
Continual Multi-Objective Reinforcement Learning via Reward Model Rehearsal
Lihe Li1,2 , Ruotong Chen1,2 , Ziqian Zhang1,2 , Zhichao Wu1,2 , Yi-Chen Li1,2,3 ,

Cong Guan1,2 , Yang Yu1,2,3∗ , Lei Yuan1,2,3

1National Key Laboratory for Novel Software Technology, Nanjing University
2School of Artificial Intelligence, Nanjing University

3Polixir Technologies
{lilh, zhangzq, liyc, guanc, yuanl}@lamda.nju.edu.cn, {chenrt, zcwu}@smail.nju.edu.cn,

yuy@nju.edu.cn

Abstract
Multi-objective reinforcement learning (MORL)
approaches address real-world problems with mul-
tiple objectives by learning policies maximizing re-
turns weighted by different user preferences. Typ-
ical methods assume the objectives remain un-
changed throughout the agent’s lifetime. How-
ever, in some real-world situations, the agent may
encounter dynamically changing learning objec-
tives, i.e., different vector-valued reward functions
at different learning stages. This issue of evolv-
ing objectives has not been considered in prob-
lem formulation or algorithm design. To address
this issue, we formalize the setting as a continual
MORL (CMORL) problem for the first time, ac-
counting for the evolution of objectives through-
out the learning process. Subsequently, we propose
Continual Multi-Objective Reinforcement Learn-
ing via Reward Model Rehearsal (CORE3), incor-
porating a dynamic agent network for rapid adap-
tation to new objectives. Moreover, we develop a
reward model rehearsal technique to recover the re-
ward signals for previous objectives, thus alleviat-
ing catastrophic forgetting. Experiments on four
CMORL benchmarks showcase that CORE3 ef-
fectively learns policies satisfying different pref-
erences on all encountered objectives, and out-
performs the best baseline by 171%, highlighting
the capability of CORE3 to handle situations with
evolving objectives.

1 Introduction
Reinforcement learning (RL) has garnered prominent atten-
tion in recent years [Wang et al., 2022], and made ex-
citing progress in various real-world sequential decision-
making problems, like robotic control [Singh et al., 2022],
autonomous driving [Kiran et al., 2022], and aligning large
language models with human values [Kaufmann et al., 2023],
etc. These problems could be formalized as completing a
specific objective, i.e., maximizing a scalar return. Never-
theless, numerous real-world problems encompass multiple,

∗Corresponding Author

possibly conflicting objectives. An illustrative example is an
autonomous driving agent tasked with multiple objectives,
such as maximizing speed and minimizing fuel consump-
tion. To tackle such complex scenarios, multi-objective rein-
forcement learning (MORL) approaches [Roijers et al., 2013;
Liu et al., 2014] have been introduced to concurrently learn
these multiple objectives with a vector-valued reward func-
tion, obtain a set of policies maximizing returns weighted
by different preferences, and employ the appropriate pol-
icy given a user preference during testing, like driving fast
for a passenger with urgent matters, or driving slowly and
smoothly for a leisurely traveler.

Given the extensive and significant applications of MORL,
many approaches have been developed [Hayes et al., 2022].
Typical methods primarily concentrate on developing vari-
ous techniques to enhance the learning efficiency over the
multiple objectives, including applying meta-learning tech-
niques [Chen et al., 2019], utilizing prediction-guided evo-
lutionary learning [Xu et al., 2020], developing preference-
conditioned network architecture [Abels et al., 2019], propos-
ing novel Bellman update strategies [Basaklar et al., 2023],
etc. Beyond that, these methods assume that throughout the
agent’s entire lifetime, the learning objectives remain un-
changed. However, the agent may encounter dynamically
changing learning objectives, i.e., altering vector-valued re-
ward functions. On one hand, new objectives and their re-
ward signals may appear at different learning stages, as it
is natural and inevitable for human users to propose new re-
quirements. On the other hand, some objectives may be re-
moved from the agent’s perspective, as their reward signals
become inaccessible after a limited training period, yet the
agent must retain the ability to complete them [Chang et al.,
2021]. For instance, the reward for the objective “stay in the
middle lane” will be unavailable after the corresponding sen-
sors run out of power or malfunction [Shaheen et al., 2022;
Wang et al., 2023], while the autonomous driving agent is
still obliged to manage it for certain passengers. Without con-
sidering these scenarios, the underlying assumption of fixed
objectives made by existing methods hinders the further de-
velopment of MORL and its practical application in scenarios
with evolving objectives.

To bridge the gap between existing methods and the men-
tioned scenarios, and endow MORL agents with contin-
ual learning ability, we take the issues into consideration

and formalize the setting as a continual MORL (CMORL)
problem for the first time, where the agent encounters a
sequence of MORL tasks with objectives altering contin-
ually, and should learn to complete all encountered ob-
jectives (Figure 1). Furthermore, we propose Continual
Multi-Objective Reinforcement Learning via Reward Model
Rehearsal (CORE3), incorporating a dynamic agent net-
work with a multi-head architecture [Kessler et al., 2022;
Zhang et al., 2023a], which enables flexible expansion for
new objectives and effective knowledge transfer [Zhu et al.,
2023]. To avoid catastrophic forgetting about objectives lack-
ing reward signals, inspired by the concept of rehearsal in
continual learning [Parisi et al., 2019], we develop a reward
model rehearsal approach to recover these signals and use
them to update the policy. This approach not only provides a
theoretical guarantee but also effectively alleviates the unique
challenge of catastrophic forgetting in CMORL, ensuring the
agent’s high performance on all encountered objectives.

We conduct experiments within four CMORL benchmarks
featuring evolving objective sets. The results showcase that
CORE3 effectively learns to accomplish all encountered ob-
jectives in accordance with different preferences, outperform-
ing the best baseline by 171% on Hypervolume, a widely-
used metric in MORL [Hayes et al., 2022]. More results
further provide insight into how CORE3 successfully tackles
the CMORL problem with the proposed technologies. These
findings highlight the capability of CORE3 to effectively han-
dle real-world situations involving evolving objectives.

2 Related Work
Multi-objective reinforcement learning (MORL) extends
the conventional RL framework with a single objective to
multi-objective settings [Roijers et al., 2013; Liu et al., 2014],
and can be applied to real-world problems like hyperparam-
eter tuning [Chen et al., 2021], canal control [Ren et al.,
2021], etc. Among the approaches, the single-policy se-
ries [Pan et al., 2020; Siddique et al., 2020; Hwang et al.,
2023] predefines objective preferences, converting the prob-
lem into a single-objective one which is solvable by tradi-
tional RL methods. When the preference cannot be known in
advance, multi-policy approaches aim to learn a set of poli-
cies that approximates the Pareto front of solutions, and select
the optimal one for testing given a preference. One classical
work is PG-MORL [Xu et al., 2020], which updates a policy
population using an evolutionary algorithm to approximate
the Pareto front. Another line of works like Envelope [Yang
et al., 2019] and PD-MORL [Basaklar et al., 2023], train a
single preference-conditioned network over multiple prefer-
ences with different Bellman update strategies. To release the
burden of learning multiple policies simultaneously, meta-
policy approaches [Chen et al., 2019; Zhang et al., 2023b]
first train a meta-policy and finetune it with a small amount
of update steps to derive the solution for a given preference.
To test the learning efficiency of various MORL methods, re-
searchers also develop different benchmarks [Xu et al., 2020;
Felten et al., 2023]. Despite these progress, existing MORL
approaches and benchmarks focus on learning a fixed set of
objectives, while our work is the first to explore the MORL

problem with objectives evolving continually.
Continual reinforcement learning (CRL) [Ring, 1995;
Khetarpal et al., 2022] focuses on enabling agents to learn
a sequence of different RL tasks and balance the stability-
plasticity dilemma, i.e., alleviating catastrophic forgetting of
old tasks while adapting to new tasks. One classic method is
EWC [Kirkpatrick et al., 2017], which adds an l2-distance-
based regularizer to constrain the update of the agent net-
work. Another task-agnostic approach CLEAR [Rolnick et
al., 2019] stores the transitions of every encountered task
in the buffer, and uses them to rehearse the agent. Other
works [Huang et al., 2021; Kessler et al., 2023] learn a world
model to assist the agent’s continual learning. OWL [Kessler
et al., 2022] and DaCoRL [Zhang et al., 2023a] utilize
a multi-head architecture to enhance the agent’s continual
learning ability. CSP [Gaya et al., 2023] builds a subspace of
policies continually. CPPO [Anonymous, 2024] continually
learns from human preferences based on PPO [Schulman et
al., 2017]. Other researchers also develop benchmarks [Wol-
czyk et al., 2021; Powers et al., 2022] to test the continual
learning ability of different CRL methods. While these meth-
ods focus on the standard RL tasks with only one objective,
i.e., scalar reward signals, our work presents the first explo-
ration into MORL in the continual learning setting.

ℳ!…ℳ"#!Past ℳ"Present

ℳ"$!…FuturePrevious objectives without reward signals
Previous objectives with reward signals
New objectives introduced by users

All encountered
objectives 𝒦!"#

$%%
All encountered
objectives 𝒦!

$%%

…

CMORL
Agent

Rewards

Evaluate

Figure 1: The overall workflow of continual MORL (CMORL).

3 Problem Formulation
A multi-objective sequential decision making problem can
be formulated as a Multi-Objective Markov Decision Process
(MOMDP), with tupleM = ⟨S,A, P,K,R,Ω, fω, γ⟩. Here,
S and A denote the state space and the action space. P :
S×A → Pr(S) is the transition function. K = {k1, · · · , km}
is the set of m different objectives, a subset of all possible
objectives K. R : S × A → Rm is the vector-valued reward
function. Ω is the preference space. fω : Rm → R is the
scalarization function under preference ω ∈ Ω, and γ is the
discount factor. We focus on the linear reward scalarization
setting, i.e., fω(R(s, a)) = ω⊤R(s, a), for s ∈ S, a ∈ A,
and Ω = ∆m is the unit simplex, aligning with the estab-
lished practices in the MORL literature [Hayes et al., 2022].
At each time step t, the agent observes state st, takes ac-
tion at, and receives a reward vector rt = R(st, at) =
(Rk1

(st, at), · · · , Rkm
(st, at)), where Rki

(st, at) is the re-
ward signal of objective ki(i = 1, · · · ,m). The agent
knows the objective that each scalar reward corresponds to.
Here, we learn a preference-conditioned agent policy π :

S × ∆m → Pr(A). The goal is to find the optimal pol-
icy π∗, such that ∀ω ∈ ∆m, π∗ = argmaxπ ω

⊤J(π(·|·;ω)),
where J(π) = Eτ∼π[

∑∞
t=0 γ

tR(st, at)] is the value vector,
and τ = (s0, a0, s1, a1, · · ·) is the trajectory.

