≤ Dψ(u, q̂t)−Dψ(u, q̂t+1) + 4

d∑
i=1

ηiqt,i(ℓt,i −mt,i)
2.

Finally, moving ⟨qt − u, at⟩ to the right-hand side of the inequality and using the definition
of at finishes the proof.

Appendix B. Proofs for Section 3 (Episodic Loop-free SSP)

In this section, we provide the proofs for Section 3. First, we introduce the relationship
between the path length of policies and the path length of occupancy measures, and then
provide proofs of the minimax dynamic regret of DO-REPS algorithm in Section 3.2. Next
we present the proofs of the dynamic regret lower bound and finally give the proofs of the
enhanced Optimistic DO-REPS algorithm in Section 3.3.

B.1 Path Length of Policies and Occupancy Measures

This part introduces the relationship between the path length of policies and path length of
occupancy measures.

Lemma 7. For any occupancy measure sequence qπ1 , . . . , qπK induced by the policy sequence
π1, . . . , πK , it holds that

K∑
k=2

∥qπk − qπk−1∥1 ≤ H

K∑
k=2

H−1∑
l=0

∥πk,l − πk−1,l∥1,∞.

Proof. Let dπkl (x) ≜
∑

a q
πk(x, a),∀x ∈ Xl, k ∈ [K], we have∑

x,a

|qπk(x, a)− qπk−1(x, a)|
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=
H−1∑
l=0

∑
x∈Xl

∑
a

|qπk(x, a)− qπk−1(x, a)|

=
H−1∑
l=0

∑
x∈Xl

∑
a

|dπkl (x)πk(a|x)− d
πk−1

l (x)πk−1(a|x)|

≤
H−1∑
l=0

∑
x∈Xl

∑
a

|dπkl (x)πk(a|x)− d
πk−1

l (x)πk(a|x)|+ |dπk−1

l (x)πk(a|x)− d
πk−1

l (x)πk−1(a|x)|

=

H−1∑
l=0

∑
x∈Xl

|dπkl (x)− d
πk−1

l (x)|
∑
a

πk(a|x) +
H−1∑
l=0

∑
x∈Xl

d
πk−1

l (x)
∑
a

|πk(a|x)− πk−1(a|x)|

≤
H−1∑
l=0

∥dπkl − d
πk−1

l ∥1 +
H−1∑
l=0

∥πk,l − πk−1,l∥1,∞, (21)

where the first inequality due to the triangle inequality. Next, we bound the term ∥dπkl −
d
πk−1

l ∥1. Since X0 = {x0}, we have ∥dπk0 − d
πk−1

0 ∥1 = 0. For l ≥ 1, we have

∥dπkl − d
πk−1

l ∥1 = ∥dπkl−1P
πk − d

πk−1

l−1 P πk−1∥1
≤ ∥dπkl−1P

πk − dπkl−1P
πk−1∥1 + ∥dπkl−1P

πk−1 − d
πk−1

l−1 P πk−1∥1
≤ ∥πk,l−1 − πk−1,l−1∥1,∞ + ∥dπkl−1 − d

πk−1

l−1 ∥1,

where the last inequality holds due to Lemma 8 and Lemma 9. Summing the above inequality
from 1 to l, we have

∥dπkl − d
πk−1

l ∥1 ≤
l−1∑
i=0

∥πk,i − πk−1,i∥1,∞. (22)

Combining (21) and (22), we obtain

∑
x,a

|qπk(x, a)− qπk−1(x, a)| ≤
H−1∑
l=0

l−1∑
i=0

∥πk,i − πk−1,i∥1,∞ +
H−1∑
l=0

∥πk,l − πk−1,l∥1,∞

=
H−1∑
l=0

l∑
i=0

∥πk,i − πk−1,i∥1,∞

≤ H
H−1∑
l=0

∥πk,l − πk−1,l∥1,∞.

We complete the proof by summing the inequality over all iterations.
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B.2 Proof of Lemma 1

Proof. Denote by q′k+1 = argminq∈R|X||A| η⟨q, ℓk⟩ +Dψ(q, qk), or equivalently, q′k+1(x, a) =
qk(x, a) exp(−ηℓk(x, a)). By standard analysis of online mirror descent, we have

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ =

K∑
k=1

⟨qk − q′k+1, ℓk⟩+ ⟨q′k+1 − qπ
c
k , ℓk⟩

≤
K∑
k=1

⟨qk − q′k+1, ℓk⟩+
1

η

K∑
k=1

(
Dψ(q

πck , qk)−Dψ(q
πck , q′k+1)

)
≤

K∑
k=1

⟨qk − q′k+1, ℓk⟩+
1

η

K∑
k=1

(
Dψ(q

πck , qk)−Dψ(q
πck , qk+1)

)
,

(23)

where the first inequality holds due to Lemma 4 and the last inequality holds due to Pythago-
ras theorem. For the first term, applying the inequality 1− e−x ≤ x, we obtain

K∑
k=1

⟨qk − q′k+1, ℓk⟩ ≤ η
K∑
k=1

∑
x,a

qk(x, a)ℓ
2
k(x, a) ≤ η

K∑
k=1

∑
x,a

qk(x, a) ≤ ηHK = ηT. (24)

For the last term, we have
K∑
k=1

(
Dψ(q

πck , qk)−Dψ(q
πck , qk+1)

)
= Dψ(q

πc1 , q1) +
K∑
k=2

(
Dψ(q

πck , qk)−Dψ(q
πck−1 , qk)

)
= Dψ(q

πc1 , q1) +

K∑
k=2

∑
x,a

(
qπ

c
k(x, a) log

qπ
c
k(x, a)

qk(x, a)
− qπ

c
k−1(x, a) log

qπ
c
k−1(x, a)

qk(x, a)

)

= Dψ(q
πc1 , q1) +

K∑
k=2

∑
x,a

(
qπ

c
k(x, a)− qπ

c
k−1(x, a)

)
log

1

qk(x, a)
+ ψ(qπ

c
K )− ψ(qπ

c
1)

≤
K∑
k=2

∥qπck − qπ
c
k−1∥1 log

1

α
+Dψ(q

πc1 , q1) + ψ(qπ
c
K )− ψ(qπ

c
1),

(25)

where the last inequality holds due to qk(x, a) ≥ α, since qk ∈ ∆(M,α) for all k and
x, a. It remains to bound the last two terms. Since q1 minimize ψ over ∆(M,α), we have
⟨∇ψ(q1), qπ

c
1 − q1⟩ ≥ 0, and thus

Dψ(q
πc1 , q1) + ψ(qπ

c
K )− ψ(qπ

c
1) ≤ ψ(qπ

c
K )− ψ(q1) ≤

∑
x,a

q1(x, a) log
1

q1(x, a)
≤ H log

|X||A|
H

.

(26)
Combining(24), (25) and (26), we obtain

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤ ηT +

1

η

(
H log

|X||A|
H

+ P̄T log
1

α

)
,

where P̄T =
∑K

k=2∥qπ
c
k − qπ

c
k−1∥1. This completes the proof.
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B.3 Proof of Theorem 1

Proof. Without loss of generality, we assume that all states are reachable with positive
probability under the uniform policy πu(a|x) = 1/|A|,∀x ∈ X, a ∈ A (otherwise remove the
unreachable states since they are unreachable by any policy). Assume T is large enough
such that the occupancy measure of πu satisfies qπu ∈ ∆(M, 1

T ), then define uk = (1 −
1
T )q

πck + 1
T q

πu ∈ ∆(M, 1
T 2 ), we have

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ =

K∑
k=1

⟨qk − uk, ℓk⟩+
1

T

K∑
k=1

⟨qπu − qπ
c
k , ℓk⟩

≤
K∑
k=1

⟨qk − uk, ℓk⟩+ 2

≤
K∑
k=1

⟨qk − qk,i, ℓk⟩︸ ︷︷ ︸
meta-regret

+

K∑
k=1

⟨qk,i − uk, ℓk⟩︸ ︷︷ ︸
base-regret

+2, (27)

where the first inequality follows from the definition that uk = (1 − 1
T )q

πck + 1
T q

πu and the
last inequality holds for any index i.

Upper bound of base-regret. Since uk ∈ ∆(M, 1
T 2 ), ∀k ∈ [K], from Lemma 1 we have

base-regret ≤ ηT +
H log |X||A|

H + 2
∑K

k=2∥uk − uk−1∥1 log T
η

≤ ηT +
H log |X||A|

H + 2P̄T log T

η
,

where the last inequality holds due to
∑K

k=2∥uk − uk−1∥1 ≤
∑K

k=2∥qπ
c
k − qπ

c
k−1∥1 = P̄T . It

is clear that the optimal step size is η∗ =
√

(H log (|X||A|/H) + 2P̄T log T )/T . From the
definition of P̄T =

∑K
k=2∥qπ

c
k − qπ

c
k−1∥1, we have 0 ≤ P̄T ≤ 2KH = 2T . Thus, the possible

range of the optimal step size is

ηmin =

√
H log(|X||A|/H)

T
, and ηmax =

√
H log(|X||A|/H)

T
+ 4 log T .

By the construction of the candidate step size pool H = {ηi = 2i−1
√
K−1 log(|X||A|/H) |

i ∈ [N ]}, where N = ⌈12 log(1 + 4K log T
log(|X||A|/H))⌉ + 1, we know that the step size therein is

monotonically increasing with respect to the index, in particular

η1 =

√
H log(|X||A|/H)

T
= ηmin, and ηN ≥

√
H log(|X||A|/H)

T
+ 4 log T = ηmax.

