
Dynamics Adaptive Safe Reinforcement
Learning with a Misspecified Simulator

Ruiqi Xue1,2, Ziqian Zhang1,2, Lihe Li1,2, Feng Chen1,2, Yi-Chen Li1,2, Yang
Yu1,2,3, and Lei Yuan1,2,3,★

1 National Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing, China

2 School of Artificial Intelligence, Nanjing University, Nanjing, China
3 Polixir Technologies, Nanjing, China

Abstract. Sim-to-real reinforcement learning offers the advantage of
learning safe policies within simulators, circumventing the need for costly
trial-and-error in the real world. Traditional approaches often rest on
the assumption of consistent state-action transition between the sim-
ulator and the real-world environment. However, this assumption can
be violated due to the poor fidelity of simulators, leading to a con-
strained trust region for effective policy learning. The limitation can
be more pronounced when safety issues are considered, potentially re-
sulting in threatening policies if no safe samples exist in the trust re-
gion. To overcome these challenges, we propose Dynamics Adaptive Safe
Reinforcement Learning with a Misspecified Simulator (DASaR). Our
approach begins by relaxing the assumption to expand the trust region
and theoretically demonstrate the unbounded performance gap inherent
in traditional methods. Subsequently, DASaR aligns the estimated value
functions in the simulator and the real-world environment via inverse
dynamics-based relabeling of reward and cost signals. Furthermore, to
deal with the underestimation of cost value functions, DASaR employs
uncertainty estimation to improve its conservatism, ensuring the safety
of the learned policy. Experiments in various complex environments thor-
oughly demonstrate DASaR’s outstanding ability to balance safety sat-
isfaction and reward maximization across diverse dynamics gaps.

Keywords: Safe Reinforcement Learning · Domain Adaptation · Sim-
to-real Reinforcement Learning.

1 Introduction

Learning optimal policies through reinforcement learning (RL) has demonstrated
outstanding performance in various fields, including game playing [37], recom-
mendation systems [2], and robotic control [20]. Nonetheless, the application of
RL in real-world settings, which often come with multiple constraints, presents
the critical challenge of ensuring policy safety. For instance, while an RL agent

★ Lei Yuan is the corresponding author.

2 R. Xue et al.

can maximize rewards by driving autonomous vehicles at high speeds, it must
also comply with speed limits to prevent collisions [21]. Safe RL [14], which bal-
ances reward maximization and constraint satisfaction, can effectively improve
the safety of the learned policies. However, the real-world environment is not
amenable to such trial-and-error learning due to numerous costly errors caused
during policy exploration [26]. To reduce the risk and cost in the real-world envi-
ronment, the strategy of training policies within a high-fidelity simulator before
deployment has emerged as a viable and efficient paradigm for safe RL.

However, it is challenging to construct high-fidelity simulators of systems with
complex physical laws, leading to significant dynamics gaps between the simu-
lator and the real-world environment [33]. Directly deploying policies learned
within such simulators can result in substantial performance declines [19]. To
tackle the problem, sim-to-real RL enhances the robustness of the policies against
different dynamics [39]. Domain randomization creates augmented environments
with different physical parameters to enhance policy generalization [29, 33], but
it necessitates expert knowledge of simulators and the training complexity scales
with the number of variations. Alternatively, domain adaptation presumes access
to a limited set of offline real-world samples [48]. It strives for better usage of
online simulator explorations by training classifiers to differentiate between the
simulator and the real-world transitions. Such classifiers then aid in providing
intrinsic rewards or filtering data, steering the policy towards regions where the
simulator and real-world dynamics align closely [10, 31].

Despite the effective adaptation to dynamics changes of past domain adapta-
tion approaches, they all assume that every possible transition in the real world
will also have a non-zero probability in the simulator [11]. This enables the es-
timation of the policy’s value function within the simulated environment as a
bound for real-world returns. However, it can be violated due to poor fidelity of
the simulator, leading to unbounded performance gaps. In this case, only transi-
tions in the intersection between offline data and the support set of the dynamics
transition function in the simulator, referred to as the trust region, can be fully
leveraged for policy optimization. Furthermore, the lack of safe transitions within
this trust region could lead to significant safety issues.

Addressing the mentioned challenges, this paper presents the approach of
learning safe policies in misspecified simulators using a limited amount of offline
data from the real-world environment. Specifically, we propose a novel algo-
rithmic framework named Dynamics Adaptive Safe Reinforcement Learning
with a Misspecified Simulator (DASaR). We first relax the assumption to the
state-transition level, not only allowing the method to be applied to a broader
range of simulators but also serving as a foundation for the extension of the
trust region. Afterward, to avoid the unbounded performance gap, we align the
estimated value functions in the simulator and the real-world environment via
inverse dynamics-based relabeling. Finally, as the inaccuracy of inverse dynamics
models leads to the underestimation of cost critics, we strengthen the conser-
vatism via uncertainty estimation, thus ensuring the safety of the learned policy.
Through extensive experiments on safe tasks within MuJoCo environments [42],

Dynamics Adaptive Safe RL with a Misspecified Simulator 3

we demonstrate that our approach can achieve superior performance in balancing
safety satisfaction and reward maximization under various dynamics gaps.