In this work, we aim to solve the CMORL problem where
the agent encounters a sequence of multi-objective tasks:
(M1, · · · ,Mn, · · ·), as shown in Figure 1. Each taskMn is
a MOMDP with specific objectives Kn = {kn1 , . . . , knmn

} ⊂
K, reward function Rn = (Rn

1 , · · · , Rn
mn

), and preference
space Ωn = ∆mn . Here, Rn

i denotes Rkn
i
(i = 1, · · · ,mn)

for simplicity. The agent knows if the task has changed. How-
ever, it can only receive the reward signals of the current ob-
jective set Kn, and is evaluated on all encountered ones, i.e.,
Kall

n = ∪ni=1Ki = {k11, · · · , k1m1
} ∪ · · · ∪ {kn1 , · · · , knmn

} =
{k1, · · · , kMn}, whereMn represents the total number of ob-
jectives introduced up to and including task Mn. Note that
Mn ≤

∑n
i=1mn because some objectives may appear re-

peatedly in different tasks (e.g., k11 = k21 = k1). These set-
tings of CMORL necessitate the agent’s rapid adaptation to
new objectives while maintaining the ability to accomplish
the previously encountered ones.

4 Method
In this section, we present the detailed design of our proposed
method CORE3. First, we introduce a novel dynamic agent
network architecture that adaptively expands as new objec-
tives arrive, facilitating rapid adaptation and circumventing
the need to learn the entire network from scratch. Next, we
utilize a multi-objective reward model to recover reward sig-
nals of previously encountered objectives, thereby alleviat-
ing the phenomenon of catastrophic forgetting. Through the
incorporation of these techniques, CORE3 effectively learns
the sequence of multi-objective tasks in a continual manner.

4.1 Dynamic Network for Evolving Objectives
Under the CMORL setting, the learning objectives alter con-
tinually along with the task sequence, leading to an increase
in the number of all encountered objectives. As a result, the
conventional network architecture with fixed input and out-
put shapes will no longer work. To address this problem, we
design a dynamic and expandable network architecture.

Concretely, for discrete action spaces, we learn a vec-
torized Q network Q(s, a, ω; θ) to approximate the action-
value function and use it as the policy. We design the Q
network architecture as a combination of a feature extrac-
tor E(s, a, ω; ξ) and distinct heads {h(e;ψi)}Mn

i=1 for all en-
countered objectives. The feature extractor first transforms
the varying-length preference ω into a fixed-length embed-
ding zω using a GRU [Chung et al., 2014]. Then, a multi-
layer perceptron (MLP) takes the state, action, and embed-
ding zω as input and outputs feature e = E(s, a, ω; ξ). Then,
each MLP head h(e;ψi) takes e as input, and outputs the
Q value of objective ki, forming the overall output Q vec-
tor

(
h
(
e;ψ1

)
, · · · , h

(
e;ψMn

))
= Q(s, a, ω; θ) for all ob-

jectives. With the Q vector, the CMORL agent is able to
select the optimal action a = argmaxã∈A ω

⊤Q(s, ã, ω; θ)
w.r.t. the given preference ω. During training taskMn, the
Q network is optimized to minimize the following loss:

L(θ) = E(s,a,r,s′,ω)∼D [∥y−Q(s, a, ω; θ)∥2] ,
where Q(s, a, ω; θ) =

(
h
(
e;ψ1

)
, · · · , h

(
e;ψMn

))
,

(1)

and D is the replay buffer, θ = (ξ, {ψi}Mn
i=1) are the up-

dated parameters of the networks, y = r + γQ(s′, a′, ω; θ−)
denotes the target value vector which is obtained using
target Q network’s parameters θ− and the action a′ =
argmaxã∈A ω

⊤Q(s′, ã, ω; θ−). When new objectives ar-
rive, we dynamically create new objective heads and ex-
pand the network. For continuous action spaces, we ap-
ply Q(s, a, ω; θ) as the critic and learn an actor π(a|s, ω;ϕ).
When computing the target value vector y to optimize Q, the
action a′ is obtained by the actor: a′ ∼ π(·|s′, ω;ϕ). The
actor π(·|s, ω;ϕ) is also equipped with a GRU to process
the varying-length preference, and is optimized to maximize
ω⊤Q. Such network architecture not only handles the in-
creasing objective number, but also facilitates efficient knowl-
edge transfer between tasks with different objectives. More
details about the network architecture and the optimization
process are provided in Appendix C.1.

4.2 Multi-Objective Reward Model Rehearsal
With the designed network architecture and loss function, the
agent can learn to complete all encountered objectives ef-
fectively. Nevertheless, the computation of the loss function
L(θ) defined in Equation 1 requires access to the reward sig-
nals of all previous objectives, i.e., Kall

n \Kn. Unfortunately,
in the CMORL setting, these reward signals are unavailable
from the environment. Simply neglecting these objectives
would lead to the undesirable consequence of the agent los-
ing its capability to accomplish them, i.e., catastrophic for-
getting phenomenon. These issues pose a great challenge to
the agent’s learning process.

To solve these issues, we propose learning a multi-
objective reward model R̂ to recover the reward signals for
all previous objectives Kall

n \Kn. Concretely, when learning
task Mn, the environment provides reward signals rt =
(Rn

1 (st, at), · · · , Rn
mn

(st, at)) corresponding to objectives
Kn = {kn1 , . . . , knmn

}. Next, we predict reward vector r̂t =

R̂(st, at) = (R̂1(st, at), · · · , R̂Mn
(st, at)). Note that if ob-

jective ki ∈ Kn(i = 1, · · · ,Mn), we directly set R̂i(st, at)
as the ground-truth reward in rt. Then, r̂t is employed to
compute the target value vector in Equation 1, to rehearse the
agent about previous objectives. From the agent’s perspec-
tive, the reward signals for all encountered objectives per-
sist throughout the entire learning process. Consequently, the
agent’s performance significantly depends on the quality of
the multi-objective reward model. Here, we theoretically an-
alyze their relationship.
Theorem 1 (Bounded Performance Gap). Consider two
MOMDPs, M and M̂, differing only in their reward func-
tions: R = (R1, · · · , Rm) and R̂ = (R̂1, · · · , R̂m).
The value vectors of a policy π in M and M̂ are
JM(π) = Eτ∼π[

∑∞
t=0 γ

tR(st, at)] and JM̂(π) =

Eτ∼π[
∑∞

t=0 γ
tR̂(st, at)], respectively. The optimal poli-

cies for M and M̂ are denoted as π∗ and π̂∗, satisfy-

ing ∀ω ∈ ∆m, π∗ = argmaxπ ω
⊤JM(π), and π̂∗ =

argmaxπ ω
⊤JM̂(π). Define the difference between these re-

ward functions as δ = sups∈S,a∈A ||R(s, a) − R̂(s, a)||∞.
Based on these definitions, the following inequality holds,

∀ω ∈ ∆m, ω⊤JM(π∗)− ω⊤JM(π̂∗) ≤ 2δ

1− γ
. (2)

The proof is provided in Appendix A. As indicated by
Theorem 1, the performance gap between the policy learned
from the recovered rewards r̂t and the policy learned from the
ground-truth rewards rt is bounded by 2δ

1−γ , with δ represent-
ing the prediction error of the multi-objective reward model in
our context. So, we can minimize the performance gap by im-
proving the reward model’s prediction accuracy. To achieve
this goal and circumvent the necessity of training a separate
reward model for each objective, we also design a multi-head
architecture for the reward model network. A dynamic en-
coder F takes the current state and action as input, and out-
puts the dynamic feature z = F(s, a;ϑ). For each objective
ki(i = 1, · · · ,Mn), a reward prediction head g(·;φi) takes z
as input, and predicts reward R̂i(s, a) = g(z;φi). New heads
will be created when novel objectives appear. We also learn
a state prediction head to predict the next state ŝ′ = g(z;φs),
thereby stabilizing training and enhancing the dynamic en-
coder’s ability to capture the fundamental information of the
environment. Let Φ = (ϑ, {φn

i }
mn
i=1, φs) denote the network

parameters. The model is optimized in an end-to-end manner
to minimize the following prediction loss term:

Lpred(Φ) = E(s,a,renv,s′)∼D

[
∥s′ − g(z;φs)∥2

+
∥∥renv − (g(z;φn

1), · · · , g(z;φn
mn

))
∥∥
2

]
,

(3)

where D is the replay buffer, renv = Rn(s, a) is the ground-
truth reward vector received from the environment. Specif-
ically, only the reward heads {φn

i }
mn
i=1 corresponding to the

objectives {kn1 , · · · , knmn
} of task Mn are updated when

n > 1. Empirical results showcase that it does not weaken
the expressiveness and accuracy of the model. We also ap-
ply the ensemble technique to improve the robustness of the
model. More details about model learning are provided in
Appendix C.2. With the accurate learned multi-objective re-
ward model, we can recover the lost reward signals to re-
hearse the agent about previously encountered objectives,
alleviating catastrophic forgetting and ensuring the perfor-
mance on all objectives encountered so far.

4.3 Overall Learning Procedure
Through the incorporation of the technologies mentioned
in Section 4.1 and 4.2, we formulate our overall method,
Continual Multi-Objective Reinforcement Learning via
Reward Model Rehearsal (CORE3), which can effectively
learn the sequence of multi-objective tasks in a continual
manner. In this section, we outline the overall learning pro-
cedure of CORE3 in Algorithm 1.

For each learning taskMn, we use a replay buffer to store
and only store its transition data (Line 3), obviating the ex-
plicit storage of transition data of each encountered task, and

Algorithm 1 CORE3
Input: Multi-objective task (M1,M2, · · ·), policy π, multi-
objective reward model R̂, and replay buffer D.
Parameter: Q function θ = (ξ), actor ϕ (for continuous ac-
tion spaces), and multi-objective reward model Φ = (ϑ, φs).