Thus, we ensure there exists a base-learner i∗ whose step size satisfies ηi∗ ≤ η∗ ≤ ηi∗+1 =
2ηi∗ . Since the regret decomposition in (27) holds for any i ∈ [N ], we choose the base-learner
i∗ to analysis to obtain a sharp bound.

base-regret ≤ ηi∗T +
H log(|X||A|/H) + 2P̄T log T

ηi∗

≤ η∗T +
2(H log(|X||A|/H) + 2P̄T log T )

η∗

= 3
√
T
(
H log(|X||A|/H) + 2P̄T log T

)
,

(28)
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where the second inequality holds due to ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ and the last equality holds

by substituting the optimal step size η∗ =
√

H log(|X||A|/H)+2P̄T log T
T .

Upper bound of meta-regret. From the construction that hk,i = ⟨qk,i, ℓt⟩, ∀k ∈ [K], i ∈
[N ], the meta-regret can be written in the following way:

meta-regret =
K∑
k=1

⟨qk − qk,i, ℓk⟩ =
K∑
k=1

⟨
N∑
i=1

pk,iqk,i − qk,i, ℓk⟩ =
K∑
k=1

⟨pk − ei, hk⟩

It is known that the update pk+1,i ∝ exp(−ε
∑k

s=1 hs,i),∀i ∈ [N ] is equal to the update
pk+1 = argminp∈∆N

ε⟨p, hk⟩ +Dψ(p, pk), where ψ(p) =
∑N

i=1 pi log pi is the standard neg-
ative entropy. This can be further reformulated solving the unconstrained optimization
problem p′k+1 = argminp ε⟨p, hk⟩ +Dψ(p, pk) at first and then projecting p′k+1 to the sim-
plex ∆N as pk+1 = argminp∈∆N

Dψ(p, p
′
k+1). By standard analysis of OMD, we have

K∑
k=1

⟨pk − ei, hk⟩ ≤
K∑
k=1

⟨pk − p′k+1, hk⟩+
K∑
k=1

⟨p′k+1 − ei, hk⟩

≤
K∑
k=1

⟨pk − p′k+1, hk⟩+
1

ε

K∑
k=1

(Dψ(ei, pk)−Dψ(ei, p
′
k+1))

≤
K∑
k=1

⟨pk − p′k+1, hk⟩+
1

ε

K∑
k=1

(Dψ(ei, pk)−Dψ(ei, pk+1))

≤
K∑
k=1

⟨pk − p′k+1, hk⟩+
1

ε
Dψ(ei, p1),

where the second inequality holds due to Lemma 4 and the third inequality holds due
to Pythagoras theorem. Using the fact that 1 − e−x ≤ x and the definition that p1,i =
1/N, hk,i ≤ H,∀k ∈ [K], i ∈ [N ], we have

K∑
k=1

⟨pk − p′k+1, hk⟩+
1

ε
Dψ(ei, p1) ≤ ε

K∑
k=1

N∑
i=1

pk,ih
2
k,i +

lnN

ε
≤ εHT +

lnN

ε
.

Therefore, for any base-learner i ∈ [N ], we have

K∑
k=1

⟨qk − qk,i, ℓk⟩ =
K∑
k=1

⟨pk − ei, hk⟩ ≤ εHT +
logN

ε
.

In particular, for the best base-learner i∗ ∈ [N ], we have

meta-regret =

K∑
k=1

⟨qk − qk,i∗ , ℓk⟩ ≤ εHT +
logN

ε
=
√
HT logN, (29)

where the last equality holds due to the setting ε =
√
(logN)/(HT ).
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Upper bound of overall dynamic regret. Combining (27), (28) and (29), we obtain

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤ base-regret+ meta-regret

≤ 3
√
T
(
H log(|X||A|/H) + 2P̄T log T

)
+
√
HT logN + 2

≤ O
(√

HT (log(|X||A|/H) + PT log T )
)
,

where the last equality is due to P̄T ≤ HPT by Lemma 7, N = ⌈12 log(1+
4K log T

log(|X||A|/H))⌉+1.
This finishes the proof.

B.4 Proof of Theorem 2

Proof. The proof is similar to the proof of the minimax lower bound of dynamic regret for
online convex optimization (Zhang et al., 2018). For any γ ∈ [0, 2T ], we first construct a
piecewise-stationary comparator sequence, whose path length is smaller than γ, then we
split the whole time horizon into several pieces, where the comparator is fixed in each piece.
By this construction, we can apply the existed minimax static regret lower bound of episodic
loop-free SSP (Zimin and Neu, 2013) in each piece, and finally sum over all pieces to obtain
the lower bound for the dynamic regret.

Denote by RK(Π,F , γ) the minimax dynamic regret, which is defined as

RK(Π,F , γ) = inf
π1∈Π

sup
ℓ1∈F

. . . inf
πK∈Π

sup
ℓK∈F

(
K∑
k=1

⟨qπk , ℓk⟩ − min
(πc1,...,π

c
K)∈U(γ)

K∑
k=1

⟨qπck , ℓk⟩

)

where Π denotes the set of all policies, F denotes the set of loss functions ℓ ∈ R|X||A|
[0,1] , and

U(γ) = {(πc1, . . . , πcK) | ∀k ∈ [K], πck ∈ Π, and P̄T =
∑K

k=2∥qπ
c
k − qπ

c
k−1∥1 ≤ γ} is the set of

feasible policy sequences with the path length P̄T of the occupancy measures less than γ.
We first consider the case of γ ≤ 2H. Then we can directly utilize the established lower

bound of the static regret for learning in episodic loop-free SSP (Zimin and Neu, 2013) as a
natural lower bound of dynamic regret,

RK(Π,F , γ) ≥ C1H
√
K log(|X||A|), (30)

where C1 = 0.03 is the constant appeared in the lower bound of static regret.
We next deal with the case that γ ≥ 2H. Without loss of generality, we assume L =

⌈γ/2H⌉ divides K and split the whole time horizon into L pieces equally. Next, we construct
a special policy sequence in U(γ) such that the policy sequence is fixed within each piece
and only changes in the split point. Since the sequence changes at most L−1 ≤ γ/2H times
and the variation of the occupancy measure at each change point is at most 2H, the path
length P̄T of the occupancy measures does not exceed γ. As a result, we have

RK(Π,F , γ) ≥ LC1H

√
K

L
log(|X||A|) ≥

√
2C1

2

√
HKγ log(|X||A|). (31)
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Combining (30) and (31), we obtain the final lower bound

RK(Π,F , γ) ≥
√
2C1

2

√
HK log(|X||A|)max(

√
2H,

√
γ) ≥ Ω(

√
HK(H + γ) log(|X||A|)),

which finishes the proof.

B.5 Proof of Theorem 3

Proof. Similar to the argument in Appendix B.3, assume all states are reachable with
positive probability under the uniform policy πu(a|x) = 1/|A|,∀x ∈ X, a ∈ A and T is
large enough such that the occupancy measure of πu satisfies qπu ∈ ∆(M, 1

T ), then define
uk = (1− 1

T )q
πck + 1

T q
πu ∈ ∆(M, 1

T 2 ), we have

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ =

K∑
k=1

⟨qk − uk, ℓk⟩+
1

T

K∑
k=1

⟨qπu − qπ
c
k , ℓk⟩

≤
K∑
k=1

⟨qk − uk, ℓk⟩+ 2

=

K∑
k=1

⟨qk − qk,i, ℓk⟩︸ ︷︷ ︸
meta-regret

+

K∑
k=1

⟨qk,i − uk, ℓk⟩︸ ︷︷ ︸
base-regret

+2, (32)

where the first inequality follows from the definition that uk = (1 − 1
T )q

πck + 1
T q

πu and the
last inequality holds for any index i.

Upper bound of base-regret. From Lemma 10, we ensure ψ(q) =
∑

s,a q(x, a) log q(x, a)

is 1
H strongly convex for q ∈ ∆(M, 1

T 2 ). By Lemma 5, we obtain

K∑
k=1

⟨qk − uk, ℓk⟩ ≤ ηH
K∑
k=1

∥ℓk −mk∥2∞ +
1

η

K∑
k=1

(Dψ(uk, q̂k)−Dψ(uk, q̂k+1)) .

Similar to the argument in (25), (26) and
∑K

k=2∥uk − uk−1∥1 ≤
∑K

k=2∥qπ
c
k − qπ

c
k−1∥1 = P̄T ,

we have
K∑
k=1

(Dψ(uk, q̂k)−Dψ(uk, q̂k+1)) ≤ H log(|X||A|/H) + 2P̄T log T.

Therefore, we obtain

base-regret ≤ ηHVK +
H log |X||A|

H + 2P̄T log T

η
≤ ηH(1+VK)+

H log |X||A|
H + 2P̄T log T

η
.

It is clear the optimal step size is η∗ =
√

H log (|X||A|/H)+2P̄T log T
H(1+VK) . Meanwhile, from the

definition of P̄T and V̄K , we have 0 ≤ P̄T ≤ 2T and 0 ≤ VK ≤ K − 1. Thus, the possible
range of the optimal step size is

ηmin =

√
H log(|X||A|/H)

T
, and ηmax =

√
log(|X||A|/H) + 4K log T .
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By the construction of the candidate step size pool H = {ηi = 2i−1
√
K−1 log(|X||A|/H) |

i ∈ [N ]}, where N = ⌈12 log(K + 4K2 log T
log(|X||A|/H))⌉ + 1, we know that the step size therein is

monotonically increasing with respect to the index, in particular

η1 =

√
H log(|X||A|/H)

T
= ηmin, and ηN ≥

√
log(|X||A|/H) + 4K log T = ηmax.