2 Related Work

2.1 Safe Reinforcement Learning

Safety has been one of the major roadblocks in the way of deploying RL policies
to the real world [14, 15]. To solve the problem, Safe RL typically models the en-
vironment as a Constrained Markov Decision Process (CMDP) [3] and employs
constrained optimization methods for policy learning [5, 14]. Lagrangian-based
methods are traditional approaches to solving constrained optimization problems
and are widely used in Safe RL. These methods utilize a learnable multiplier to
penalize violations of constraints [7, 38, 40]. Additionally, trust region methods
have been proposed to maintain policies within a safe trust region via low-order
Taylor expansions [1, 16, 45] or variational inference [25, 46]. Despite their advan-
tages, both Lagrangian-based and trust region methods encounter difficulties in
preventing unsafe interactions during the trial-and-error phase. An emerging ap-
proach is offline safe RL, which aims to learn policies ensuring safety exclusively
from offline data, thus avoiding unsafe explorations [23, 24, 26, 44]. However, the
efficacy of offline safe RL heavily depends on the quantity and quality of offline
data, restricting the application in limited offline data scenarios. Our previous
work [17] attempts to solve the challenge of cost function changes in offline safe
RL, but it also struggles when changes in dynamics appear.

2.2 Sim-to-real Reinforcement Learning

To deal with the dynamics gap between the simulator and the real-world en-
vironment, sim-to-real RL studies the problems in two contexts based on the
accessibility of real-world data. Without samples from real-world environments,
zero-shot sim-to-real RL unleashes the potential of simulators to ensure the ro-
bustness of polices [29]. As a widely-used solution, domain randomization neces-
sitates expert knowledge of the simulator and creates augmented environments
by randomizing the physical parameters of the simulator, thus training policies
robust to dynamics changes [28–30, 41]. When real-world samples can be ob-
tained, different methods are developed in few-shot sim-to-real RL. Among them,
simulator calibration methods improve the accuracy of simulators by adjusting
physical parameters based on offline data [6, 9, 12, 35]. However, the requirement
of expert knowledge is not always feasible. Meanwhile, some approaches align the
dynamics between the simulator and the real-world environment via inverse dy-
namics model learned from offline data [8], but the generalization error emerges
as a critical challenge. Alternatively, domain adaptation methods have gained
widespread attention in recent years. DARC [11] employs two classifiers to dis-
tinguish transitions between the simulator and the real-world environment, pro-
viding intrinsic rewards to guide the policy. H2O [31] combines the conservative

4 R. Xue et al.

regularization term of CQL [22] with the classifiers, filtering simulator samples
with a small dynamics gap for policy optimization. However, the assumption
of transition dynamics limits their applicability and neither of the mentioned
methods takes the safety issue into consideration.

3 Problem Formulation

We model the standard safe RL problem as a Constrained Markov Decision
Process (CMDP) denoted as M = (𝑆, 𝐴, 𝑃M , 𝑅, 𝐶, 𝜌, 𝛾, 𝑏), where 𝑆 and 𝐴 rep-
resent the state space and the action space, 𝑅 : 𝑆 × 𝐴 × 𝑆 → [𝑅min, 𝑅max]
and 𝐶 : 𝑆 × 𝐴 × 𝑆 → {0, 1} denote the reward and cost functions respectively.
𝑃M : 𝑆 × 𝐴 → Δ𝑆 is the transition dynamics function. 𝜌 represents the ini-
tial state distribution, 𝛾 ∈ (0, 1) is the discount factor, and 𝑏 represents the
safety constraint limit. Specifically, for a deterministic CMDPM where there is
no uncertainty on the next state 𝑠′ given 𝑠 and 𝑎, we can describe the tran-
sition dynamics with a deterministic transition function 𝑓M : 𝑆 × 𝐴 → 𝑆.
For the given policy 𝜋 : 𝑆 ↦→ Δ(𝐴) which specifies the action distribution on
state 𝑠, the expected reward return and cost return within the CMDP M can
be expressed as 𝐽𝑅M (𝜋) = E𝑠0∼𝜌,𝑎𝑡∼𝜋 (· |𝑠𝑡) ,𝑠𝑡+1∼𝑃M (· |𝑠𝑡 ,𝑎𝑡) [

∑∞
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)] and
𝐽𝐶M (𝜋) = E𝑠0∼𝜌,𝑎𝑡∼𝜋 (· |𝑠𝑡) ,𝑠𝑡+1∼𝑃M (· |𝑠𝑡 ,𝑎𝑡) [