1: Kall
0 ← ∅,Mn ← 0.

2: for n = 1, 2, · · · do
3: Clear replay buffer D.
4: Kall

n ← Kall
n−1 ∪ Kn,mn ← |Kn|,Mn ← |Kall

n |.
5: if Kall

n \Kall
n−1 ̸= ∅ then

6: // Dynamic Network Expansion
7: Create objective heads {ψi}Mn

i=Mn−1+1, add to θ.
8: Create reward heads {φi}Mn

i=Mn−1+1, add to Φ.
9: end if

10: while taskMn has not ended do
11: Uniformly sample preference ω ∼ ∆Mn .
12: Execute π(·|·, ω) in task Mn to collect transitions

{(s, a, renv, s
′, ω)} and append to D.

13: Update Φ = (ϑ, {φn
i }

mn
i=1, φs) of the multi-

objective reward model R̂ to minimize Lpred in
Equation 2. // Reward Model Learning

14: Sample transitions {(s, a, renv, s
′, ω)} ∼ D, replace

renv with prediction r̂, as mentioned in Section 4.2.
// Reward Model Rehearsal

15: Update θ = (ξ, {ψi}Mn
i=1) of the Q function to mini-

mize L in Equation 1. // Policy Learning
16: (For continuous action spaces) Update actor ϕ.
17: end while
18: Evaluate π on all encountered objectives Kall

n .
19: end for

ensuring the scalability of our approach. If novel objectives
appear in the current task Kn, we dynamically expand the
policy network and the multi-objective reward model network
(Lines 5∼ 9). Then, the agent exploresMn, and collect tran-
sitions into the replay buffer D. With the collected data, we
finetune the reward model so that it can predict the reward of
novel objectives (Line 13). Leveraging this reward model, we
recover the reward signals of previously encountered objec-
tives, and utilize them to train and rehearse the agent (Line
14). Finally, the policy is optimized based on the reward
signals for all encountered objectives, alleviating the catas-
trophic forgetting phenomenon (Lines 15 ∼ 16). To assess
the efficacy of CORE3 in addressing the CMORL problem,
we evaluate the learned policy on all encountered objectives
(Line 18), as elaborated in Section 5.

5 Experiments
In this section, we conduct experiments to answer the follow-
ing questions: (1) Can CORE3 better accomplish all encoun-
tered objectives compared with the baselines, and alleviate
forgetting about previous objectives lacking reward signals
(Section 5.2) ? (2) How does CORE3 adapt to new objec-
tives, and learn previous objectives from the perspective of
Pareto fronts (Section 5.3) ? (3) How does the hyperparame-
ters influence the performance of CORE3 (Section 5.4) ?

Envs Metrics Finetune CLEAR EWC CORE3 (Oracle) CORE3 (Ours)

FTN
HV (↑) 1.00 ± 0.07 0.85 ± 0.07 1.04 ± 0.07 1.10 ± 0.04 1.06 ± 0.001.06 ± 0.001.06 ± 0.00
SP (↓) 1.00 ± 0.14 0.73 ± 0.02 0.58 ± 0.060.58 ± 0.060.58 ± 0.06 0.72 ± 0.01 0.82 ± 0.02

BWT (↑) −0.12 ± 0.02 0.00 ± 0.01 −0.14 ± 0.01 0.03 ± 0.00 0.02 ± 0.010.02 ± 0.010.02 ± 0.01

Grid
HV (↑) 1.00 ± 0.82 4.21 ± 0.66 2.26 ± 1.34 4.60 ± 0.26 4.54 ± 0.604.54 ± 0.604.54 ± 0.60
SP (↓) 1.00 ± 0.58 0.42 ± 0.110.42 ± 0.110.42 ± 0.11 0.47 ± 0.10 0.37 ± 0.02 0.44 ± 0.10

BWT (↑) −0.44 ± 0.07 −0.14 ± 0.17−0.14 ± 0.17−0.14 ± 0.17 −0.58 ± 0.05 −0.07 ± 0.12 −0.17 ± 0.15

Ant
HV (↑) 1.00 ± 0.42 1.78 ± 0.37 1.03 ± 0.60 2.30 ± 0.18 1.89 ± 0.351.89 ± 0.351.89 ± 0.35
SP (↓) 1.00 ± 0.56 0.33 ± 0.060.33 ± 0.060.33 ± 0.06 1.43 ± 1.78 1.06 ± 0.57 0.73 ± 0.72

BWT (↑) −0.27 ± 0.02 0.01 ± 0.18 −0.35 ± 0.1 0.34 ± 0.18 0.11 ± 0.160.11 ± 0.160.11 ± 0.16

Hopper
HV (↑) 1.00 ± 1.22 2.03 ± 3.49 1.01 ± 1.43 7.84 ± 0.29 8.23 ± 1.428.23 ± 1.428.23 ± 1.42
SP (↓) 1.00 ± 0.76 7.59 ± 2.98 4.76 ± 3.54 0.35 ± 0.11 0.21 ± 0.100.21 ± 0.100.21 ± 0.10

BWT (↑) −0.40 ± 0.07 −0.38 ± 0.22 −0.37 ± 0.07 0.11 ± 0.09 0.06 ± 0.050.06 ± 0.050.06 ± 0.05

API (%) (↑)
HV \ 121.72 33.61 296.03 293.18293.18293.18
SP \ −126.81 −80.85 37.61 45.3745.3745.37

BWT \ 69.09 −17.87 145.36 109.09109.09109.09

Table 1: Metric values are presented as mean ± std for different methods across four CMORL benchmarks. For simplicity, we re-scale HV
and SP values by taking the Finetune’s results as an anchor and present the average performance improvement (API, %) relative to it. The best
results except the Oracle baseline in each row is highlighted in bold. ↑ indicates bett er performance with higher values, and ↓ the opposite.

5.1 Benchmarks, Baselines, and Metrics

To provide a testbed for CORE3, we first design four
CMORL benchmarks with both discrete and continuous ac-
tion spaces, by extending widely-used MORL benchmarks
into continual learning settings. The first benchmark is Fruit
Tree Navigation (FTN) [Yang et al., 2019], a task with a full
binary tree, and an agent navigating from the root node to one
of the leaf node to receive a 6-dimension reward, represent-
ing the amount of six different nutrients. Next, inspired by
the four-room [Alegre et al., 2022] environment, we design
a more complicated Grid world benchmark with five goal
positions. The agent is rewarded when navigating closer to
the goals, and should navigate to the optimal position given
a preference on the goals. Both FTN and Grid are environ-
ments with discrete action spaces, and we design two contin-
uous control CMORL benchmarks based on MuJoCo physics
engine [Todorov et al., 2012; Xu et al., 2020]. In the Ant
benchmark, the agent controls the ant robot to complete five
objectives, including saving energy and moving in {±x,±y}-
axes. Another MuJoCo benchmark is Hopper, where the five
objectives of the hopper robot include saving energy, mov-
ing forward, moving backward, jumping high, and staying
low. In the CMORL setting, the agent learns a sequence of
five MOMDPs. Each MOMDP is trained for 100k steps in
FTN and 500k steps otherwise, with two objectives drawn
from the objectives mentioned above. More details about the
benchmarks are in Appendix B.1.

Next, we compare CORE3 with multiple strong baselines.
To evaluate the impact of reward model rehearsal on the
agent’s learning process, we compare CORE3 with Fine-
tune, which can be seen as an ablation of CORE3 with-
out reward model rehearsal, and directly tunes the policy
on the current task, ignoring previous objectives lacking re-
ward signals. Additionally, we extend representative works
in single-objective CRL into multi-objective settings as base-
lines. CLEAR [Rolnick et al., 2019] is a task-agnostic
method which stores transitions of all previous tasks and use
them to rehearse the agent. EWC [Kirkpatrick et al., 2017]

adds an l2-distance-based regularizer to constrain the update
of the agent network. We further investigate CORE3 (Or-
acle), representing a performance upper bound of CORE3,
as it has access to the rewards of previous objectives, i.e.,
CORE3 with ground-truth multi-objective reward model. We
run each method for five distinct seeds. More details about
the baselines are in Appendix B.2.

To evaluate the methods’ performance on completing all
encountered objectives, we randomly sample multiple prefer-
ences to test the agent, deriving a set V of all non-dominated
return vectors, i.e., the approximated Pareto front. To mea-
sure the quality of V , we adopt two metrics widely used
in the MORL literature [Hayes et al., 2022]. The first one
is Hypervolume (HV) :=

∫
H(V)

I{z ∈ H(V)}dz, where
H(V) := {z ∈ Rm : ∃vvv ∈ V,vvv ≻ z ≻ vvv0}, m is
the number of objectives, vvv0 is a predefined reference point,
≻ is the Pareto dominance relation, and I is the indicator
function. A larger HV indicates a better approximation of
the optimal Pareto front. The second one Sparsity (SP)
:= 1

|V |−1

∑m
j=1

∑|V |−1
i=1 (Ṽj(i) − Ṽj(i + 1))2 measures the

density of V , where Ṽj(i) is the i-th value in the sorted list for
the j-th objective values in V . Given two Pareto fronts with
close HV, the one with smaller SP is denser and considered
better. As we study a continual learning problem, it is nec-
essary to measure the forgetting phenomenon. We therefore
calculate Backward Transfer (BWT) [Wang et al., 2023]
:= 1

N−1 (
∑N

n=2
1

n−1

∑n−1
j=1 [(α

j
n − α

j
j)/α

j
j], where N = 5 is

the number of tasks, αj
i is the HV tested on objectivesKj after

training on taskMi with objectives Ki. BWT evaluates the
influence of learning new objectives on completing the previ-
ous ones. A larger BWT indicates a better anti-forgetting.

5.2 Competitive Results
In this section, we compare CORE3 with the baselines on
the four CMORL benchmarks. The overall results on all
three metrics are shown in Table 1, and the learning curves
on the primary metric, HV of all objectives encountered so

EWC CLEARCORE3 (Ours) CORE3 (Oracle) Finetune

(a) FTN (b) Grid (c) Ant (d) Hopper
Figure 2: Performance comparison during the learning process on metric HV in four benchmarks. Each benchmark has a sequence of five
MORL tasks, and each plot denotes the HV value on all objectives encountered so far. As the numerical range of HV varies greatly with the
number of objectives, we re-scale the HV values in each task to the range of [0, 1] for a comprehensive visualization.