Thus, we ensure there exists a base-learner Bi∗ whose step size satisfies ηi∗ ≤ η∗ ≤ ηi∗+1 =
2ηi∗ . Since the regret decomposition in (32) holds for any i ∈ [N ], we choose the base-learner
Bi∗ to analysis to obtain a sharp bound.

base-regret ≤ ηi∗H(1 + VK) +
H log(|X||A|/H) + 2P̄T log T

ηi∗

≤ η∗H(1 + VK) +
2(H log(|X||A|/H) + 2P̄T log T )

η∗

= 3
√
H(1 + VK)

(
H log(|X||A|/H) + 2P̄T log T

)
,

(33)

where the last equality holds by substituting the step size η∗ =
√

H log (|X||A|/H)+2P̄T log T
H(1+VK) .

Upper bound of meta-regret. It is known that the update pk+1,i ∝ exp(−ε
∑k

s=1(hs,i+
Mk+1,i)), ∀i ∈ [N ] is equal to the update pk+1 = argminp∈∆N

ε⟨p,Mk+1⟩ + Dψ(p, p
′
k+1)

and p′k+1 = argminp∈∆N
ε⟨p, hk⟩ + Dψ(p, pk), where ψ(p) =

∑N
i=1 pi log pi is the standard

negative entropy. Since ψ(p) =
∑N

i=1 pi log pi is 1 strongly convex w.r.t. ∥ · ∥1 for p ∈ ∆N .
By Lemma 5, we obtain

meta-regret =

K∑
k=1

⟨qk − qk,i, ℓk⟩ =
K∑
k=1

⟨
N∑
i=1

pk,iqk,i − qk,i, ℓk⟩ =
K∑
k=1

⟨pk − ei, hk⟩

≤ ε

(
K∑
k=1

∥hk −Mk∥2∞

)
+
Dψ(ei, p̂1)

ε
(34)

≤ ε

(
K∑
k=1

max
i∈[N ]

⟨qk,i, ℓk −mk⟩2
)

+
logN

ε
(35)

≤ ε

(
K∑
k=1

max
i∈[N ]

∥qk,i∥21∥ℓk −mk∥2∞

)
+

logN

ε
(36)

≤ εH2(1 + VK) +
logN

ε
(37)

≤ H
√

(1 + VK) logN (38)

where (34) holds due to Lemma 5, (35) follows from the definition of hk,i = ⟨qk,i, ℓk⟩ and
Mk = ⟨qk,i,mk⟩,∀k ∈ [K], i ∈ [N ], (36) holds due to Hölder’s inequality, (37) is due to
∥qk,i∥1 = H,∀k ∈ [K], i ∈ [N ], and (38) makes use of the setting ε =

√
(logN)/(H2(1 + VK)).
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Upper bound of overall dynamic regret. Combining (32), (33) and (38), we obtain

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤ 3

√
H(1 + VK)

(
H log(|X||A|/H) + 2P̄T log T

)
+H

√
(1 + VK) logN + 2

≤ O
(
H
√

(1 + VK) (log(|X||A|/H) + PT log T )
)
,

where the last equality is due to P̄T ≤ HPT by Lemma 7 andN = ⌈12 log(K+ 4K2 log T
log(|X||A|/H))⌉+

1. This finishes the proof.

B.6 Useful Lemmas

In this part, we present some basic lemmas in episodic loop-free SSP. For any policy π(a|x),
we define P π to be the transition matrix induced by π, where the component [P π]x,x′ is
the transition probability from x to x′, i.e., [P π]x,x′ =

∑
a π(a|x)P ax,x′ . Then, we have the

following useful lemmas.

Lemma 8 (Lemma 6.3 of Even-Dar et al. (2009)). For any policies π and π and any state
distribution d, we have

∥dP π − dP π
′∥1 ≤ ∥π − π′∥1,∞.

Proof. Consider the case when d is a delta function on x. The difference in the next state
distributions, ∥dP π − dP π

′∥1, is∑
x′

∣∣∣[P π]x,x′ − [P π
′
]x,x′

∣∣∣ =∑
x′

∑
a

|P (x′|x, a)
(
π(a|x)− π′(a|x)

)
|

≤
∑
x′,a

P (x′|x, a)|π(a|x)− π′(a|x)|

=
∑
a

|π(a|x)− π′(a|x)|.

Linearity of expectation leads to the result for arbitrary d.

Lemma 9. For any state distribution d and d′, and any policy π, we have

∥dP π − d′P π∥1 ≤ ∥d− d′∥1. (39)

Proof. Note that the relationship that d(x′) =
∑

x d(x)P
π
x,x′ , therefore, we have

∥dP π − d′P π∥1 =
∑
x′

|
∑
x

d(x)P πx,x′ − d′(x)P πx,x′ | ≤
∑
x′

∑
x

|d(x)P πx,x′ − d′(x)P πx,x′ |

=
∑
x′

∑
x

|d(x)− d′(x)|P πx,x′ =
∑
x

|d(x)− d′(x)|
∑
x′

P πx,x′

=
∑
x

|d(x)− d′(x)| = ∥d− d′∥1.

This finishes the proof.
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Finally, we show the lemma below which shows the strongly convexity of the regularizer.

Lemma 10. ψ(w) =
∑d

i=1wi logwi is 1
H -strongly convex w.r.t. ∥ · ∥1 for {w ∈ Rd≥0 |∑d

i=1wi = H}.

Proof. For any y, z ∈ {w ∈ Rd≥0 |
∑N

i=1wi = H}, we have y
H ,

z
H ∈ {w ∈ Rd≥0 |

∑d
i=1wi = 1}.

Then, it holds that

ψ(y)− ψ(z)− ⟨∇ψ(y), y − z⟩ =
d∑
i=1

yi log
yi
zi

= H
d∑
i=1

yi
H

log
yi/H

zi/H
≥ 1

2H
∥y − z∥21,

where the last inequality holds due to Pinsker’s Inequality. This finishes the proof.

Appendix C. Proofs for Section 4 (Episodic SSP)

In this section, we first give the impossible result to bound the path length of occupancy
measures by the path length of policies. Next we provide proofs of the dynamic regret of
CODO-REPS algorithm and the lower bound of dynamic regret in Section 4.2. Finally we
give the proofs of the enhanced Optimistic CODO-REPS algorithm in Section 4.3.

C.1 Path Length of Policies and Occupancy Measures

In the following, we give the impossible result to bound the path length of the occupancy
measures by the path length of the corresponding policies.

Theorem 10. For any H∗ > 1 and any positive integer c > 0, there exists an SSP instance
with |X| = 2c + 1 states, |A| = 2 actions and a policy sequence πc1, . . . , π

c
K with largest

expected hitting time H∗ such that P̄K ≥ cPK .

Proof. For any H∗ > 1 and any positive integer c > 0, we construct an episodic SSP with
n+1 states X = {x0, . . . , xn} with n = 2c and two actions A = {a1, a2}. Let the transition
kernel be deterministic and the state transitions are specified in Figure 7.

𝑎𝑎1/𝑎𝑎2

𝑎𝑎1/𝑎𝑎2

𝑎𝑎1

𝑎𝑎2 ...
𝑥𝑥0

𝑥𝑥1 𝑥𝑥𝑛𝑛

𝑔𝑔

Figure 7: An illustration of state transitions of the constructed hard instance.

Specifically, taking a1 and a2 in initial state x0 leads to the state g and x1 respectively.
Taking any action in state xi leads to state xi+1,∀i ∈ [n − 1] and taking any action in
state xn leads to the goal state state g. Then, we consider two policies π and π′ with
π(a1|xi) = 1,∀i ∈ {0} ∪ [n] and π′(a1|x0) = 1 − ε, π′(a1|xi) = 1,∀i ∈ [n]. It is clear that
∥π − π′∥1,∞ = 2ε and Hπ(x0) = 1, Hπ′

(x0) = 1 + εn. For any H∗ > 1 and c > 0, let
ε = (H∗ − 1)/n, we have Hπ′

= 1+ εn = H∗, i.e., the largest hitting time of π and π′ is H∗.
Then we consider the occupancy measure discrepancy of π and π′. It is easy to verify∑

x,a

|qπ(x, a)− qπ
′
(x, a)| = ε+ ε(n+ 1) = ε(n+ 2) = 2ε(c+ 1) = (c+ 1)∥π − π′∥1,∞.
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Therefore, we have ∥qπ − qπ
′∥1 ≥ c∥π − π′∥1,∞. Thus, the policy sequence π, π′, π, π′, . . .

satisfies P̄K = K∥qπ − qπ
′∥1 ≥ cK∥π − π′∥1,∞ = cPK , which completes the proof.

C.2 Proof of Lemma 2

Proof. Since η ≤ 1
64 , we ensure that 32η|ℓk,i| ≤ 1,∀k ∈ [K], i ∈ [|X||A|]. Taking mk = 0 in

Lemma 6, we obtain

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤

K∑
k=1

(
Dψ(q

πck , q̂k)−Dψ(q
πck , q̂k+1)

)
+ 32η

K∑
k=1

⟨qk, ℓ2k⟩ − 16η
K∑
k=1

⟨qπck , ℓ2k⟩.