∑∞
𝑡=0 𝛾

𝑡𝐶 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)], respectively.
The safe sim-to-real RL problem involves two CMDPs:M𝑆 representing the

source domain (simulator) andM𝑇 representing the target domain (real world).
The main difference betweenM𝑆 andM𝑇 lies in their transition dynamics func-
tions 𝑃MS and 𝑃M𝑇

, which we abbreviate as 𝑃𝑆 and 𝑃𝑇 . The objective is using
interactions inM𝑆 together with a small number of offline data D𝑇 sampled from
M𝑇 , under the given reward function 𝑅 and cost function 𝐶, to acquire a policy
𝜋 that serves as the optimal solution to the following constrained optimization
problem:

max
𝜋

𝐽𝑅M𝑇
(𝜋),

𝑠.𝑡. 𝐽𝐶M𝑇
(𝜋) ≤ 𝑏.

(1)

To facilitate later analysis, we introduce the discounted stationary state tran-
sition occupancy 𝑑 𝜋

𝑃M
(𝑠, 𝑠′) = (1 − 𝛾)E𝜌, 𝜋,𝑃M [

∑∞
𝑡=0 𝛾

𝑡P(𝑠𝑡 = 𝑠, 𝑠𝑡+1 = 𝑠′)], and
the discounted stationary state-action transition occupancy 𝜇𝜋

𝑃M
(𝑠, 𝑎, 𝑠′) = (1 −

𝛾)E𝜌, 𝜋,𝑃M [
∑∞
𝑡=0 𝛾

𝑡P(𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 = 𝑠′)]. Intuitively, they measure the over-
all frequency of visiting a specific state(-action) transition. For simplicity, we
will omit ”discounted stationary” throughout.

As is introduced in Section 2.2, domain adaptation methods make the com-
mon assumption that every possible state-action transition (𝑠, 𝑎, 𝑠′) in the target
domain also has non-zero probability in the source domain. However, this could
be violated due to the poor fidelity of the simulator. In this paper, we loosen it
and make the following assumption:

Dynamics Adaptive Safe RL with a Misspecified Simulator 5

Assumption 1 For every possible state transition in the deterministic target
domain, it has a non-zero probability in the deterministic source domain.

∀𝑠, 𝑠′ ∈ 𝑆, (∃𝑎 ∈ 𝐴, 𝑃𝑇 (𝑠′ |𝑠, 𝑎) > 0⇒ ∃𝑎′ ∈ 𝐴, 𝑃𝑆 (𝑠′ |𝑠, 𝑎′) > 0). (2)

Intuitively, by changing the restriction from state-action transition space to
state transition space, the assumption can be satisfied more easily, allowing for
broader application. We here only study the problem of deterministic CMDPs
for that it is hard to capture the probabilistic information with a small offline
dataset, further studies in non-deterministic settings are encouraged.

4 Method

In this section, we will provide a detailed description of our proposed DASaR.
This algorithm is designed to learn safe and high-performance policies within
simulators having dynamics gaps compared to real-world environments. All proofs
and implementation details like the value of hyperparameters are provided in the
appendix. Additional theoretical results on the performance bound of DASaR’s
policy and the broadening of trust region will also be provided in the appendix.

4.1 Theoretical Motivation

In safe sim-to-real RL, we aim to learn the policy with high performance and
safety guarantees in the real-world with only an offline dataset and a simulator.
While direct performance evaluations may not be feasible, we can evaluate the
performance gap between policies in the simulator and the real-world environ-
ment, as demonstrated in Proposition 1.

Proposition 1. For any two policies 𝜋1, 𝜋2 and two CMDPs M𝑆 ,M𝑇 , the fol-
lowing hold for expected reward and cost returns of policies within CMDPs:

𝐽𝑅M𝑇
(𝜋2) ≥ 𝐽𝑅M𝑆

(𝜋1) −
√
2𝑅max

1−𝛾

√︃
DKL (𝜇𝜋1𝑃𝑆 (𝑠, 𝑎, 𝑠

′) | |𝜇𝜋2
𝑃𝑇
(𝑠, 𝑎, 𝑠′)), (3)

𝐽𝐶M𝑇
(𝜋2) ≤ 𝐽𝐶M𝑆

(𝜋1) +
√
2

1−𝛾

√︃
DKL (𝜇𝜋1𝑃𝑆 (𝑠, 𝑎, 𝑠

′) | |𝜇𝜋2
𝑃𝑇
(𝑠, 𝑎, 𝑠′)), (4)

where DKL (·| |·) is the KL divergence, 𝜇𝜋1
𝑃𝑆
(𝑠, 𝑎, 𝑠′) and 𝜇

𝜋2
𝑃𝑇
(𝑠, 𝑎, 𝑠′)) are state-

action transition occupancies of 𝜋1 and 𝜋2 within M𝑆 and M𝑃, respectively.