H
v

(C
ur

re
nt

 O
bj

ec
tiv

es
)

EWC

CLEAR

CORE3 (Ours) CORE3 (Oracle)

Finetune

Figure 3: The learning curves of HV on each encountered task in the Hopper benchmark. Each of the five plots corresponds to a specific task,
and a gray background within each plot signifies the period during which the agent is training on that particular task. There is blank space in
the plots for task n > 1 because the task has not yet appeared. The results on other benchmarks are provided in Appendix D.1.

far, are displayed in Figure 2. We find that Finetune has the
most inferior overall performance on HV and suffers from
forgetting according to a low BWT, showing that ignoring
the lost reward signals cannot perform well in CMORL set-
tings, even with a well-designed multi-head policy network.
To alleviate forgetting, CLEAR uses transitions of previous
tasks to rehearse the agent, but still suffers from perfor-
mance degradation, because the transitions trading off ob-
jectives in different tasks are still lacking. Another widely-
used approach for single-objective CRL, EWC, also cannot
perform well, demonstrating the necessity of specific con-
siderations for multi-objective scenarios. Having access to
ground-truth reward signals for all encountered objectives,
CORE3 (Oracle) can be seen as an upper bound of perfor-
mance, and achieves the best overall results, demonstrating
the reward rehearsal strategy can solve the CMORL prob-
lem while conventional CRL approaches fail. Our approach
CORE3, achieves comparable performance to Oracle on all
four benchmarks and all three metrics, and outperforms the
best baseline CLEAR on the average HV improvement by
293.18%−121.72% = 171.46%, indicating the effectiveness
of reward model rehearsal.

We further display the learning curves of HV on each en-
countered task in the Hopper benchmark in Figure 3. We
observe the catastrophic forgetting phenomenon, where base-
lines suffer from performance degradation on tasks after
training on them. Take task 1 as an example, all methods dis-

play similar learning curves when training on it, but baselines
Finetune, EWC, and CLEAR suffer from performance degra-
dation after starting to train on task 2 or task 3. On the con-
trary, CORE3 shows non-decreasing learning curves, which
are comparable to CORE3 (Oracle) on every task, indicat-
ing that our approach successfully alleviates the catastrophic
forgetting phenomenon, and maintains the agent’s ability to
complete previous objectives. The results on other bench-
marks are provided in Appendix D.1.

5.3 Pareto Front Analysis
To provide a more comprehensive illustration of how CORE3
adapts to new tasks and alleviates catastrophic forgetting, we
further analyze the learning process by visualizing the Pareto
fronts in Figure 4. As shown in Figure 4(a), after learning
previous tasks, the CMORL agent is now confronted with a
new task with two objectives. One objective (moving in +y
axis) has been learned before, and the other one (moving in
−x axis) is new. To provide reference and comparison, we
introduce Learning-From-Scratch (LFS), which trains a ran-
domly initialized policy network to complete these two objec-
tives from scratch, and expands the Pareto front stating from
a position near (0, 0). The markers with different colors in
the figure (→) demonstrate the progression of the learn-
ing process. We then display the learning process of CORE3
in the same manner (→). At the early beginning of the
task, CORE3 already achieves a Pareto front that surpasses

Ta
sk

 b
eg

in
s

Ta
sk

 e
nd

s

LFS

CORE3

×10!

(a) CORE3 v.s. LFS on learning a new task.

Catastrophic
Forgetting

N
ew

 ta
sk

 b
eg

in
s

Improve
Continually

×10!

Finetune

CORE3

(b) CORE3 v.s. Finetune on an ended task.

Figure 4: Comparison of Pareto fronts on the Ant benchmark. The x, y-axes represent the returns of two different objectives. Each marker is a
found solution, and markers in the same color form an approximation of the optimal Pareto front. Different colors represent different training
periods. (a) CORE3 v.s. Learning-From-Scratch (LFS) on learning a new task. LFS trains a random initialized policy network from scratch.
(b) CORE3 v.s. Finetune on a task whose training period has ended. The displayed training period begins at 500k steps (lower right corner)
instead of 0, indicating the solutions are induced by policies learning subsequent tasks with objectives different from the ones in x, y-axes.

the one obtained by LFS at the task’s conclusion. It indi-
cates that, by learning from previous objectives, CORE3 has
acquired fundamental and transferable task knowledge, like
controlling the joints of the Ant robot in a reasonable way.
Armed with this knowledge and the continual learning of the
new task, CORE3 further effectively expands the Pareto front
to a broader and denser curve, better approximating the opti-
mal Pareto front of the task.

Next, we display the Pareto fronts of a task after training on
it. As shown in Figure 4(b), the reward signal of one objective
(moving in +x axis) is lost in the subsequent task while the
other remains. Without specific consideration, Finetune suf-
fers from a significant performance degradation about 50%
of the objective lacking reward signal (→), i.e., catas-
trophic forgetting. On the contrary, with the reward model re-
hearsal technique, CORE3 retains and continually improves
the ability of completing this objective (→), explaining
how CORE3 successfully alleviates catastrophic forgetting.

5.4 Sensitivity Studies
The performance of CORE3 significantly depends on the
quality of the multi-objective reward model, which is learned
through established world model learning techniques [Luo et
al., 2022]. As the learning process includes multiple hyperpa-
rameters, we here conduct experiments on the Hopper bench-
mark to investigate how each one influences the performance
of CORE3. One important hyperparameter is the ensemble
size, as we learn multiple ensemble models to improve ro-
bustness. On one hand, a small ensemble size is insufficient
for robustness. On the other hand, learning an excessively
large number of ensemble models will reduce the overall ef-
ficiency. As shown in Figure 5, we find that CORE3 achieves
the highest HV and lowest sparsity when the ensemble size
is equal to 5. CORE3 with 10 ensemble models performs
similar to the former, meaning that an ensemble size of 5 is

enough to learn a robust multi-objective reward model. When
the ensemble size is less than 5, the reward model is not stable
enough, resulting in worse performance. More detailed anal-
ysis of other important hyperparameters like the batch size of
model learning is provided in Appendix D.2.

Hv Sp
BwT

Figure 5: Sensitivity studies on model ensemble size in Hopper.

6 Final Remarks
Recognizing the significance of continual learning, this work
takes a further step towards continual multi-objective RL
(CMORL). We formulate this problem for the first time,
where learning objectives may evolve throughout the agent’s
lifetime. Then, we propose Continual Multi-Objective
Reinforcement Learning via Reward Model Rehearsal
(CORE3), which utilizes a dynamic agent network for adap-
tation to new objectives, and a multi-objective reward model
to rehearse the agents about objectives lacking reward signals.
Experiments demonstrate the effectiveness of our approach.
Furthermore, an intriguing avenue for future exploration is
extending multi-objective RL to the domain of multi-agent
reinforcement learning (MARL) [Yuan et al., 2023], thereby
fostering progress in both these vital fields.

Acknowledgments
This work is supported by National Science Foundation of
China (61921006). We would like to thank all reviewers for
their valuable suggestions.

References
[Abels et al., 2019] Axel Abels, Diederik M. Roijers, Tom

Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic
weights in multi-objective deep reinforcement learning. In
ICML, pages 11–20, 2019.

[Alegre et al., 2022] Lucas N. Alegre, Ana L. C. Bazzan, and
Bruno C. da Silva. Optimistic linear support and successor
features as a basis for optimal policy transfer. In ICML,
pages 394–413, 2022.

[Anonymous, 2024] Anonymous. CPPO: Continual learning
for reinforcement learning with human feedback. In ICLR,
2024.

[Basaklar et al., 2023] Toygun Basaklar, Suat Gumussoy,
and Ümit Y. Ogras. PD-MORL: preference-driven multi-
objective reinforcement learning algorithm. In ICLR,
2023.

[Chang et al., 2021] Yifan Chang, Wenbo Li, Jian Peng,
Bo Tang, Yu Kang, Yinjie Lei, Yuanmiao Gui, Qing Zhu,
Yu Liu, and Haifeng Li. Reviewing continual learning
from the perspective of human-level intelligence. arXiv
preprint arXiv:2111.11964, 2021.

[Chen et al., 2019] Xi Chen, Ali Ghadirzadeh, Mrarten
Björkman, and Patric Jensfelt. Meta-learning for multi-
objective reinforcement learning. In IROS, pages 977–983,
2019.

[Chen et al., 2021] SenPeng Chen, Jia Wu, and XiYuan Liu.
Emorl: Effective multi-objective reinforcement learning
method for hyperparameter optimization. Engineering Ap-
plications of Artificial Intelligence, 104:104315, 2021.

[Chung et al., 2014] Junyoung Chung, Caglar Gulcehre,
KyungHyun Cho, and Yoshua Bengio. Empirical evalua-
tion of gated recurrent neural networks on sequence mod-
eling. arXiv preprint arXiv:1412.3555, 2014.

[Felten et al., 2023] Florian Felten, Lucas Nunes Alegre,
Ann Nowe, Ana L. C. Bazzan, El Ghazali Talbi, Grégoire
Danoy, and Bruno Castro da Silva. A toolkit for reliable
benchmarking and research in multi-objective reinforce-
ment learning. In NeurIPS, 2023.

[Gaya et al., 2023] Jean-Baptiste Gaya, Thang Doan, Lucas
Caccia, Laure Soulier, Ludovic Denoyer, and Roberta
Raileanu. Building a subspace of policies for scalable con-
tinual learning. In ICLR, 2023.

[Hayes et al., 2022] Conor F Hayes, Roxana Rădulescu, Eu-
genio Bargiacchi, Johan Källström, Matthew Macfarlane,
Mathieu Reymond, Timothy Verstraeten, Luisa M Zint-
graf, Richard Dazeley, Fredrik Heintz, et al. A practi-
cal guide to multi-objective reinforcement learning and
planning. Autonomous Agents and Multi-Agent Systems,
36(1):26, 2022.

[Huang et al., 2021] Yizhou Huang, Kevin Xie, Homanga
Bharadhwaj, and Florian Shkurti. Continual model-based
reinforcement learning with hypernetworks. In ICRA,
pages 799–805, 2021.