(40)

For the first term, from the definition of Dψ(q, q
′), we have

K∑
k=1

(
Dψ(q

πck , q̂k)−Dψ(q
πck , q̂k+1)

)
(41)

= Dψ(q
πc1 , q̂1) +

K∑
k=2

(
Dψ(q

πck , q̂k)−Dψ(q
πck−1 , q̂k)

)
= Dψ(q

πc1 , q̂1) +
1

η

K∑
k=2

∑
x,a

(
qπ

c
k(x, a) log

qπ
c
k(x, a)

q̂k(x, a)
− qπ

c
k−1(x, a) log

qπ
c
k−1(x, a)

q̂k(x, a)

)

+
1

η

K∑
k=2

∑
x,a

(
qπ

c
k−1(x, a)− qπ

c
k(x, a)

)

= Dψ(q
πc1 , q̂1) +

1

η

K∑
k=2

∑
x,a

(
qπ

c
k(x, a)− qπ

c
k−1(x, a)

)
log

1

q̂k(x, a)

+
ψ(qπ

c
K )− ψ(qπ

c
1)−

∑
x,a(q

πcK (x, a)− qπ
c
1(x, a))

η

≤ 1

η
log

H

α

K∑
k=2

∥qπck − qπ
c
k−1∥1 +Dψ(q

πc1 , q̂1) +
ψ(qπ

c
K )− ψ(qπ

c
1)−

∑
x,a(q

πcK (x, a)− qπ
c
1(x, a))

η
,

where the last inequality holds due to |log q̂k(x, a)| ≤ log H
α since α ≤ q̂k(x, a) ≤ H for

q̂k ∈ ∆(M,H,α). For the last two term, since q̂1 minimize ψ over ∆(M,H,α), we have
⟨∇ψ(q̂1), qπ

c
1 − q̂1⟩ ≤ 0, thus

Dψ(q
πc1 , q̂1) +

ψ(qπ
c
K )− ψ(qπ

c
1)−

∑
x,a(q

πcK (x, a)− qπ
c
1(x, a))

η

≤ ψ(qπ
c
1)− ψ(q̂1)

η
+
ψ(qπ

c
K )− ψ(qπ

c
1)−

∑
x,a

(
qπ

c
K (x, a)− qπ

c
1(x, a)

)
η

≤
ψ(qπ

c
K )− ψ(q̂1)−

∑
x,a

(
qπ

c
K (x, a)− qπ

c
1(x, a)

)
η

≤ H log(|X||A|) +H logH +H

η
=
H(1 + log(|X||A|H))

η
,

(42)

46



Dynamic Regret of Online Markov Decision Processes

where the last inequality holds due to −H log(|X||A|) ≤ ψ(q) ≤ H logH and 0 ≤
∑

x,a q(x, a)
≤ H for any q ∈ ∆(M,H,α) from Lemma 11. Combining (40), (41) and (42), we have

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤

H(1 + log(|X||A|H)) + P̄K log(H/α)

η
+ 32η

K∑
k=1

⟨qk, ℓ2k⟩ − 16η

K∑
k=1

⟨qπck , ℓ2k⟩,

where P̄K =
∑K

k=2∥qπ
c
k − qπ

c
k−1∥1. This finishes the proof.

C.3 Proof of Theorem 4

Proof. We only need to consider the case H∗ ≤ K (otherwise the claimed regret bound is
vacuous). Since all the compared policies are proper, they will not visit the states from
which the goal state g is not accessible (otherwise the hitting time will be infinite) and the
states which are not accessible from initial state x0. We can remove them from the SSP since
we consider the known transition setting. Then, suppose K is large enough such that these
exists at least a policy πu whose occupancy measure qπu satisfies qπu ∈ ∆(M,K, 1

K ). Then,
we define uk = (1− 1

K2 )q
πck + 1

K2 q
πu and the corresponding policy πuk . For any k ∈ [K], we

ensure that the hitting time Hπuk ≤ (1− 1
K2 )H∗+

K
K2 ≤ H∗+1 and the occupancy measure

uk(x, a) ≥ 1
K3 , ∀x, a, i.e., uk ∈ ∆(M,H∗ + 1, 1

K3 ). Thus, we have

E[D-RegretK(πc1:K)] = E

[
K∑
k=1

∑
i,j

pi,jk ⟨qi,jk , ℓk⟩ −
K∑
k=1

⟨qπck , ℓk⟩

]

= E

[
K∑
k=1

∑
i,j

pi,jk ⟨qi,jk , ℓk⟩ −
K∑
k=1

⟨uk, ℓk⟩

]
+

1

K2
E

[
K∑
k=1

⟨qπu − qπ
c
k , ℓk⟩

]

≤ E

[
K∑
k=1

∑
i,j

pi,jk ⟨qi,jk , ℓk⟩ −
K∑
k=1

⟨uk, ℓk⟩

]
+ 2,

≤ E

[
K∑
k=1

⟨pk − ei,j , hk⟩

]
︸ ︷︷ ︸

meta-regret

+E

[
K∑
k=1

⟨qi,jk − uk, ℓk⟩

]
︸ ︷︷ ︸

base-regret

+2 (43)

where the first inequality holds due to
∑

x,a q
u(x, a) ≤ K and

∑
x,a q

πck(x, a) ≤ H∗ ≤ K,
the last inequality holds due to the definition that hi,jk = ⟨qi,jk , ℓk⟩,∀i ∈ [G], j ∈ [Ni] and the
decomposition holds for any index i ∈ [G], j ∈ [Ni].

Upper bound of base-regret. Since the possible range of H∗ is Hπf ≤ H∗ ≤ K. From
the construction of horizon length pool H = {Hi = 2i−1 · Hπf | i ∈ [G]} where G =

1 + ⌈log((K + 1)/Hπf
)⌉, we ensure

H1 = Hπf ≤ H∗ + 1 and HG = K + 1 ≥ H∗ + 1.

So for any unknown H∗, there exist an index i for the space pool that satisfies Hi∗−1 =
Hi∗
2 ≤ H∗ + 1 ≤ Hi∗ . Then, we analysis the base-regret of the base learners in group i∗.

47



Zhao, Li, and Zhou

From the construction of each step size pool, we ensure ηi,j ≤ 1
64 , i.e., 32ηi,j |ℓk,r| ≤ 1,∀i ∈

[G], j ∈ [Ni], k ∈ [K], r ∈ [|X||A|]. Since qi
∗,j
k , uk ∈ ∆(M,Hi∗ , 1/K

3),∀j ∈ [N∗
i ], k ∈ [K],

from Lemma 2, we have

base-regret

≤
4
∑K

k=2∥uk − uk−1∥1 logK +Hi∗(1 + log(|X||A|Hi∗))

ηi∗,j
+ 16ηi∗,j

K∑
k=1

(2⟨uk, ℓk⟩ − ⟨qi
∗,j
k , ℓ2k⟩)

≤ 4P̄K logK +Hi∗(1 + log(|X||A|Hi∗))

ηi∗,j
+ 32ηi∗,jBK − 16ηi∗,j

K∑
k=1

⟨qi
∗,j
k , ℓ2k⟩+ 1, (44)

where the last inequality holds due to
∑K

k=2∥uk − uk−1∥1 ≤
∑K

k=2∥qπ
c
k − qπ

c
k−1∥1 = P̄K and

BK =
∑K

k=1⟨qπ
c
k , ℓk⟩.

Upper bound of meta-regret. Then, we consider the meta-regret with respect to base-
learner Bi∗,j ,∀j ∈ Ni∗ . From the construction of the regularizer ψ̄(p) in meta-algorithm,
we have 32εi,j |hi,jk | = 32

ηi,j
2Hi

|⟨qi,jk , ℓk⟩| ≤ 1,∀i ∈ [G], j ∈ [Ni], k ∈ [K]. From the analysis of
OMD in Lemma 6, we have

meta-regret ≤ Dψ̄(ei∗,j , p1) + 32εi∗,j

K∑
k=1

(hi
∗,j
k )2

=
1

εi∗,j
log

1

pi
∗,j
1

+
G∑
r=1

Ni∑
s=1

pr,s1
εr,s

+ 32εi∗,j

K∑
k=1

(hi
∗,j
k )2

=
1

εi∗,j
log

∑G
r=1

∑Ni
s=1 ε

2
r,s

ε2i∗,j
+

∑G
r=1

∑Ni
s=1 εr,s∑G

r=1

∑Ni
s=1 ε

2
r,s

+ 32εi∗,j

K∑
k=1

⟨qi
∗,j
k , ℓk⟩2,

where the first equality holds due to Dψ̄(p, p
′) =

∑
i,j

1
εi,j

(pi,j log
pi,j
p′i,j

− pi,j + p′i,j) and the

last equality is due to pi,j1 ∝ ε2i,j , h
i,j
k = ⟨qi,jk , ℓk⟩,∀i ∈ [G], j ∈ [Ni]. From the definition of

the horizon length pool H = {Hi = 2i−1 ·Hπf | i ∈ [G]} where G = 1+ ⌈log((K+1)/Hπf
)⌉,

the step size pools Ei =
{

1
32·2j | j ∈ [Ni]

}
, i ∈ [G], where Ni = ⌈12 log (

4K
1+log (|X||A|Hi)