Intuitively, with a well-performed policy 𝜋1 in the simulator, we could enhance
the performance of 𝜋2 in the real world by minimizing the KL divergence between
two state-action transition occupancies. The cost return of 𝜋2 can be minimized
in the same way. Since the traditional domain adaptation methods make the
assumption that every possible state-action transition in the real world also has
a non-zero probability in the simulator, the KL divergence term can be effectively
minimized within a broad trust region. However, such traditional approaches will
fail under the loosened Assumption 1. To facilitate further analysis, we introduce
the concept of inverse dynamics probability first:

6 R. Xue et al.

Definition 1. Inverse Dynamics Probability. The inverse dynamics prob-
ability 𝜌𝜋M (𝑎 |𝑠, 𝑠

′) given the policy 𝜋 and CMDP M is defined as:

𝜌𝜋M (𝑎 |𝑠, 𝑠
′) := 𝑃M (𝑠′ |𝑠, 𝑎)𝜋(𝑎 |𝑠)∫

𝐴
𝑃M (𝑠′ |𝑠, 𝑎)𝜋(𝑎 |𝑠)𝑑𝑎

. (5)

As 𝜌𝜋M is injective and independent of 𝜋 when M is deterministic, we denote it
as 𝜌M for brevity. Meanwhile, we can further define the deterministic inverse
dynamics function 𝑔M (𝑠, 𝑠′) given the inverse dynamics probability 𝜌M :

∀𝑠, 𝑎, 𝑠′, (𝑔M (𝑠, 𝑠′) = 𝑎 ⇔ 𝜌M (𝑎 |𝑠, 𝑠′) = 𝛿(0)), (6)

where 𝛿 is the Dirac delta function [4].

With the definition of inverse dynamics probability function, we can further
decompose the KL divergence term as is shown in Theorem 1:

Theorem 1. For any two policies 𝜋1 and 𝜋2, and any two CMDPs M𝑆 and
M𝑇 , the following holds:

DKL (𝜇𝜋1𝑃𝑆 (𝑠, 𝑎, 𝑠
′) | |𝜇𝜋2

𝑃𝑇
(𝑠, 𝑎, 𝑠′)) = DKL (𝑑 𝜋1𝑃𝑆 (𝑠, 𝑠

′) | |𝑑 𝜋2
𝑃𝑇
(𝑠, 𝑠′))︸ ︷︷ ︸

𝑡𝑒𝑟𝑚(𝑎)

+E(𝑠,𝑠′)∼𝑑𝜋1
𝑃𝑆

[DKL (𝜌M𝑆
(𝑎 |𝑠, 𝑠′) | |𝜌M𝑇

(𝑎 |𝑠, 𝑠′))]︸ ︷︷ ︸
𝑡𝑒𝑟𝑚(𝑏)

.
(7)

Theorem 1 decomposes the KL divergence term between the state-action tran-
sition occupancy into terms (a) and (b). Although term (a) can be optimized to
0 under Assumption 1, term (b) is an uncontrollable factor. This implies that
all past domain adaptation approaches that estimate 𝐽𝑅M𝑆

(𝜋) and 𝐽𝐶M𝑆
(𝜋) in the

simulator and minimize the KL divergence term DKL (𝜇𝜋1𝑃𝑆 (𝑠, 𝑎, 𝑠
′) | |𝜇𝜋2

𝑃𝑇
(𝑠, 𝑎, 𝑠′))

will fail to bound the performance gap.

4.2 Value Estimation Alignment with an Inverse Dynamics Model

DASaR is a framework-agnostic module designed for learning safe policies, any
off-policy safe RL methods can be combined with it. We here choose a widely-
used safe RL algorithm SAC Lagrange [34] for its simplicity and efficiency.
Specifically, it learns the reward and cost state-action value functions via the
maximum entropy Bellman operator and standard Bellman operator respec-
tively:

𝑄𝑅 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎, 𝑠′) + 𝛾E𝑎′∼𝜋 (· |𝑠′) [𝑄𝑅 (𝑠′, 𝑎′) − 𝜉 log(𝜋(𝑎′ |𝑠′))], (8)

𝑄𝐶 (𝑠, 𝑎) = 𝐶 (𝑠, 𝑎, 𝑠′) + 𝛾E𝑎′∼𝜋 (· |𝑠′) [𝑄𝐶 (𝑠′, 𝑎′)], (9)

where 𝜉 is a hyperparameter. Then E𝑠∼𝜌,𝑎∼𝜋 (· |𝑠) [𝑄𝑅 (𝑠, 𝑎)], E𝑠∼𝜌,𝑎∼𝜋 (· |𝑠) [𝑄𝐶 (𝑠, 𝑎)]
are used as approximations of 𝐽𝑅M (𝜋) and 𝐽