[Hwang et al., 2023] Minyoung Hwang, Luca Weihs, Chan-
woo Park, Kimin Lee, Aniruddha Kembhavi, and Kiana
Ehsani. Promptable behaviors: Personalizing multi-
objective rewards from human preferences. arXiv preprint
arXiv:2312.09337, 2023.

[Kaufmann et al., 2023] Timo Kaufmann, Paul Weng, Vik-
tor Bengs, and Eyke Hüllermeier. A survey of rein-
forcement learning from human feedback. arXiv preprint
arXiv:2312.14925, 2023.

[Kessler et al., 2022] Samuel Kessler, Jack Parker-Holder,
Philip J. Ball, Stefan Zohren, and Stephen J. Roberts.
Same state, different task: Continual reinforcement learn-
ing without interference. In AAAI, pages 7143–7151,
2022.

[Kessler et al., 2023] Samuel Kessler, Mateusz Ostaszewski,
Michał Bortkiewicz, Mateusz Żarski, Maciej Wołczyk,
Jack Parker-Holder, Stephen J. Roberts, and Piotr Miłoś.
The effectiveness of world models for continual reinforce-
ment learning. In CoLLAs, pages 184–204, 2023.

[Khetarpal et al., 2022] Khimya Khetarpal, Matthew
Riemer, Irina Rish, and Doina Precup. Towards continual
reinforcement learning: A review and perspectives.
Journal of Artificial Intelligence Research, 75:1401–1476,
2022.

[Kiran et al., 2022] B. Ravi Kiran, Ibrahim Sobh, Victor Tal-
paert, Patrick Mannion, Ahmad A. Al Sallab, Senthil Ku-
mar Yogamani, and Patrick Pérez. Deep reinforcement
learning for autonomous driving: A survey. IEEE Transac-
tions on Intelligent Transportation Systems, 23(6):4909–
4926, 2022.

[Kirkpatrick et al., 2017] James Kirkpatrick, Razvan Pas-
canu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago
Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceed-
ings of the national academy of sciences, 114(13):3521–
3526, 2017.

[Liu et al., 2014] Chunming Liu, Xin Xu, and Dewen Hu.
Multiobjective reinforcement learning: A comprehensive
overview. IEEE Transactions on Systems, Man, and Cy-
bernetics: Systems, 45(3):385–398, 2014.

[Luo et al., 2022] Fan-Ming Luo, Tian Xu, Hang Lai,
Xiong-Hui Chen, Weinan Zhang, and Yang Yu. A sur-
vey on model-based reinforcement learning. SCIENCE
CHINA Information Sciences, 2022.

[Pan et al., 2020] Anqi Pan, Wenjun Xu, Lei Wang, and
Hongliang Ren. Additional planning with multiple objec-
tives for reinforcement learning. Knowledge-Based Sys-
tems, 193:105392, 2020.

[Parisi et al., 2019] German I. Parisi, Ronald Kemker,
Jose L. Part, Christopher Kanan, and Stefan Wermter.

Continual lifelong learning with neural networks: A re-
view. Neural Networks, 113:54–71, 2019.

[Powers et al., 2022] Sam Powers, Eliot Xing, Eric Kolve,
Roozbeh Mottaghi, and Abhinav Gupta. Cora: Bench-
marks, baselines, and metrics as a platform for continual
reinforcement learning agents. In CoLLAs, pages 705–
743, 2022.

[Ren et al., 2021] Tao Ren, Jianwei Niu, Jiahe Cui, Zhen-
chao Ouyang, and Xuefeng Liu. An application of multi-
objective reinforcement learning for efficient model-free
control of canals deployed with iot networks. Journal of
Network and Computer Applications, 182:103049, 2021.

[Ring, 1995] Mark B. Ring. Continual learning in reinforce-
ment environments. PhD thesis, University of Texas at
Austin, TX, USA, 1995.

[Roijers et al., 2013] Diederik M Roijers, Peter Vamplew,
Shimon Whiteson, and Richard Dazeley. A survey of
multi-objective sequential decision-making. Journal of Ar-
tificial Intelligence Research, 48:67–113, 2013.

[Rolnick et al., 2019] David Rolnick, Arun Ahuja, Jonathan
Schwarz, Timothy Lillicrap, and Gregory Wayne. Expe-
rience replay for continual learning. In NeurIPS, pages
350–360, 2019.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[Shaheen et al., 2022] Khadija Shaheen, Muhammad Abdul-
lah Hanif, Osman Hasan, and Muhammad Shafique. Con-
tinual learning for real-world autonomous systems: Algo-
rithms, challenges and frameworks. Journal of Intelligent
& Robotic Systems, 105(1):9, 2022.

[Siddique et al., 2020] Umer Siddique, Paul Weng, and
Matthieu Zimmer. Learning fair policies in multiobjective
(deep) reinforcement learning with average and discounted
rewards. In ICML, pages 8905–8915, 2020.

[Singh et al., 2022] Bharat Singh, Rajesh Kumar, and
Vinay Pratap Singh. Reinforcement learning in robotic ap-
plications: a comprehensive survey. Artificial Intelligence
Review, 55(2):945–990, 2022.

[Todorov et al., 2012] Emanuel Todorov, Tom Erez, and Yu-
val Tassa. Mujoco: A physics engine for model-based con-
trol. In IROS, pages 5026–5033, 2012.

[Wang et al., 2022] Xu Wang, Sen Wang, Xingxing Liang,
Dawei Zhao, Jincai Huang, Xin Xu, Bin Dai, and Qiguang
Miao. Deep reinforcement learning: a survey. IEEE Trans-
actions on Neural Networks and Learning Systems, 2022.

[Wang et al., 2023] Liyuan Wang, Xingxing Zhang, Hang
Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. arXiv preprint
arXiv:2302.00487, 2023.

[Wolczyk et al., 2021] Maciej Wolczyk, Michal Zajac, Raz-
van Pascanu, Lukasz Kucinski, and Piotr Milos. Continual
world: A robotic benchmark for continual reinforcement
learning. In NeurIPS, pages 28496–28510, 2021.

[Xu et al., 2020] Jie Xu, Yunsheng Tian, Pingchuan Ma,
Daniela Rus, Shinjiro Sueda, and Wojciech Matusik.
Prediction-guided multi-objective reinforcement learning
for continuous robot control. In ICML, pages 10607–
10616, 2020.

[Yang et al., 2019] Runzhe Yang, Xingyuan Sun, and
Karthik Narasimhan. A generalized algorithm for multi-
objective reinforcement learning and policy adaptation. In
NeurIPS, page 14636–14647, 2019.

[Yuan et al., 2023] Lei Yuan, Ziqian Zhang, Lihe Li, Cong
Guan, and Yang Yu. A survey of progress on cooperative
multi-agent reinforcement learning in open environment.
arXiv preprint arXiv:2312.01058, 2023.

[Zhang et al., 2023a] Tiantian Zhang, Zichuan Lin, Yuxing
Wang, Deheng Ye, Qiang Fu, Wei Yang, Xueqian Wang,
Bin Liang, Bo Yuan, and Xiu Li. Dynamics-adaptive
continual reinforcement learning via progressive contex-
tualization. IEEE Transactions on Neural Networks and
Learning Systems, 2023.

[Zhang et al., 2023b] Zizhen Zhang, Zhiyuan Wu, Hang
Zhang, and Jiahai Wang. Meta-learning-based deep rein-
forcement learning for multiobjective optimization prob-
lems. IEEE Transactions on Neural Networks and Learn-
ing Systems, 34(10):7978–7991, 2023.

[Zhu et al., 2023] Zhuangdi Zhu, Kaixiang Lin, Anil K. Jain,
and Jiayu Zhou. Transfer learning in deep reinforcement
learning: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(11):13344–13362, 2023.

Continual Multi-Objective Reinforcement Learning via Reward Model Rehearsal:
Appendix

A Proof of Theorem 11

Definition 1 (Occupancy Measure). We first define the occu-2

pancy measure ρπ : S ×A → R of a policy π as follows:3

ρπ(s, a) = (1− γ)π(a|s, ω)
∞∑
t=0

γt Pr(st = s|π). (1)

Lemma 1. Let τ = (s0, a0, s1, a1, · · ·) denote a trajectory.4

Given a policy π and a MOMDP M, the value vector of π5

w.r.t. M, denoted as JM(π) = Eτ∼π[
∑∞

t=0 γ
tR(st, at)],6

can be rewritten as follows:7

JM(π) =
1

1− γ
E(s,a)∼ρπ [R(s, a)]. (2)

Proof.

JM(π) = Eτ∼π[

∞∑
t=0

γtR(st, at)]

=
∑
τ

Pr(τ)

∞∑
t=0

γtR(st, at)

=
∑
(s,a)

∞∑
t=0

γt

 ∑
τ :(st,at)=(s,a)

Pr(τ)

R(st, at)

=
∑
(s,a)

[∞∑
t=0

γt Pr(st = s|π)π(a|s)

]
R(st, at)

=
∑
(s,a)

1

1− γ
ρπ(s, a)R(st, at)

=
1

1− γ
E(s,a)∼ρπ [R(s, a)].

8

Theorem 1 (Bounded Performance Gap). Consider two9

MOMDPs, M and M̂, differing only in their reward func-10

tions: R = (R1, · · · , Rm) and R̂ = (R̂1, · · · , R̂m).11

The value vectors of a policy π in M and M̂ are12

JM(π) = Eτ∼π[
∑∞

t=0 γ
tR(st, at)] and JM̂(π) =13

Eτ∼π[
∑∞

t=0 γ
tR̂(st, at)], respectively. The optimal poli-14

cies for M and M̂ are denoted as π∗ and π̂∗, satisfy-15

ing ∀ω ∈ ∆m, π∗ = argmaxπ ω
⊤JM(π), and π̂∗ =16

argmaxπ ω
⊤JM̂(π). Define the difference between these re- 17

ward functions as δ = sups∈S,a∈A ||R(s, a) − R̂(s, a)||∞. 18

Based on these definitions, the following inequality holds, 19

∀ω ∈ ∆m, ω⊤JM(π∗)− ω⊤JM(π̂∗) ≤ 2δ

1− γ
. (3)

Proof. First, for a given policy π, and ∀ω, 20

|ω⊤JM(π)− ω⊤JM̂(π)|

=|ω⊤ 1

1− γ
E(s,a)∼ρπ [R(s, a)]− ω⊤ 1

1− γ
E(s,a)∼ρπ [R̂(s, a)]|

=
1

1− γ
|E(s,a)∼ρπ [ω⊤R(s, a)]− E(s,a)∼ρπ [ω⊤R̂(s, a)]|

=
1

1− γ
|
∑
(s,a)

ρπ(s, a)ω⊤R(s, a)−
∑
(s,a)

ρπ(s, a)ω⊤R̂(s, a)|

≤ 1

1− γ

∑
(s,a)

ρπ(s, a)|ω⊤(R(s, a)− R̂(s, a))|

≤ 1

1− γ

∑
(s,a)

ρπ(s, a)δ

=
δ

1− γ
.