)⌉ and

learning rate εi,j =
ηi,j
2Hi

, ∀i ∈ [G], j ∈ [Ni], we ensure that
∑G

r=1

∑Ni
s=1 εr,s = Θ(1/H1) and∑G

r=1

∑Ni
s=1 ε

2
r,s = Θ(1/H2

1 ). Thus,

meta-regret ≤ Θ

(
Hi∗

ηi∗,j
log

Hi∗

H1ηi∗,j

)
+ 16

ηi∗,j
Hi∗

K∑
k=1

⟨qi
∗,j
k , ℓk⟩2 +Θ(H1)

≤ Θ

(
Hi∗

ηi∗,j
log

Hi∗

H1ηi∗,j

)
+ 16ηi∗,j

K∑
k=1

⟨qi
∗,j
k , ℓ2k⟩+Θ(H1),

(45)

where the last inequality holds due to Cauchy–Schwarz inequality.
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Upper bound of over all dynamic regret. Combining (43), (44) and (45), we obtain

E[D-RegretK ] ≤ 4P̄T logK +Hi∗(1 + log(|X||A|Hi∗))

ηi∗,j
+ 32ηi∗,jBK +Θ

(
Hi∗

ηi∗,j
log

Hi∗

H1ηi∗,j

)
(46)

holds for any index j ∈ [Ni∗ ]. Omit the last term, it is clear that the optimal step size

is η∗ =
√

Hi∗ (1+log(|X||A|Hi∗ ))+4P̄K logK
32BK

. Meanwhile, since
∑

x,a qk(x, a) ≤ H∗,∀k ∈ [K],

we have 0 ≤ P̄K =
∑K

k=2∥qπ
c
k − qπ

c
k−1∥1 ≤ 2H∗K ≤ 2Hi∗K and BK ≤ H∗K ≤ Hi∗K.

Therefore, we ensure that

η∗ ≥
√

1 + log(|X||A|Hi∗)

32K
.

From the construction of the candidate step size pool Hi∗ , we know that the step size therein
is monotonically decreasing with respect to the index, in particular,

η1 =
1

64
, and ηN =

√
1 + log(|X||A|Hi∗)

128K
≤ η∗

Let j∗ be the index of base learner in group i∗ with step size closest to the η∗. Then, we
consider the base regret of the base learner Bi∗,j∗ . We consider the following two cases:

• when η∗ ≤ 1
64 , then ηi∗,j∗ ≤ η∗ ≤ 2ηi∗,j∗ = ηi∗,j∗−1, we have

R.H.S of (46) ≤ 8P̄K logK + 2Hi∗(1 + log(|X||A|Hi∗))

η∗
+ 32η∗BK +Θ

(
Hi∗

η∗
log

Hi∗

H1η∗

)
≤ Õ

(√(
P̄K +H∗

)
BK

)
.

• when η∗ > 1
64 , then ηi∗,j∗ = 1

64 , we have

R.H.S of (46) ≤ 256
(
P̄K logK +Hi∗(1 + log(|X||A|Hi∗))

)
+

1

2
BK +Θ(H∗)

≤ Õ
(
P̄K +H∗

)
,

where the last inequality holds due to
√

Hi∗ (1+log(|X||A|Hi∗ ))+4P̄K logK
32BK

≥ 1
64 .

As a result, taking both cases into account yields

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩ ≤ Õ

(√(
H∗ + P̄K

)
(H∗ + P̄K +BK)

)
.

This finishes the proof.
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C.4 Proof of Theorem 5

Proof. The proof is similar to that of Theorem 2. For any γ ∈ [0, 2T ], we first construct
a piecewise-stationary comparator sequence, whose path length is smaller than γ, then we
split the whole time horizon into several pieces, where the comparator is fixed in each piece.
By this construction, we can apply the existed minimax static regret lower bound of episodic
SSP (Chen et al., 2021a) in each piece, and finally sum over all pieces to obtain the lower
bound for the dynamic regret.

Denote by RK(Π,F , γ) the minimax dynamic regret, which is defined as

RK(Π,F , γ) = inf
π1∈Π

sup
ℓ1∈F

. . . inf
πK∈Π

sup
ℓK∈F

(
K∑
k=1

⟨qπk , ℓk⟩ − min
(πc1,...,π

c
K)∈U(γ)

K∑
k=1

⟨qπck , ℓk⟩

)

where Π denotes the set of all policies, F denotes the set of loss functions ℓ ∈ R
|X||A|
[0,1 and

U(γ) = {(πc1, . . . , πcK) | ∀k ∈ [K], πck ∈ Π, and P̄K =
∑K

k=2∥qπ
c
k − qπ

c
k−1∥1 ≤ γ} is the set of

feasible policy sequences with path length P̄K of the occupancy measures less than γ.
We first consider the case of γ ≤ 2(H∗ +1). From Theorem 3 of Chen et al. (2021a), we

ensure for any D,H∗,K with K ≥ D+1, there exists an SSP instance such that its diameter
is D + 2, the hitting time of the best fixed policy is H∗ + 1 and the expected regret of any
policy after K episodes is at least Ω(

√
DH∗K). Then we can set all compared policies as

the best fixed policy and directly utilize this lower bound of the static regret as a natural
lower bound of dynamic regret,

RK(Π,F , γ) ≥ Ω(
√
DH∗K). (47)

We next deal with the case that γ ≥ 2(H∗ + 1). Without loss of generality, we assume
L = ⌈γ/2(H∗ + 1)⌉ devides K and split the whole time horizon into L pieces equally. Next,
we construct an SSP instance such that its diameter is D + 2, the hitting time of the best
fixed policy is H∗ + 1 and the expected regret of any policy after K episodes is at least
Ω(

√
DH∗K) in each piece. Then, we choose the best fixed policy in each piece as the

comparator sequence, whose hitting time are all H∗+1. Since the sequence changes at most
L− 1 ≤ γ/2(H∗ + 1) times and the variation of the policy sequence at each change point is
at most 2(H∗ + 1) (Note that ∥qπck − qπ

c
k−1∥ ≤ ∥qπck∥1 + ∥qπ

c
k−1∥1 = 2(H∗ + 1), ∀πck ̸= πck−1),

the path- P̄K does not exceed γ. As a result,

RK(Π,F , γ) ≥ LΩ(
√
DH∗K/L) ≥ Ω(

√
DKγ). (48)

Combining (47) and (48), we have

RK(Π,F , γ) ≥ Ω(
√
DH∗K) + Ω(

√
DKγ) ≥ Ω(

√
DH∗K(1 + γ/H∗)),

which finishes the proof.

C.5 Proof of Lemma 3

Proof. We assume mk ∈ R|X||A|
[0,1] , ∀k ∈ [K] since ℓk ∈ R|X||A|

[0,1] ,∀k ∈ [K]. Since η ≤ 1
64 , we

ensure that 32η|ℓk,i −m′
k,i| ≤ 1,∀i ∈ [|X||A|]. Thus, from Lemma 6, we have

K∑
k=1

⟨qk − qπ
c
k , ℓk⟩
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≤
K∑
k=1

(
Dψ(q

πck , q̂k)−Dψ(q
πck , q̂k+1)

)
+ 32η

K∑
k=1

⟨qπck , (ℓk −m′
k)

2⟩ − 16η
K∑
k=1

⟨qk, (ℓk −m′
k)

2⟩.

From the same analyses as that in Section C.2, we have
K∑
k=1

(
Dψ(q

πck , q̂k)−Dψ(q
πck , q̂k+1)

)
≤ H(1 + log(|X||A|H)) + P̄K log(H/α)

η
,

which finishes the proof.

C.6 Proof of Theorem 6

Proof. Similar to the argument in Section C.3, suppose K is large enough such that these
exists at least a policy πu whose occupancy measure qu satisfies qπu ∈ ∆(M,K, 1

K ). Then,
we define uk = (1− 1

K2 )q
πck + 1

K2 q
πu and the corresponding policy πuk . For any k ∈ [K], we

ensure that the hitting time Hπuk ≤ (1− 1
K2 )H∗+

K
K2 ≤ H∗+1 and the occupancy measure

uk(x, a) ≥ 1
K3 , ∀x, a, i.e., uk ∈ ∆(M,H∗ + 1, 1

K3 ). Thus, we have

E[D-RegretK(πc1:K)] = E

[
K∑
k=1

∑
i,j

pi,jk ⟨qi,jk , ℓk⟩ −
K∑
k=1

⟨qπck , ℓk⟩

]

= E

[
K∑
k=1

∑
i,j

pi,jk ⟨qi,jk , ℓk⟩ −
K∑
k=1

⟨uk, ℓk⟩

]
+

1

K2
E

[
K∑
k=1

⟨qπu − qπ
c
k , ℓk⟩

]

≤ E

[
K∑
k=1

∑
i,j

pi,jk ⟨qi,jk , ℓk⟩ −
K∑
k=1

⟨uk, ℓk⟩

]
+ 2,

≤ E

[
K∑
k=1

⟨pk − ei,j , hk⟩

]
︸ ︷︷ ︸

meta-regret

+E

[
K∑
k=1

⟨qi,jk − uk, ℓk⟩

]
︸ ︷︷ ︸

base-regret

+2, (49)

where the first inequality holds due to
∑

x,a q
u(x, a) ≤ K and

∑
x,a q

πck(x, a) ≤ H∗ ≤ K,
the last inequality holds due to the definition that hi,jk = ⟨qi,jk , ℓk⟩,∀i ∈ [G], j ∈ [Ni] and the
decomposition holds for any index i ∈ [G], j ∈ [Ni].