𝐶
M (𝜋) to guide the policy update. As

Dynamics Adaptive Safe RL with a Misspecified Simulator 7

is discussed in Section 4.1, directly applying SAC Lagrange in the simulator may
lead to an unbounded performance gap in both reward and cost return under
Assumption 1. However, if we can have access to the critic values within the
target domain, the policy can be optimized to directly maximize the reward re-
turn while restricting its cost value when deployed in real-world environments.
The difficulty lies in the lack of reward and cost signals from the real world. As
the reward and cost functions are available in simulators, we can relabel the sig-
nals of transition (𝑠, 𝑎, 𝑠′) into 𝑅(𝑠, 𝑎′, 𝑠′) and 𝐶 (𝑠, 𝑎′, 𝑠′) if given the appropriate
action 𝑎′ = 𝑔M𝑇

(𝑠, 𝑠′), which implies that (𝑠, 𝑎′, 𝑠′) is possible in real-world envi-
ronments. Accordingly, we first learn the deterministic inverse dynamics model
𝑔𝐼 to mimic 𝑔M𝑇

using samples from offline datasets 𝐷𝑇 :

min
𝑔𝐼
E(𝑠,𝑎,𝑠′)∼𝐷𝑇

[| |𝑔𝐼 (𝑠, 𝑠′) − 𝑎 | |22] . (10)

With the well-trained inverse dynamics model 𝑔𝐼 , we can now relabel the re-
ward and cost signals of transition (𝑠, 𝑎, 𝑠′), which is sampled from the simulator,
by defining the corrected reward and cost functions as follows:

𝑟 ′ = 𝑅′ (𝑠, 𝑎, 𝑠′) = 𝑅(𝑠, 𝑔𝐼 (𝑠, 𝑠′), 𝑠′), (11)

𝑐′ = 𝐶′ (𝑠, 𝑎, 𝑠′) = 𝐶 (𝑠, 𝑔𝐼 (𝑠, 𝑠′), 𝑠′). (12)

The relabeled transition (𝑠, 𝑎, 𝑟 ′, 𝑐′, 𝑠′) will then be used for the updates of state-
action value functions 𝑄𝑅 (𝑠, 𝑎) and 𝑄𝐶 (𝑠, 𝑎) as introduced in Equation (8) and
(9), thus achieving the alignment of value estimation.

Although the relabeled transition (𝑠, 𝑎, 𝑟 ′, 𝑐′, 𝑠′) helps align the value func-
tions 𝑄𝑅 (𝑠, 𝑎) and 𝑄𝐶 (𝑠, 𝑎), the action 𝑎 ∼ 𝜋(·|𝑠) cannot lead to the transition
of 𝑠′ in real-world environments due to the dynamics gap. Instead, we utilize the
learned inverse dynamics model to derive the desired action via the composition
of two models 𝜋 ◦ 𝑔𝐼 , which is defined as:

𝜋 ◦ 𝑔𝐼 (𝑎 |𝑠) =
∫
𝐴

𝜋(𝑎′ |𝑠)𝛿(𝑔𝐼 (𝑠, 𝑓𝑆 (𝑠, 𝑎′)) − 𝑎)𝑑𝑎′, (13)

where 𝑓𝑆 is the deterministic state transition function of M𝑆. Intuitively, we
first roll out the policy 𝜋 in the simulator to get 𝑠′ = 𝑓𝑆 (𝑠, 𝑎′) |𝑎′∼𝜋 (· |𝑠) and
derive the executable action in the real world via the inverse dynamics model
𝑎 = 𝑔𝐼 (𝑠, 𝑠′). In other words, the state-action value functions are equivalently
used to estimate the performance of the policy 𝜋 ◦𝑔𝐼 in real-world environments.
We then theoretically prove that both the reward and cost returns of such policies
can be bounded and further justify the approach. To promote the analysis, we
define the Inverse Dynamics Induced CMDP as follows:

Definition 2. Inverse Dynamics Induced CMDP. Given a deterministic
inverse dynamics model 𝑔(𝑠, 𝑠′), it can induce a CMDP with deterministic tran-
sition dynamics function 𝑓 satisfying the following property:

∀𝑠, 𝑎, 𝑠′, (𝑔(𝑠, 𝑠′) = 𝑎 ⇔ 𝑓 (𝑠, 𝑎) = 𝑠′). (14)

The reward and cost functions of such inverse dynamics induced CMDP can be
designated the same as those in the simulator or the real-world environment.

8 R. Xue et al.

It can be shown that, with the inverse dynamics model 𝑔𝐼 that mimics 𝑔M𝑇

perfectly, the CMDP M𝐼 induced by 𝑔𝐼 is exactly the same as the target do-
mainM𝑇 . Furthermore, we illustrate that the optimization of policies under the
aligned value functions is consistent with optimization in the induced CMDP
M𝐼 in Theorem 2.