Based on this inequality, and the optimality of π̂∗ w.r.t. 21

MOMDP M̂ : ∀π,∀ω ∈ ∆m, ω⊤JM̂(π̂∗) ≥ ω⊤JM̂(π), 22

the following inequality holds: ∀ω ∈ ∆m, 23

ω⊤JM(π∗)− ω⊤JM(π̂∗)

=ω⊤JM(π∗)− ω⊤JM̂(π∗) + ω⊤JM̂(π∗)− ω⊤JM̂(π̂∗)+

ω⊤JM̂(π̂∗)− ω⊤JM(π̂∗)

≤|ω⊤JM(π∗)− ω⊤JM̂(π∗)| − (ω⊤JM̂(π̂∗)− ω⊤JM̂(π∗))+

|ω⊤JM̂(π̂∗)− ω⊤JM(π̂∗)|

≤ δ

1− γ
− 0 +

δ

1− γ

=
2δ

1− γ
.

24

(a) FTN (b) Grid (c) Ant (d) Hopper
Figure 1: Benchmarks used in this paper.

B Details about Benchmarks and Baselines25

B.1 Benchmarks26

Below, we provide a description of each benchmark used in27

our experiments. Figure 1 presents a visualization of each28

benchmark. For discrete action spaces, we provide Fruit29

Tree Navigation (FTN) [Yang et al., 2019] and Grid for30

performance comparison. For continuous control settings,31

we extend Ant and Hopper benchmarks to five objectives32

based on MuJoCo physics engine [Todorov et al., 2012;33

Xu et al., 2020] to satisfy the CMORL setting.34

FTN35

The first benchmark is a full binary tree of depth d = 7 with36

randomly assigned reward vectors r ∈ R6 on the leaf nodes.37

Each reward signal in r represents one of the six nutrients38

{Protein, Carbs, Fats, Vitamins, Minerals, Water}. We use39

the same nutrients’ value as defined by [Yang et al., 2019].40

The reward function of this benchmark is defined as:41

ri(s, a, s
′) = value of nutrient i in s′, for i = 1 . . . 6.

The agent should travel from the root node to one of the42

leaf nodes in a correct path, picking a desired fruit based43

on the given preference on the nutrients. At each time step,44

the agent observes its current state (row, column), indicating45

its current location on the tree. It then takes action among46

A = {left, right} to move to the left or right subtree at ev-47

ery non-leaf node. For the CMORL setting, we assign the six48

objectives into five tasks in a continual manner:49

{Protein,Carbs} → {Carbs,Fats} → {Fats,Vitamins} →
{Vitamins,Minerals} → {Minerals,Water},

and each task is trained for 100k steps.50

Grid51

The second benchmark is a 11 × 11 grid world with the52

state space defined as S = {0, · · · , 10}2, indicating the53

agent’s current position. There are five goals distributed in54

this environment, representing five different objectives and55

their coordinates are (10, 0), (10, 5), (10, 10), (5, 10), (0, 10).56

The agent begins at position (0, 0) and chooses action from57

{None, North, South, West, East} to stay still or move to-58

wards the corresponding direction for one cell. The reward59

for each objective will increase if the Manhattan distance D60

between the agent and the related goal decreases. The multi- 61

objective reward function of this benchmark is defined as: 62

ri(s, a, s
′) = 20−D(agent’s position, goali’s position).

Using the coordinates to denote objectives, the task sequence 63

can be shown as below: 64

{(10, 0), (10, 5)} → {(10, 5), (10, 10)} → {(10, 10), (5, 10)}
→ {(5, 10), (0, 10)} → {(0, 10), (10, 0)},

and each task is trained for 500k steps. 65

Ant 66

The third benchmark is a multi-objective version of the Mu- 67

JoCo’s Ant-v2 environment. The state space S ⊂ R27 con- 68

sists of the positional values and velocities of each part of 69

the ant. An action represents the torques applied at the hinge 70

joints, A = [−1, 1]8. In the multi-objective version in [Xu 71

et al., 2020], the agent should balance the speed towards the 72

positive direction of x-axis and y-axis. In our benchmark, 73

we extend the objectives to keeping a large speed towards 74

positive/negative direction of x-axis/y-axis and saving energy. 75

The multi-objective reward function of this benchmark is: 76

r1(s, a, s
′) = velocity of the agent in the +x-axis direction,

r2(s, a, s
′) = velocity of the agent in the +y-axis direction,

r3(s, a, s
′) = velocity of the agent in the −x-axis direction,

r4(s, a, s
′) = velocity of the agent in the −y-axis direction,

r5(s, a, s
′) = 5− ∥a∥22.

The task sequence is: 77

{+x-axis, saving energy} → {saving energy,+y-axis} →
{+y-axis,−x-axis} → {−x-axis,−y-axis} →
{−y-axis,+x-axis},

and each task is trained for 500k steps. 78

Hopper 79

The fourth benchmark is a multi-objective version of the Mu- 80

JoCo’s Hopper-v2 environment. The state space S ⊂ R11 81

encodes the positional values and velocities of different body 82

parts of the hopper. An action contains the torques applied at 83

the thigh joint, leg joint and foot joint and the action space is 84

A = [−1, 1]3. There are two objectives of the multi-objective 85

version in [Xu et al., 2020]: keeping a large speed towards the86

positive direction of x-axis and jumping as high as possible.87

We extend the objectives to keeping a large speed towards the88

positive/negative direction of x-axis, saving energy, jumping89

high and staying low. The multi-objective reward function of90

this benchmark is define as:91

r1(s, a, s
′) = velocity of the agent in the x-axis direction,

r2(s, a, s
′) = height of the agent over the z-axis direction,

r3(s, a, s
′) = velocity of the agent in the −x-axis direction,

r5(s, a, s
′) = −(height of the agent over the z-axis direction),

r4(s, a, s
′) = 5− ∥a∥22.

The task sequence is shown below:92

{+x-axis, saving energy} → {saving energy, jumping high}
→ {jumping high,−x-axis} → {−x-axis, staying low} →
{staying low,+x-axis},
and each task is trained for 500k steps.93

B.2 Baselines94

Finetune can be seen as an ablation of CORE3 without re-95

ward model rehearsal. It also has the same network architec-96

ture as CORE3. However, without reward model predicting97

the lost rewards, the agent can only observe the reward signals98

of the objectives in the current learning task (MOMDP). The99

feature extractor of the Q network and the actor for continu-100

ous action space would change dramatically to acquire good101

performance on the current task, leading to the phenomenon102

of catastrophic forgetting.103

EWC [Kirkpatrick et al., 2017] is a regularization-based104

approach to avoid catastrophic forgetting during the contin-105

ual learning process. It tries to evaluate the importance of the106

network parameters after learning task Mn−1 and slow down107

the learning on weights that are important for task Mn−1.108

For CMORL setting, we implement it with the same network109

architecture as CORE3, and restrict the updating of the fea-110

ture extractor of Q network for discrete action spaces while111

slowing down the learning on the actor network for continu-112

ous action spaces. The loss function of the policy network for113

discrete action spaces when learning the current task Mn is:114

L(θ) = LMn
(θ) +

λ

2

∑
j

Fj(ξj − ξMn−1,j)
2. (4)

For continuous action spaces, the loss function is:115

L(ϕ) = LMn(ϕ) +
λ

2

∑
j

Fj(ϕj − ϕMn−1,j)
2. (5)

Here, we use LMn(θ) or LMn(ϕ) to denote the original loss116

of policy network for task Mn, where θ is the parameters of117

Q network for discrete action spaces and ϕ represents the pa-118

rameters of the actor network for continuous action spaces.119

Fj is the jth diagonal element of the Fisher information ma-120

trix. ξMn−1
or ϕMn−1

is the saved snapshot of ξ or ϕ af-121

ter training task Mn−1, and j labels each parameter. λ is122

an adjustable coefficient to control the trade-off between the123

current task and previous ones. In this paper, we set λ = 2.124

Clear [Rolnick et al., 2019] is one of the replay-based 125

methods to address the catastrophic forgetting by saving the 126

transitions of all previous tasks and use them to rehearse the 127

agent. When learning the current task, the stored data is sam- 128

pled for training to keep the knowledge of previous tasks. In 129

this paper, we set the replay buffer to uniformly store transi- 130

tions of all encountered tasks, including the current one. 131

CORE3 (Oracle) represents a performance upper bound 132

of CORE3, as it has access to the rewards of previous objec- 133

tives, i.e., CORE3 with ground-truth multi-objective reward 134

model. The only difference between CORE3 (Oracle) and 135

CORE3 is that we replace the predicted reward signals with 136

the ground-truth ones when training the agent. 137

C The Training Details and Hyperparameter 138

Choices of CORE3 139

C.1 Training Details about MORL 140

For the purpose of handling the various number of objectives 141

during the whole learning process, facilitating rapid adapta- 142

tion and circumventing the need to learn the entire network 143

form scratch, we design a dynamic and expandable network 144

architecture as follows. 145

For discrete action spaces, as shown in Figure 2(a), 146

we learn a Q network Q(s, ω; θ) with an output shape of 147

(|A|,Mn) to approximate the action-value function and use 148

it as the policy, where |A| and Mn represent the size of the 149

discrete action spaces and the number of all encountered ob- 150

jectives, respectively. Each row of the output matrix repre- 151

sents a Q value vector of all encountered objectives corre- 152

sponding to a specific action a ∈ A and we use Q(s, a, ω; θ) 153

to denote it for simplicity. The Q network is initialized as a 154

feature extractor E(s, ω; ξ) parameterized with ξ, which is a 155

multilayer perceptron with four hidden layers, and each layer 156

contains 512 neurons and the activation function is the Rec- 157

tified Linear Unit (ReLU) [Agarap, 2018]. When new objec- 158

tives arrive, we dynamically create an objective head h(e;ψi) 159

for each novel objective, which is a linear layer and much 160

smaller than the feature extractor. Due to the increase in the 161

number of all encountered objectives, the length of prefer- 162

ence vectors ω also varies along with the task sequence. To 163

handle this problem, we use a GRU cell [Chung et al., 2014] 164

to encode ω into an embedding zω with a fixed-length of 8, 165

and concatenate it with the state s as the input of the fea- 166

ture extractor in practical implementation. After that, the fea- 167

ture extractor outputs feature e = E(s, ω; ξ) and then each 168

head h(e;ψi) takes e as input, outputting the Q value vec- 169

tors of all possible actions corresponding to objective ki, 170

which forms the Q matrix
(
h
(
e;ψ1

)
, · · · , h

(
e;ψMn

))
= 171(

Q(s, a1, ω; θ); · · · ;Q(s, a|A|, ω; θ)
)