Upper bound of base-regret. Since the possible range of H∗ is Hπf ≤ H∗ ≤ K. From
the construction of horizon length pool H = {Hi = 2i−1 · Hπf |i ∈ [G]} where G = 1 +

⌈log((K + 1)/Hπf
)⌉, we ensure

H1 = Hπf ≤ H∗ + 1 and HG = K + 1 ≥ H∗ + 1.

So for any unknown H∗, there exist an index i for the space pool that satisfies Hi∗−1 =
Hi∗
2 ≤

H∗ + 1 ≤ Hi∗ . Then, we analysis the base-regret of the base learners in group i∗. Then,
we consider the base-learners in group i∗. From the construction of each step size pool, we
ensure ηi,j ≤ 1

64 , i.e., 32ηi,j |ℓk,r −m′
k,r| ≤ 1, ∀i ∈ [G], j ∈ [2Ni], r ∈ [|X||A|], k ∈ [K]. Since

qi
∗,j
k ∈ ∆(M,Hi∗ , 1/K

3), ∀k, j and uk ∈ ∆(M,Hi∗ , 1/K
3), ∀k, from Lemma 3, we have

base-regret (50)
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≤
4
∑K

k=2∥uk − uk−1∥1 logK +Hi∗(1 + log(|X||A|Hi∗))

ηi∗,j

+ 32ηi∗,j

K∑
k=1

⟨uk, (ℓk −m′
k)

2⟩ − 16ηi∗,j

K∑
k=1

⟨qi
∗,j
k , (ℓk −m′

k)
2⟩

≤ 4P̄K logK +Hi∗(1 + log(|X||A|Hi∗))

ηi∗,j
+ 32ηi∗,jV

′
K − 16ηi∗,j

K∑
k=1

⟨qi
∗,j
k , (ℓk −m′

k)
2⟩+ 4,

where V ′
K =

∑K
k=1⟨qπ

c
k , (ℓk −m′

k)
2⟩ and P̄K =

∑K
k=2∥qπ

c
k − qπ

c
k−1∥1.

Upper bound of meta-regret. Then, we consider the meta-regret with respect to base-
learner Bi∗,j ,∀j ∈ 2Ni∗ . From the construction of the regularizer ψ̄(p), we have 32εi,j |hi,jk −
M i,j
k | = 32

ηi,j
2Hi

|⟨qi,jk , ℓk − m′
k⟩| ≤ 1 for all i ∈ [G], j ∈ [2Ni], k ∈ [K]. From Lemma 6

(dropping the negative term), we have

meta-regret ≤ Dψ̄(ei∗,j , p̂1) + 32εi∗,j

K∑
k=1

⟨qi
∗,j
k , ℓk −m′

k⟩2

=
1

εi∗,j
log

1

p̂ i∗,j
1

+

G∑
r=1

2Ni∑
s=1

p̂ r,s
1

εr,s
+ 32εi∗,j

K∑
k=1

⟨qi
∗,j
k , ℓk −m′

k⟩2

=
1

εi∗,j
log

∑G
r=1

∑2Ni
s=1 ε

2
r,s

ε2i∗,j
+

∑G
r=1

∑2Ni
s=1 εr,s∑G

r=1

∑2Ni
s=1 ε

2
r,s

+ 32εi∗,j

K∑
k=1

⟨qi
∗,j
k , ℓk −m′

k⟩2,

where the first equality holds due to Dψ̄(p, p
′) =

∑
i,j

1
εi,j

(pi,j log
pi,j
p′i,j

− pi,j + p′i,j) and the

last inequality is due to the definition that p̂ i,j
1 ∝ ε2i,j . From the definition of horizon

length pool H = {Hi = 2i−1 · Hπf | i ∈ [G]} where G = 1 + ⌈log((K + 1)/Hπf
)⌉, the

step size pools Ei =
{

1
32·2j | j ∈ [Ni]

}
, i ∈ [G], where Ni = ⌈12 log (

4K
1+log (|X||A|Hi)

)⌉ and

learning rate εi,j =
ηi,j
2Hi

, ∀i ∈ [G], j ∈ [2Ni], we ensure
∑G

r=1

∑Ni
s=1 εr,s = Θ(1/H1) and∑G

r=1

∑Ni
s=1 ε

2
r,s = Θ(1/H2

1 ). Thus,

meta-regret ≤ Θ

(
Hi∗

ηi∗,j
log

Hi∗

H1ηi∗,j

)
+ 16

ηi∗,j
Hi∗

K∑
k=1

⟨qi
∗,j
k , ℓk −m′

k⟩2 +Θ(H1)

≤ Θ

(
Hi∗

ηi∗,j
log

Hi∗

H1ηi∗,j

)
+ 16ηi∗,j

K∑
k=1

⟨qi
∗,j
k , (ℓk −m′

k)
2⟩+Θ(H1),

(51)

where the last inequality holds due to Cauchy-Schwarz inequality.

Upper bound of overall dynamic regret. Combining (49), (50) and (51), we obtain

E[D-RegretK ] ≤ 4P̄T logK +Hi∗(1 + log(|X||A|Hi∗))

ηi∗,j
+ 32V ′

K +Θ

(
Hi∗

ηi∗,j
log

Hi∗

H1ηi∗,j

)
,

(52)
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which holds for any index j. Omit the last term, it is clear that the optimal step size

is η∗ =

√
Hi∗ (1+log(|X||A|Hi∗ ))+4P̄K logK

32V ′
K

. Meanwhile, since
∑

x,a qk(x, a) ≤ H∗, ∀k, we have

0 ≤ P̄K =
∑K

k=2∥qπ
c
k − qπ

c
k−1∥1 ≤ 2H∗K ≤ 2Hi∗K and V ′

K =
∑K

k=1⟨qπ
c
k , (ℓk − m′

k)
2⟩ ≤

4H∗K ≤ 4Hi∗K. Therefore, we ensure that

η∗ ≥
√

1 + log(|X||A|Hi∗)

128K
.

From the construction of the candidate step size pool Hi∗ , we know that the step size therein
is monotonically decreasing with respect to the index, in particular,

η1 =
1

64
, and ηN =

√
1 + log(|X||A|Hi∗)

128K
≤ η∗.

First we consider the case that
∑K

k=1⟨qπ
c
k , ℓ2k⟩ >

∑K
k=1⟨qπ

c
k , (ℓk −mk)

2⟩. Let j∗ be the
index of base learner in group i∗ with step size closest to η∗ and optimism m′

k = mk. Then,
we consider the base regret of the base learner Bi∗,j∗ . We consider the following two cases:

• when η∗ ≤ 1
64 , then ηi∗,j∗ ≤ η∗ ≤ 2ηi∗,j∗ = ηi∗,j∗−1, we have

R.H.S of (52)

≤ 8P̄K logK + 2Hi∗(1 + log(|X||A|Hi∗))

η∗
+ 32η∗

K∑
k=1

⟨qπck , (ℓk −mk)
2⟩+Θ

(
Hi∗

η∗
log

Hi∗

H1η∗

)

≤ Õ


√√√√(P̄K +H∗

) K∑
k=1

⟨qπck , (ℓk −mk)2⟩

 = Õ
(√(

P̄K +H∗
)
VK

)
,

where the last equality holds due to VK = min{
∑K

k=1 ⟨qπ
c
k , ℓ2k⟩,

∑K
k=1 ⟨qπ

c
k , (ℓk −mk)

2⟩}
and

∑K
k=1⟨qπ

c
k , ℓ2k⟩ >

∑K
k=1⟨qπ

c
k , (ℓk −mk)

2⟩.

• when η∗ > 1
64 , then ηi∗,j∗ = 1

64 , we have

R.H.S of (52) ≤ 256
(
P̄K logK +Hi∗(1 + log(|X||A|Hi∗))

)
+

1

2

K∑
k=1

⟨qπck , (ℓk −mk)
2⟩+Θ(H∗)

≤ Õ
(
P̄K +H∗

)
,

where the last inequality holds due to
√

Hi∗ (1+log(|X||A|Hi∗ ))+4P̄K logK

32
∑K

k=1⟨q
πc
k ,(ℓk−mk)2⟩

≥ 1
64 .

Then, when
∑K

k=1⟨qπ
c
k , ℓ2k⟩ >

∑K
k=1⟨qπ

c
k , (ℓk −mk)

2⟩, we can choose the base-learner Bi∗,j∗
with step size closest to the η∗ and optimism m′

k = 0 to analysis and obtain the same result.
As a result, taking both cases into account yields

E[D-RegretK(πc1:K)] ≤ Õ
(√(

H∗ + P̄K
)
(H∗ + P̄K + VK)

)
.

This finishes the proof.
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C.7 Useful Lemmas

we introduce the following lemma which shows the boundedness of the regularizer.

Lemma 11. Let H ≥ 1, it holds that −H log(|X||A|) ≤
∑

x,a q(x, a) log q(x, a) ≤ H logH
for every q ∈ ∆(M,H).

Proof. First, we prove the right-hand side of the inequality.∑
x,a

q(x, a) log q(x, a) =
∑
x,a

q(x, a) log
q(x, a)

H
+
∑
x,a

q(x, a) logH ≤
∑
s,a

q(x, a) logH ≤ H logH.

Then, we prove the left-hand side of the inequality.

−
∑
x,a

q(x, a) log q(x, a) = −
∑
x,a

q(x, a) log
q(x, a)

H
−
∑
x,a

q(x, a) logH

≤ −H
∑
s,a

q(x, a)

H
log

q(x, a)

H
≤ H log |X||A|.

This finishes the proof.