Theorem 2. For a given inverse dynamics model 𝑔𝐼 and its induced CMDPM𝐼

with transition dynamics function 𝑃𝐼 , the following equations hold: 𝑑 𝜋
𝑃𝑆
(𝑠, 𝑠′) =

𝑑
𝜋◦𝑔𝐼
𝑃𝐼
(𝑠, 𝑠′), 𝐽𝑅′M𝑆

(𝜋) = 𝐽𝑅M𝐼
(𝜋 ◦ 𝑔𝐼), 𝐽𝐶

′

M𝑆
(𝜋) = 𝐽𝐶M𝐼

(𝜋 ◦ 𝑔𝐼), where 𝐽𝑅
′

M𝑆
(𝜋) and

𝐽𝐶
′

M𝑆
(𝜋) are the expected return of 𝜋 under the simulator M𝑆 evaluated by the

corrected reward and cost functions 𝑅′ and 𝐶′, defined in Equation 11.

Although Theorem 2 proves that we can optimize the policy 𝜋 ◦ 𝑔𝐼 under the
induced CMDP 𝑀𝐼 through updates in simulators, the differences between M𝐼

and the target domainM𝑇 will hinder the performance improvement in the real
world. The differences result from the inaccuracy and generalization ability of
𝑔𝐼 , and the coverage of offline samples. To deal with the challenge, we prove that
the cost and reward returns can both be bounded by DKL (𝑑 𝜋◦𝑔𝐼𝑃𝐼

(𝑠, 𝑠′) | |𝑑 𝜋𝐵
𝑃𝑇
(𝑠, 𝑠′))

with the adequate assumption, which is equivalent to DKL (𝑑 𝜋𝑃𝑆 (𝑠, 𝑠
′) | |𝑑 𝜋𝐵

𝑃𝑇
(𝑠, 𝑠′))

through Theorem 2. Here, 𝜋𝐵 is the behavioral policy for collecting offline sam-
ples, corresponding proofs can be found in the appendix. Intuitively, this result
comes from that 𝑔𝐼 has higher accuracy on its training samples. Leveraging
advancements in imitation from observation [43], we introduce a binary discrim-
inator 𝐾 (𝑠, 𝑠′) which is optimized through:

max
𝐾
E𝑑𝜋

𝑃𝑆
[ln𝐾 (𝑠, 𝑠′)] + E𝑑𝜋𝐵

𝑃𝑇

[ln(1 − 𝐾 (𝑠, 𝑠′))] . (15)

Following the paradigm widely used in imitation learning, we introduce the ad-
ditional reward signal Δ𝑟 = ln 1−𝐾 (𝑠,𝑠′)

𝐾 (𝑠,𝑠′) and optimize 𝑄𝑅 with 𝑟 ′ + 𝛼Δ𝑟 instead,
where 𝛼 is a hyperparameter. In this way, we successfully expand past methods’
trust region based on state-action transitions to a new trust region based on
state transitions, covering the whole offline dataset under Assumption 1.

4.3 Conservative Cost Critic Learning via Uncertainty Estimation

Although the value estimation alignment via inverse dynamics-based relabeling
can effectively bound the performance gap between the simulator and the real-
world environment under Assumption 1, the safety issue could still emerge as a
challenge. On one hand, the inherent approximation errors in neural networks
will affect the estimation of the cost critic. On the other hand, the inaccuracy
of the inverse dynamics model may lead to misleading cost relabel. These might
result in underestimation of the cost critic, making the policy execute unsafe
actions with low cost critic values during deployment. To alleviate the problem,
we introduce uncertainty estimation using model ensemble approaches.

To deal with the approximation errors of the cost critic’s network, we train
𝐸𝐶 base models, denoted as {𝑄𝐶,𝑖 (𝑠, 𝑎)}𝐸𝑐

𝑖=1. Then, we use the upper confidence

Dynamics Adaptive Safe RL with a Misspecified Simulator 9

bound (UCB) [32] as the estimation of the expected cost return under (𝑠, 𝑎):

𝑄𝐶,UCB (𝑠, 𝑎) = E𝑖∈{1,...,𝐸𝐶 } [𝑄𝐶,𝑖 (𝑠, 𝑎)] + 𝛽𝐶 ·
√︃
Var𝑖∈{1,...,𝐸𝐶 } [𝑄𝐶,𝑖 (𝑠, 𝑎)], (16)

where 𝛽𝐶 is a hyperparameter.
As for the inaccuracy of the inverse dynamics model, we first analyze how it

leads to the underestimation of the cost critic. We update the cost critic with
relabeled cost value 𝐶 (𝑠, 𝑔𝐼 (𝑠, 𝑠′), 𝑠′), with the hope that 𝑓𝑇 (𝑠, 𝑔𝐼 (𝑠, 𝑠′)) = 𝑠′ when
𝑔𝐼 perfectly mimics 𝑔M𝑇