= Q(s, ω; θ) ∈ 172

R|A|×Mn for all possible actions and encountered objectives. 173

With the Q matrix, the agent is able to select the optimal ac- 174

tion a = argmaxã∈A ω
⊤Q(s, ã, ω; θ) w.r.t. the given prefer- 175

ence ω. In the main body of the paper, we omit the matrix part 176

and incorporate the action a as part of the feature extractor’s 177

input to provide a more comprehensive illustration. 178

At the beginning of our algorithm, we first initialize the 179

transition buffer D, the Q network Q(s, ω; θ), the target Q 180

(a) Discrete

GRU

. . .

. . .

Feature
Extractor

Q network

Objective
Head

MLP

(c) Reward Model

Dynamic

Encoder

Reward
Model

State/Reward
Prediction Head

. . .

. . .

(b) Continuous

GRU

. . .

. . .

GRU
Feature

Extractor

Critic Actor

Objective
Head

MLP

MLP

Figure 2: The detailed network architecture of CORE3.

network Q(s, ω; θ−), and the reward model R̂. During task181

Mn, we first expand our Q network, target Q network and re-182

ward model if novel objectives arrive. Then, for each episode,183

we randomly sample a preference vector ω from the prefer-184

ence space Ω = ∆Mn , where Mn denotes the number of185

all encountered objectives and Ω is a unit simplex. Then the186

agent interacts with the environment using the ϵ-greedy ex-187

ploration strategy and collect transitions (s, a, r, s′, ω, done).188

It is worth noting that the reward vector r ∈ Rmn only con-189

tains the reward signals of the objectives in the current learn-190

ing task. For each transition (s, a, r, s′, ω, done), we also191

store Nω = 3 additional transitions (s, a, r, s′, ω′, done) with192

different preferences randomly sampled from the preference193

space in transition buffer D. During the updating phase, we194

sample a minibatch of transitions from D and for each transi-195

tion (s, a, r, s′, ω, done), we use the reward model to predict196

the full reward vector r̂ ∈ RMn of all encountered objectives.197

For the objectives learned in the current task Mn, we replace198

the predicted rewards with the ground-truth ones recorded in199

the reward vector r. We use Q(s, a, ω; θ) to denote the Q200

value vector from the Q matrix Q(s, ω; θ) of all encountered201

objectives w.r.t. the action a. Then, the Q network is opti-202

mized to minimize the following loss:203

L(θ) = E(s,a,̂r,s′,ω)∼D [∥y − Q(s, a, ω; θ)∥2] , (6)

where y = r̂+γQ(s′, a′, ω; θ−) denotes the target value vec-204

tor which is obtained using target Q network’s parameters θ−205

and the action a′ = argmaxã∈A ω
⊤Q(s′, ã, ω; θ−). The pa-206

rameters θ− of the target network are updated as bellow:207

θ− = (1− τ)θ− + τθ, (7)

where τ = 0.005 is the coefficient to control the trade-off208

between the updated parameters θ and θ−.209

For continuous action spaces, we align with the multi-210

objective version of TD3 algorithm [Fujimoto et al., 2018;211

Basaklar et al., 2023]. Specifically, as shown in Fig-212

ure 2(b), we apply Q(s, a, ω; θ) as the critic and learn an ac-213

tor π(a|s, ω;ϕ). For the critic Q(s, a, ω; θ), we implement214

a two-hidden-layer MLP feature extractor E(s, a, ω; ξ) with215

400 neurons per layer for initialization. An MLP objective216

head h(e;ψi) with two hidden layers will be created similar 217

to the discrete action space situation. We also use a GRU 218

cell to deal with the preference ω. Different from the discrete 219

action space, the feature extractor takes the state s, action a 220

and preference embedding zω as input and outputs the fea- 221

ture e corresponding to the specific action a. Then, each head 222

h(e;ψi) takes e as input and outputs the Q value of objective 223

ki, which forms the Q vector
(
h
(
e;ψ1

)
, · · · , h

(
e;ψMn

))
= 224

Q(s, a, ω; θ) w.r.t. action a. For the actor π(a|s, ω;ϕ), which 225

is also a MLP with two hidden layers, it takes the state s and 226

the preference embedding zω as input and outputs the contin- 227

uous action a directly. 228

At the beginning of our algorithm, we first initialize the 229

transition buffer D, the actor network π(a|s, ω;ϕ), the tar- 230

get actor network π(a|s, ω;ϕ−), the reward model R̂, two 231

critic networks Q(s, a, ω; θ1), Q(s, a, ω; θ2), and two target 232

critic networks Q(s, a, ω; θ−1), Q(s, a, ω; θ−2), following the 233

TD3 algorithm. During task Mn, we expand our critic net- 234

work, target critic networks, and reward model if novel ob- 235

jectives arrive. Then, for each episode, we randomly sample 236

a preference ω ∈ Ω as the discrete action space situation. 237

The agent interacts with the environment to collect transi- 238

tions (s, a, r, s′, ω, done) by selecting action form the actor 239

π(a|s, ω;ϕ) with an exploration noise term ϵ. We also substi- 240

tute ω with some randomly sampled preferences in a similar 241

way and store them in the transition buffer D. During the up- 242

dating phase, we sample a minibatch of transitions and use the 243

reward model to process the reward vectors in the transitions. 244

The algorithm computes actions for the next state s′ using 245

the target actor network plus a smooth policy noise bounded 246

by a noise clip term. In the multi-objective setting, both the 247

two target critic networks output vectorized Q value instead 248

of scalar return. So that we calculated the target Q value vec- 249

tor using whichever of the two critics gives a smaller ω⊤Q. 250

Then, the critic is optimized to minimize the loss: 251

L(θ1, θ2) = E(s,a,̂r,s′,ω)∼D
[
∥y1,Q1∥smooth

1 + ∥y2,Q2∥smooth
1

]
,

where Qi = Q(s, a, ω; θi), and yi = r̂ + γQ(s′, a′, ω; θ−i) 252

denotes the target value vector which is obtained using tar- 253

get critic network’s parameters θ−i . ∥ · ∥smooth
1 represents the 254

smooth ℓ1 loss. The actor is optimized to minimize the loss:255

L(ψ) = E(s,a,̂r,s′,ω)∼D
[
−ω⊤Q(s, a, ω; θ1)

]
. (8)

For stability, we delay the update of π(a|s, ω;ϕ), and update256

it once every 10 steps for updating the critic network. The257

parameters ϕ−, θ−1 , θ
−
2 of the target actor and critic networks258

are updated as bellow:259

ϕ− = (1− τ)ϕ− + τϕ,

θ−1 = (1− τ)θ−1 + τθ1,

θ−2 = (1− τ)θ−2 + τθ2,

(9)

where τ = 0.005 is the coefficient to control the trade-off260

between the updated parameters ϕ, θ1, θ2 and the target net-261

works parameters ϕ−, θ−1 , θ
−
2 .262

C.2 Training Details about Multi-objective263

Reward Model264

To prevent the agent from losing the ability to complete pre-265

vious tasks and to enable it to balance all encountered objec-266

tives, we propose a multi-objective reward model to rehearse267

the agent. Considering the CMORL setting, we also design268

a multi-head architecture for the reward model network (Fig-269

ure 2(c)). Concretely, the reward model is initialized with270

a dynamic encoder F(s, a;ϑ) and a state prediction head271

g(z;φs). The dynamic encoder F(s, a;ϑ) is a three-hidden-272

layer MLP with 1024 neurons per layer and is responsible for273

encoding the state and action information. When new objec-274

tives appear, we dynamically create a reward prediction head275

g(z;φi) for each novel objective ki. Both the reward heads276

and state prediction head consist of a mean value output head277

and a variance value output head, all with one hidden layer.278

The mean value head outputs the mean value µ(z) while the279

variance value head outputs the logarithmic variance value280

log σ2(z) of the reward or state. During the agent’s training281

phase, the transitions (s, a, r, s′, ω, done) for agent’s training282

are also provided to the reward model. The encoder takes283

state s and action a as input, and then outputs the dynamic284

feature z = F(s, a;ϑ). After that each reward head g(z;φi)285

takes z as input, and uses the mean value head and variance286

value head to predict reward R̂i(s, a) for objective ki:287

R̂i(s, a) ∼ N
(
µi(z), σ

2
i (z)

)
, (10)

where N
(
µi(z), σ

2
i (z)

)
represents a normal distribution288

with µi(z) as the mean and σ2
i (z) as the variance,289

forming the predicted reward vector r̂ = R̂(s, a) =290

(R̂1(s, a), · · · , R̂Mn
(s, a)). When objective ki appears in the291

current learning task, we directly set R̂i(s, a) as the ground-292

truth reward in r. The predicted reward vector will replace293

the environment reward signals r and be used for agent’s up-294

dating. In practice, we also apply the ensemble technique to295

improve the robustness of the model. Specifically, we simul-296

taneously train 5 reward models and for each transition, we297

randomly choose one for prediction.298

For the training process of the reward model, we update299

the reward model for 500 epochs with an interval of 50k300

timesteps, and for each epoch, we sample a minibatch of301

5000 transitions (s, a, r, s′, ω, done). The dynamic encoder 302

F(s, a;ϑ) first takes the state and action as input and out- 303

puts the feature z. Then, the reward heads correspond- 304

ing to the learning objectives of the current task Mn will 305

take z as input and output the mean values and logarith- 306

mic variance values. For instance, if task Mn contains 307

objectives Kn = {kn1 , · · · , knmn
}, then the reward heads 308

of the these objectives will predict means and logarithmic 309

variances of their rewards, forming the reward mean vector 310

r̂mean = (µn
1 (z), · · · , µn

mn
(z)) ∈ Rmn , and reward variance 311

vector r̂variance = (varn1 (z), · · · , varnmn
(z)) ∈ Rmn , where 312

varni = exp (− log σ2,n
i (z)). With the purpose of improving 313

the accuracy of the reward model and lowering the variance, 314

we design two loss terms as bellows: 315

L1(ϑ, φ
n
1 , · · · , φn

mn
) =

1

mn

mn∑
i=1

(µn
i (z)− rni)

2 · varni (z),

L2(ϑ, φ
n
1 , · · · , φn

mn
) =

1

mn

mn∑
i=1

varni (z).