Appendix D. Proofs for Section 5 (Infinite-horizon MDPs)

In this section, we first show the relationship between the path length of policies and the
path length of occupancy measures. Next, we show the proofs of the reduction to switching-
cost expert problem in Section 5.2. Then, we give the proofs of the dynamic regret of our
algorithm in Section 5.3 and finally we present the proofs of the impossibility result for
switching-cost expert problem in Section 5.4.

D.1 Path Length of Policies and Occupancy Measures

We introduce the relationship between the path length of policies and the path length of
occupancy measures as follows.

Lemma 12. For any occupancy measure sequence q1, . . . , qT induced by the policy sequence
π1, . . . , πT , it holds that

T∑
t=2

∥qπt − qπt−1∥1 ≤ (τ + 2)
T∑
t=2

∥πt − πt−1∥1,∞.

Proof. Consider any two policies π and π′ with occupancy measure qπ and qπ′ , let dπ(x) ≜∑
x,a q

π(x, a), dπ
′
(x) ≜

∑
x,a q

π′
(x, a), ∀x ∈ X, we have

∥qπ − qπ
′∥1 =

∑
x,a

|qπ(x, a)− qπ
′
(x, a)|

=
∑
x,a

|dπ(x)π(a|x)− dπ
′
(x)π′(a|x)|
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≤
∑
x,a

|dπ(x)π(a|x)− dπ(x)π′(a|x)|+
∑
x,a

|dπ(x)π′(a|x)− dπ
′
(x)π′(a|x)|

=
∑
x

dπ(x)
∑
a

|π(a|x)− π′(a|x)|+
∑
x

|dπ(x)− d′(x)|
∑
a

π′(a|x)

≤ ∥π − π′∥1,∞ + ∥dπ − dπ
′∥1

≤ (τ + 2)∥π − π′∥1,∞,

where the first inequality holds due to the triangle inequality and the last inequality holds
due to Lemma 15. We finish the proof by summing the inequality over T .

D.2 Proof of Theorem 7

To prove Theorem 7, we first introduce two lemmas which measure the difference between the
sum of average losses and the actual losses of the learner and compared policies. Denote by ρπt
the average loss per step corresponding π: ρπt ≜ limT→∞

1
T

∑T
t=1 E[ℓt(xt, at)|P, π] = ⟨qπ, ℓt⟩

and the actual cumulative loss suffered by the learner LT ≜ E[ℓt(xt, πt(xt))|P, π], where
the randomness is over the transition kernel and policy sequence π1:T . Similarly, the actual
cumulative loss suffered by the compared policy sequence πc1:T is Lc

T ≜ E[ℓt(xt, πct (xt))|P, π].
Let dπ be the stationary state distribution, i.e., dπ(x) ≜

∑
a q

π(x, a),∀x ∈ X. Denote by
µt = µ1P

π1 · · ·P πt−1 the state distribution after executing π1, . . . , πt−1, where µ1 is the
initial distribution, similarly, µct = µ1P

πc1 · · ·P πct−1 .

Lemma 13. For any compared policy sequence πc1, . . . , π
c
T , it holds that

∑T
t=1 ρ

πct
t − Lc

T ≤
(τ + 1)2PT + 2(τ + 1).

Proof. From the definition that µct = µ1P
πc1 · · ·P πct−1 , we have

T∑
t=1

ρ
πct
t − Lc

T =
T∑
t=1

∑
x

(
dπ

c
t (x)− µct (x)

)∑
a

πct (a|x)ℓt(x, a)

≤
T∑
t=1

∥dπct − µct ∥1

≤ 2(τ + 1) + (τ + 1)
T∑
t=2

∥dπct − dπ
c
t−1∥1

≤ 2(τ + 1) + (τ + 1)2
T∑
t=2

∥πct − πct−1∥1,∞,

where the second inequality holds due to Lemma 16 and the last inequality holds due to
Lemma 15.

Lemma 14. For any occupancy measure sequence qπ1 , . . . , qπT returned by the learner, it
holds that LT −

∑T
t=1 ρ

πt
t ≤ (τ + 1)

∑T
t=2∥qπt − qπt−1∥1 + 2(τ + 1).

Proof. From the definition that µt = µ1P
π1 · · ·P πt−1 , we have

LT −
T∑
t=1

ρπtt =

T∑
t=1

∑
x

(µt(x)− dπt(x))
∑
a

πt(a|x)ℓt(x, a)
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≤
T∑
t=1

∥µt − dπt∥1

≤ 2(τ + 1) + (τ + 1)
T∑
t=2

∥dπt − dπt−1∥1

= 2(τ + 1) + (τ + 1)
T∑
t=2

∑
x

|
∑
a

qπt(x, a)− qπt−1(x, a)|

≤ 2(τ + 1) + (τ + 1)
T∑
t=2

∥qπt − qπt−1∥1,

where the second inequality holds due to Lemma 16.

Then, we present the proof of Theorem 7.

Proof of Theorem 7. Note that the dynamic regret for infinite-horizon MDPs is defined as
E[D-Regret(πc1:T )] = E[

∑T
t=1 ℓt(xt, πt(xt))− ℓt(xt, π

c
t (xt))]. Then it can be written as

E[D-RegretT (π
c
1:T )] = E

[
T∑
t=1

ℓt(xt, πt(xt))− ℓt(xt, π
c
t (xt))

]

= LT −
T∑
t=1

ρπtt +
T∑
t=1

(ρπtt − ρ
πct
t ) +

T∑
t=1

ρ
πct
t − Lc

T

≤
T∑
t=1

⟨qt − qπ
c
t , ℓt⟩+

T∑
t=2

∥qt − qt−1∥1 + (τ + 1)2PT + 4(τ + 1),

where the last inequality holds due to Lemma 13 and Lemma 14 and the definition that
PT =

∑T
t=2∥πt − πct ∥1,∞.

D.3 Proof of Theorem 8

Proof. Similar to the proof in Appendix B.3, since the MDP is ergodic according to Defini-
tion 1, we assume T is large enough such that there at least exists a policy πu whose occu-
pancy measure qu satisfies qπu ∈ ∆(M, 1

T ), then define ut = (1− 1
T )q

πct + 1
T q

πu ∈ ∆(M, 1
T 2 ),

from the dynamic regret decomposition in (17), we have

E[D-RegretT (π
c
1:T )] (53)

≤
T∑
t=1

⟨qt − qπ
c
t , ℓt⟩+ (τ + 1)

T∑
t=2

∥qt − qt−1∥1 + (τ + 1)2PT + 4(τ + 1)

=
T∑
t=1

⟨qt − ut, ℓt⟩+
1

T

T∑
t=1

⟨qπu − qπ
c
t , ℓt⟩+ (τ + 1)

T∑
t=2

∥qt − qt−1∥1 + (τ + 1)2PT + 4(τ + 1)

=

T∑
t=1

⟨qt − ut, ℓt⟩+ (τ + 1)

T∑
t=2

∥qt − qt−1∥1︸ ︷︷ ︸
term (a)

+(τ + 1)2PT + 4(τ + 1) + 2, (54)
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where the first equality follows from the definition that ut = (1 − 1
T )q

πct + 1
T q

πu . We only
need to consider term (a) since the remaining terms are not related to the algorithm. From
the decomposition in (20), term (a) can be written as

T∑
t=1

⟨pt, ht⟩ −
T∑
t=1

ht,i︸ ︷︷ ︸
meta-regret

+(τ + 1)
T∑
t=2

∥pt − pt−1∥1︸ ︷︷ ︸
meta-switching-cost

+
T∑
t=1

⟨qt,i − ut, ℓt⟩︸ ︷︷ ︸
base-regret

+(τ + 1)
T∑
t=2

∥qt,i − qt−1,i∥1︸ ︷︷ ︸
base-switching-cost

,

which hold for any index i. Next, we bound these terms separately.

Upper bound of base-regret. From the standard analysis of OMD similar to that in (23)
and (25), we have

T∑
t=1

⟨qt,i − ut, ℓt⟩ ≤ ηi

T∑
t=1

∑
x,a

qt,i(x, a)ℓ
2
t (x, a) +

1

ηi

T∑
t=1

(Dψ(ut, qt,i)−Dψ(ut, qt+1,i))

≤ ηiT +
log |X||A|

ηi
+

2 log T

ηi

T∑
t=2

∥ut − ut−1∥1

≤ ηiT +
log |X||A|+ 2P̄T log T

ηi
,

(55)

which the last inequality holds due to
∑T

t=2∥ut − ut−1∥1 ≤
∑T

t=2∥qπ
c
t − qπ

c
t−1∥1 = P̄T .

Upper bound of meta-regret. From the definition that ht,i = ⟨qt,i, ℓt⟩+ (τ + 1)∥qt,i −
qt−1,i∥1, ∀i ∈ [N ], we have 0 ≤ ht,i ≤ 1 + 2(τ + 1) = 2τ + 3,∀i ∈ [N ]. By the standard
analysis of Hedge similar to the analysis of meta-regret in Appendix B.3, we have

T∑
t=1

⟨pt, ht⟩ −
T∑
t=1

ht,i ≤ ε
T∑
t=1

N∑
i=1

pt,ih
2
t,i +

logN

ε
≤ ε(2τ + 3)2T +

logN

ε
. (56)

Upper bound of switching-cost. From Lemma 4, we have

∥qt,i − qt−1,i∥1 ≤ ηi∥ℓt∥∞ ≤ ηi, and ∥pt − pt−1∥1 ≤ ε∥ht∥∞ ≤ ε(2τ + 3),∀t ≥ 2. (57)

Upper bound of overall dynamic regret. Combining (55), (56) and (57), we obtain

term (a) ≤ ηi(τ + 2)T +
log (|X||A|) + 2P̄T log T

ηi
+ ε(2τ + 3)2T +

logN

ε
+ ε(2τ + 3)(τ + 1)T

≤ ηi(τ + 2)T +
log (|X||A|) + 2P̄T log T

ηi
+ 2ε(2τ + 3)2T +

logN

ε
.