within the real world M𝑇 . However, the inaccuracy of
𝑔𝐼 might lead to undesired state transition to 𝑓𝑇 (𝑠, 𝑔𝐼 (𝑠, 𝑠′)) = 𝑠′ + 𝑒 where 𝑒
is the state transition error. Meanwhile, the aligned cost critic evaluates the
expected cost return of policy 𝜋 ◦ 𝑔𝐼 under state-action pair (𝑠, 𝑔𝐼 (𝑠, 𝑠′)) in the
real world. Accordingly, the sample supposed to be used to update the critic is
(𝑠, 𝑔𝐼 (𝑠, 𝑠′), 𝑠′+𝑒) instead. As the lack of transition dynamics 𝑓𝑇 of the real-world
environment prevents us from attaining the state error 𝑒, we introduce the proxy
error by model ensemble and pessimistic estimation.

First of all, we can approximate the action error 𝑒𝐴 = 𝑎′−𝑔𝐼 (𝑠, 𝑠′) with regards
to the desired action 𝑎′ = 𝑔M𝑇

(𝑠, 𝑠′) via uncertainty estimation. Specifically, we

apply model ensemble by training 𝐸𝐼 inverse dynamics models {𝑔𝑖
𝐼
}𝐸𝐼

𝑖=1. Without
loss of generality, we assume the existence of 𝛽𝑇 such that for any 𝑠, 𝑠′, the
following holds:

𝑒𝐴 ∈ [−𝛽𝑇 ·
√︃
Var𝑖∈{1,...,𝐸𝐼 } [𝑔𝑖𝐼 (𝑠, 𝑠′)], 𝛽𝑇 ·

√︃
Var𝑖∈{1,...,𝐸𝐼 } [𝑔𝑖𝐼 (𝑠, 𝑠′)]] . (17)

After determining the range of the action error 𝑒𝐴, we can then decide the range
of state error 𝑒 based on the assumption on the continuity of 𝑓𝑇 and 𝑓𝑆 as follows:

Assumption 2 Given two CMDPs M𝑆 ,M𝑇 , together with their deterministic
inverse dynamics functions 𝑔𝑆 , 𝑔𝑇 and deterministic state transition functions
𝑓𝑆 , 𝑓𝑇 , and the range of action error 𝑒𝐴

𝑇
in M𝑇 , there exists 𝛽𝑆 > 0 so that the

range of state error in M𝑇 can be included by that in M𝑆:

{ 𝑓𝑇 (𝑠, 𝑔𝑇 (𝑠, 𝑠′)+𝑒𝐴𝑇) |𝑒𝐴𝑇 ∈ [−𝑙, 𝑙]} ⊆ { 𝑓𝑆 (𝑠, 𝑔𝑆 (𝑠, 𝑠′)+𝑒𝑆) |𝑒𝐴𝑆 ∈ [−𝛽𝑆 ·𝑙, 𝛽𝑆 ·𝑙]}, (18)

where 𝑙 is the range of action errors in M𝑇 .

Intuitively, Assumption 2 tells that we can get all possible state errors within
the real world by rollouts in the simulator, it is actually a direct result of As-
sumption 1. When 𝑓𝑇 and 𝑓𝑆 are continuous, the parameter 𝛽𝑆 will not need to
be a large number. Combining Equation 17 and Assumption 2, we derive the

range of action errors under simulators: 𝐸𝐴
𝑆
= [−𝛽𝐼 ·

√︃
Var𝑖∈{1,...,𝐸𝐼 } [𝑔𝑖𝐼 (𝑠, 𝑠′)], 𝛽𝐼 ·√︃

Var𝑖∈{1,...,𝐸𝐼 } [𝑔𝑖𝐼 (𝑠, 𝑠′)]], where 𝛽𝐼 = 𝛽𝑇 × 𝛽𝑆 and we set it as a hyperparam-

eter. Since it is impossible to give a certain value of action error, we make the
pessimistic estimation and update the cost critic based on the term with the
highest cost:

B𝑒𝑄𝐶,𝑖 (𝑠, 𝑎) = max
𝑒𝐴∈𝐸𝐴

𝑆

(𝐶 (𝑠, 𝑔𝐸𝐼 (𝑠, 𝑠′), 𝑠𝑒
𝐴) + 𝛾E𝑎′∼𝜋 (· |𝑠𝑒) [𝑄𝐶,𝑖 (𝑠𝑒

𝐴

, 𝑎′)]), (19)

10 R. Xue et al.

where 𝑔𝐸
𝐼
(𝑠, 𝑠′) = E𝑖∈{1,...,𝐸𝐼 } [𝑔𝑖𝐼 (𝑠, 𝑠′)] is the expectation over all the inverse

dynamics models, and 𝑠𝑒
𝐴

= 𝑓𝑆 (𝑠, 𝑔𝐸𝐼 (𝑠, 𝑠′) + 𝑒𝐴) is the simulated state under
action with the error. By improving the conservatism of the cost critics, the
safety of the learned policy can be further guaranteed.