(11)

The dynamic encoder F(s, a;ϑ) and reward heads corre- 316

sponding to the objectives in task Mn is optimized to mini- 317

mize the following loss: 318

L(ϑ, φn
1 , · · · , φn

mn
) = L1 + L2. (12)

Besides, in order to stabilize the training process and enhance 319

the encoder’s ability to capture the fundamental information 320

of the environment, the state prediction head g(z;φs) will 321

also take the feature z as input and then predict the next state 322

based on feature z. The encoder F(s, a;ϑ) and state predic- 323

tion head g(z;φs) is optimized to minimize the loss: 324

L(ϑ, φs) = ∥(ŝ′mean − s′)2 · ŝ′variance∥1 + ∥ŝ′variance∥1.
(13)

Finally, the overall loss function for learning the multi- 325

objective reward model is defined as follows: 326

L(ϑ, φs, φ
n
1 , · · · , φn

mn
) = L(ϑ, φn

1 , · · · , φn
mn

) + L(ϑ, φs).
(14)

To avoid catastrophic forgetting about the previous objec- 327

tives, we update the encoder in the first task only and keep 328

its parameters fixed during the following ones. Due to the 329

small state and action spaces in benchmark FTN, we use a 330

table as the reward model for simplicity. 331

C.3 The Infrastructure of CORE3 332

We adopt Adam [Kingma and Ba, 2014] as the optimizer with 333

learning rate 3×10−4 for agent networks and 1×10−4 for the 334

reward models. The whole framework of CORE3 is trained 335

on NVIDIA GeForce RTX 2080 Ti GPUs with a time cost 336

of about 3 hours in FTN scenario, 27 hours in Grid World 337

scenario and 72 hours in Ant/Hopper scenarios. It is worth 338

noting that the time cost includes both training and testing, 339

and the latter requires running a large amount of episodes, 340

accounting for a significant portion of the time cost. 341

H
v

(C
ur

re
nt

 O
bj

ec
tiv

es
)

EWC CLEARCORE3 (Ours) CORE3 (Oracle) Finetune

H
v

(C
ur

re
nt

 O
bj

ec
tiv

es
)

H
v

(C
ur

re
nt

 O
bj

ec
tiv

es
)

H
v

(C
ur

re
nt

 O
bj

ec
tiv

es
)

(a) FTN (b) Grid

(c) Ant (d) Hopper
Figure 3: The complete results of the HV learning curves on all encountered tasks in the four benchmarks.

C.4 Hyperparameter Choices342

We list the selection of the hyperparameters introduced in our343

approach for both discrete and continuous action spaces, e.g.,344

the buffer size, in Table 1.

Discrete Action Spaces

Hyperparameter Value

buffer size 10000 (FTN), 500000 (Grid)
discount factor γ 0.99
epsilon start ϵstart 0.8

epsilon finish ϵfinish 0.05
policy update batch size 32 (FTN), 256 (Grid)

Continuous Action Spaces

Hyperparameter Value

noise clip 0.5
buffer size 2000000

policy noise 0.2
discount factor γ 0.995

exploration noise ϵ 0.1
policy update batch size 256

critic network learning rate 3× 10−4

policy network update interval 10

Both Discrete & Continuous Action Spaces

Hyperparameter Value

target update τ 0.005
policy network learning rate 3× 10−4

reward model learning rate 1× 10−4

reward model update epoch 500
reward model ensemble size 5
reward model update interval 50000

reward model update batch size 5000
additional preference numberNω 3

Table 1: Hyperparameter choices of CORE3.

345

D The Complete Learning Results346

In this section, we provide the complete results of the HV347

learning curves on all encountered tasks in the four bench-348

marks, and sensitivity studies on multiple hyperparameters.349

D.1 HV Learning Curves of Each Task350

The complete results of the HV learning curves on all encoun-351

tered tasks in the four benchmarks is shown in Figure 3. We352

observe that baseline CLEAR [Rolnick et al., 2019] achieves353

comparable performance to CORE3 in some benchmarks.354

The reason is that CLEAR stores old data to rehearse the355

agent, alleviating catastrophic forgetting on the encountered356

individual tasks. However, as mentioned in the main body357

of the paper, it has no access to data balancing objectives in358

different tasks, limiting its performance on all encountered359

objectives. Meanwhile, baselines EWC [Kirkpatrick et al.,360

2017] and Finetune suffer from performance degradation on361

some tasks after training on them, i.e., catastrophic forget-362

ting. In contrast, CORE3 exhibits non-decreasing learning363

curves, comparable to CORE3 (Oracle) on every task. This364

suggests that our approach effectively mitigates the issue of 365

catastrophic forgetting, preserving the agent’s competence in 366

completing previous objectives. 367

Hv Sp BwT

(a)

(b)

(c)

(d)

Figure 4: Sensitivity studies in Hopper.

D.2 Sensitivity Studies 368

The complete results of sensitivity studies on multiple hyper- 369

parameters, including the (1) ensemble size, (2) batch size, 370

(3) number of update epochs, and (4) update interval of train- 371

ing the multi-objective reward model, is shown in Figure 4. 372

In the main body of the paper, we have discussed the sen-373

sitivity of the ensemble size. For the batch size of training374

the reward model, on one hand, the training data provided375

by a small minibatch may not be sufficient to obtain a sta-376

ble and accurate reward model. On the other hand, a large377

batch size will slow down the training process. As shown378

in Figure 4(b), we find that when the batch size is less than379

5000, the performance of CORE3 improves with an increase380

in batch size. Nevertheless, the HV and SP doesn’t get bet-381

ter when we increase batch size from 5000 to 10000. Fur-382

thermore, another adjustable hyperparameter, the number of383

update epochs, also has an impact on the amount of data for384

model training. Figure 4(c) shows that a small number of385

epochs can lead to underfitting, while a large number results386

in overfitting of the reward model. We set it to an appropri-387

ate number of 500. The last analyzed hyperparameter is the388

update interval. As shown in Figure 4(d), a large update inter-389

val leads to insufficient model training, causing catastrophic390

forgetting of the agent, while an update interval that is too391

small significantly reduces training efficiency without yield-392

ing improvements. We find that an update interval of 5k steps393

performs the best.394

References395

[Agarap, 2018] Abien Fred Agarap. Deep learning using rec-396

tified linear units (relu). arXiv preprint arXiv:1803.08375,397

2018.398

[Basaklar et al., 2023] Toygun Basaklar, Suat Gumussoy,399

and Ümit Y. Ogras. PD-MORL: preference-driven multi-400

objective reinforcement learning algorithm. In ICLR,401

2023.402

[Chung et al., 2014] Junyoung Chung, Caglar Gulcehre,403

KyungHyun Cho, and Yoshua Bengio. Empirical evalua-404

tion of gated recurrent neural networks on sequence mod-405

eling. arXiv preprint arXiv:1412.3555, 2014.406

[Fujimoto et al., 2018] Scott Fujimoto, Herke van Hoof, and407

David Meger. Addressing function approximation error in408

actor-critic methods. In ICML, pages 1587–1596, 2018.409

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.410

Adam: A method for stochastic optimization. arXiv411

preprint arXiv:1412.6980, 2014.412

[Kirkpatrick et al., 2017] James Kirkpatrick, Razvan Pas-413

canu, Neil Rabinowitz, Joel Veness, Guillaume Des-414

jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago415

Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-416

ing catastrophic forgetting in neural networks. Proceed-417

ings of the national academy of sciences, 114(13):3521–418

3526, 2017.419

[Rolnick et al., 2019] David Rolnick, Arun Ahuja, Jonathan420

Schwarz, Timothy Lillicrap, and Gregory Wayne. Expe-421

rience replay for continual learning. In NeurIPS, pages422

350–360, 2019.423

[Todorov et al., 2012] Emanuel Todorov, Tom Erez, and Yu-424

val Tassa. Mujoco: A physics engine for model-based con-425

trol. In IROS, pages 5026–5033, 2012.426

[Xu et al., 2020] Jie Xu, Yunsheng Tian, Pingchuan Ma, 427

Daniela Rus, Shinjiro Sueda, and Wojciech Matusik. 428

Prediction-guided multi-objective reinforcement learning 429

for continuous robot control. In ICML, pages 10607– 430

10616, 2020. 431

[Yang et al., 2019] Runzhe Yang, Xingyuan Sun, and 432

Karthik Narasimhan. A generalized algorithm for multi- 433

objective reinforcement learning and policy adaptation. In 434

NeurIPS, page 14636–14647, 2019. 435

	paper_1227.pdf
	Introduction
	Related Work
	Problem Formulation
	Method
	Dynamic Network for Evolving Objectives
	Multi-Objective Reward Model Rehearsal
	Overall Learning Procedure

	Experiments
	Benchmarks, Baselines, and Metrics
	Competitive Results
	Pareto Front Analysis
	Sensitivity Studies

	Final Remarks

	appendix.pdf
	Proof of Theorem 1
	Details about Benchmarks and Baselines
	Benchmarks
	Baselines

	The Training Details and Hyperparameter Choices of CORe3
	Training Details about MORL
	Training Details about Multi-objective Reward Model
	The Infrastructure of CORe3
	Hyperparameter Choices

	The Complete Learning Results
	Hv Learning Curves of Each Task
	Sensitivity Studies