From the configuration that ε =
√

logN
2T (2τ+3)2

, we obtain

term (a) ≤ ηi(τ + 2)T +
log (|X||A|) + 2P̄T log T

ηi
+ (4τ + 6)

√
2T logN.
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It is clear that the the optimal step size is η∗ =
√

log |X||A|+2P̄T log T
(τ+2)T . From the definition of

P̄T , we have 0 ≤ P̄T =
∑T

t=2∥qπ
c
t − qπ

c
t−1∥1 ≤ 2T , we ensure the possible range of η∗ is√

log |X||A|
(τ + 2)T

≤ η∗ ≤

√
log (|X||A|) + 4T log T

(τ + 2)T
.

Set the step size pool as H =
{
2i−1

√
log |X||A|

T | i ∈ [N ]
}

where N = ⌈12 log(1+
4T log T
log |X||A|)⌉+1.

We can verify that

η1 =

√
log |X||A|
(τ + 2)T

≤ η∗, and ηN ≥

√
log (|X||A|) + 4T log T

(τ + 2)T
= η∗.

Thus, we confirm that there exists a base-learner whose step size satisfies ηi∗ ≤ η∗ ≤ ηi∗+1 =
2ηi∗ . Then, we choose i∗ to analysis to obtain a sharp bound. Thus term (a) is bounded by

term (a) ≤ ηi∗(τ + 2)T +
log (|X||A|) + 2P̄T log T

ηi∗
+ (4τ + 6)

√
2T logN

≤ η∗(τ + 2)T +
2(log (|X||A|) + 2P̄T log T )

η∗
+ (4τ + 6)

√
2T logN

≤ 3
√

(τ + 2)T (log |X||A|+ 2P̄T log T ) + (4τ + 6)
√
2T logN, (58)

where the second inequality holds due to the condition ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ and the last

inequality holds by substituting the optimal step size η∗ =
√

log |X||A|+2P̄T log T
(τ+2)T . Therefore,

combining (54) and (58), we obtain

E[D-RegretT (π
c
1:T )]

≤ term (a) + (τ + 1)2PT + 4τ + 6

≤ 3
√
(τ + 2)T (log |X||A|+ 2P̄T log T ) + (4τ + 6)

√
2T logN + (τ + 1)2PT + 4τ + 6

≤ 3
√

(τ + 2)T (log |X||A|+ 2(τ + 2)PT log T ) + (4τ + 6)
√
2T logN + (τ + 1)2PT + 4τ + 6

≤ O(
√
τT (log |X||A|+ τPT log T ) + τ2PT ),

where the third inequality uses P̄T ≤ (τ+2)PT from Lemma 12. This finishes the proof.

D.4 Proof of Theorem 9

Proof. The proof is inspired by the proof of Theorem 13 in Altschuler and Talwar (2018).
Let c ≥ 0 be the constant in Lemma 17. First, we divide the T iterations into E epochs,
each with a uniform length T

E . For each epoch e ∈ [E], we assign each expert i ∈ [N ] a loss
of ℓe(i) = 0 with probability 1

2 and ℓe(i) = 1 with probability 1
2 for each interaction in that

epoch. Thus by Lemma 17, we have

E

[
min
i∈[N ]

T∑
t=1

ℓt(i)

]
≤ T

E

(
E

2
− c
√
E logN

)
=
T

2
− cT

√
log n

E
. (59)
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Now let us consider the expected loss of any algorithm A whose switching budget is
at most B, i.e.,

∑T
t=2∥pt − pt−1∥1 ≤ B. It is easy to verify that the following strategy is

optimal: for each epoch, randomly assign the weight on the experts in the first iteration
(any strategy in the first iteration is the same since the losses are totally random), then,
convert the weight on the bad experts (with loss 1) to the good experts (with loss 0) if we
have switching budget remaining else not move. Denote by W the total weight assigned to
bad experts in the first iteration of E epochs. Thus E[W ] = E

2 . Then the random variable
min(W, B2 ) is equal to the weight that algorithm A convert from bad experts to good experts
(B2 is due to that converting weight B

2 will suffer B switching cost). Then, the cumulative
loss of algorithm A is lower bounded as follows:

E[cumulative loss of A] = E[weight on bad experts of A]

= E
[
1 ·min(W,

B

2
) +

T

E
· (W −min(W,

B

2
))

]
≥ T

E
E[W − B

2
]

≥ T

E

(
E

2
− B

2

)
=
T

2
− TB

2E

(60)

By setting E = 4B2

c2 logN
and combining (59) and (60), we have

RegretT (A) ≥ cT

√
logN

E
− TB

2E
=

3c2T logN

8B
, (61)

we ensure that any algorithm A with switching budget B suffers expected static regret at
least 3c2T logN

8B = Ω(T logN
B ).

Consider the case that B = Θ(T
1
3 ) and E = 4B2

c2 logN
= Θ(T

2
3 ). In this case,

∑T
t=2∥ℓt −

ℓt−1∥2∞ = E = Θ(T
2
3 ), in order to achieving O(

√
1 +

∑T
t=2∥ℓt − ℓt−1∥2∞) static regret with

switching cost, the algorithm A is required to keep the static regret and switching cost both
not more than O(T

1
3 ). However, from (61), we know that any algorithm with B = O(T

1
3 )

switching budget will suffer Ω( TB ) = Ω(T
2
3 ) static regret. This completes the proof.

D.5 Useful Lemmas

In this part, we present some useful lemmas in infinite-horizon MDPs. Denote by dπ the
stationary state distribution induced by policy π under transition kernel P , i.e., dπ(x) ≜∑

a q
π(x, a), ∀x ∈ X. Then we have the following useful lemmas which show the relationships

between policy discrepancy and distribution discrepancy.

Lemma 15 (Lemma 4 of Neu et al. (2014)). For any two policies π and π′, it holds that

∥dπ − dπ
′∥1 ≤ (τ + 1)∥π − π′∥1,∞.

Proof. The statement follows from solving

∥dπ − dπ
′∥1 ≤ ∥dπP π − dπ

′
P π∥1 + ∥dπ′

P π − dπ
′
P π

′∥1 ≤ e−1/τ∥dπ − dπ
′∥1 + ∥π − π′∥1,∞
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for ∥dπ − dπ
′∥1 and using 1

1−e−1/τ ≤ τ + 1.

Lemma 16. Consider the distribution µt = µ1P
π1 ·P πt−1, where µ1 is any distribution over

X and π1, . . . , πt is any policy sequence, it holds that

T∑
t=1

∥µt − dπt∥1 ≤ 2(τ + 1) + (τ + 1)
T∑
t=2

∥dπt − dπt−1∥1.

Proof. It is trivial for t = 1 since ∥µ1 − dπ1∥1 ≤ 2. Thus, in what follows we only consider
the case that t ≥ 2.By the triangle inequality, we have

∥µt − dπt∥1 ≤ ∥µt − dπt−1∥1 + ∥dπt−1 − dπt∥1
= ∥µt−1P

πt−1 − dπt−1P πt−1∥1 + ∥dπt−1 − dπt∥1
≤ e−1/τ∥µt−1 − dπt−1∥1 + ∥dπt−1 − dπt∥1

≤ e−1/τ
(
e−1/τ∥µt−2 − dπt−2∥1 + ∥dπt−2 − dπt−1∥1

)
+ ∥dπt−1 − dπt∥1

≤ · · · ≤ e−(t−1)/τ∥µ1 − dπ1∥1 +
t−2∑
n=0

e−n/τ∥dπt−n − dπt−n−1∥1

≤ 2e−(t−1)/τ +
t−2∑
n=0

e−n/τ∥dπt−n − dπt−n−1∥1.

where the first equality holds since dπt−1 is the stationary distribution of πt−1, i.e., dπt−1 =
dπt−1P πt−1 and the second inequality holds due to Definition 1. Summing above inequality
over t, we have

T∑
t=1

∥µt − dπt∥1 ≤ 2 + 2

T∑
t=2

e−(t−1)/τ +

T∑
t=2

t−2∑
n=0

e−n/τ∥dπt−n − dπt−n−1∥1

≤ 2(τ + 1) +

T∑
t=2

(

T−t∑
n=0

e−n/τ )∥dπt − dπt−1∥1

≤ 2(τ + 1) + (τ + 1)

T∑
t=2

∥dπt − dπt−1∥1.

This finishes the proof.

We finally introduce the following concentration lemma, which is useful in proving the
impossibility result of the switching-cost expert problem.

Lemma 17 (Lemma 6 of Cesa-Bianchi et al. (1997)). Denote σt(i), i ∈ [N ], t ∈ [T ] the i.i.d.
random variables which take 0 with probability 1

2 and take 1 with probability 1
2 . There exist

a constant c ≥ 0 such that for all positive integer N and T ,

E

[
min
i∈[N ]

T∑
t=1

σi(t)

]
≤ T

2
− c
√
T logN.
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