5 Experiments

In this section, we present our experimental analysis conducted in four MuJoCo
environments, each featuring three different simulators. The experiments are de-
signed to address the following critical questions: (1) Can DASaR learn the pol-
icy that is both safe and high-performing in the real world via trial-and-error in
different simulators (Sec. 5.2)? (2) What contributions do different components
of DASaR make and how does the quantity of offline data impact its perfor-
mance (Sec. 5.3)? (3) Does the policy learned by DASaR exhibit remarkable
sim-to-real adaptation capabilities compared with other baselines (Sec. 5.4)? (4)
How do different choices of hyperparameters in DASaR affect its performance
(Sec. 5.5)?

For a thorough evaluation, we compare DASaR against multiple baselines.
All experimental results within a simulator are averaged across ten evaluation
episodes, five random seeds, and three different parameter values accompanied
by standard deviation information. Detailed experimental information and ad-
ditional results will be provided in the appendix.

5.1 Baselines and Environments

To thoroughly assess the performance of DASaR, we compare it against a range
of baselines: (1) SAC Lagrange(sim) [34] employs the Lagrangian version of
SAC [18] to train a policy in the simulator and deploys it directly to the real
world. (2) SAC Lagrange(id) [8] also utilizes SAC Lagrange for policy train-
ing in simulators but employs an inverse dynamics model learned from the offline
dataset during real-world deployment. (3) DARC Lagrange is the Lagrangian
version of the sim-to-real approach, DARC [11], which utilizes two classifiers to
differentiate transitions from the simulator and the real-world environment, thus
constraining the policy learning to trust region with small dynamics gaps. (4)
H2O Lagrange also combines Lagrangian methods with H2O [31], which adds
conservative regularization of CQL [22] into DARC’s classifiers, filtering samples
for policy updates. (5) CPQ [44] is a pure offline safe algorithm without explo-
rations in simulators, emphasizing safety and conservatism via regularization.

For our evaluation, we chose four Gym MuJoCo environments [42]: Ant,
HalfCheetah, Hopper, and Walker, and modified them for safety considera-
tions. The offline dataset of each environment includes 100 trajectories, where
20 of them are collected from a safe policy and others are generated by diverse
behavioral policies violating safety constraints. For each environment, we create
three simulators, each differs from the real world in specific physical parameters,
including gravity, friction, and density. The experiments are conducted

Dynamics Adaptive Safe RL with a Misspecified Simulator 11

Table 1. Average test return ± std across various environments. Rewards and costs
are normalized via the offline dataset and safety constraint limit 𝑏 = 5, respectively. If
the normalized cost exceeds 1.0, the method with a lower cost is preferred, otherwise,
the method with a higher reward is better. The method with the best performance in
each simulator is emphasized in blue. Letters ’g’, ’f’, and ’d’ represent simulators with
different gravity, friction, and density parameter values compared with the real world.

DASaR SAC Lagrange(id) SAC Lagrange(sim)
Env

reward↑ cost↓ reward↑ cost↓ reward↑ cost↓
g 72.8 ± 14.2 1.3 ± 1.2 48.2 ± 16.5 3.4 ± 3.0 40.9 ± 29.3 5.9 ± 7.0
f 78.8 ± 8.8 1.1 ± 1.4 52.8 ± 16.1 1.8 ± 1.4 51.6 ± 10.5 3.0 ± 2.2Ant

d 97.0 ± 4.7 0.6 ± 0.5 62.7 ± 16.5 1.1 ± 0.9 67.7 ± 20.9 2.5 ± 1.3
g 63.2 ± 8.4 1.7 ± 1.6 −184.9 ± 124.3 2.0 ± 2.6 28.0 ± 63.6 1.2 ± 2.0
f 86.2 ± 8.5 1.2 ± 1.2 -106.0 ± 171.6 0.8 ± 1.4 65.1 ± 20.3 1.7 ± 1.9Cheetah

d 83.3 ± 6.0 0.5 ± 0.5 −215.9 ± 151.5 1.5 ± 2.7 61.4 ± 45.5 0.5 ± 0.8
g 44.5 ± 25.3 3.0 ± 2.9 38.4 ± 19.0 5.2 ± 4.0 45.5 ± 19.1 7.5 ± 4.6
f 40.1 ± 26.7 4.6 ± 4.7 35.5 ± 29.4 5.6 ± 6.2 49.5 ± 29.5 6.7 ± 4.1Hopper

d 59.2 ± 29.5 3.2 ± 3.2 45.1 ± 20.2 4.8 ± 4.9 51.4 ± 18.0 6.5 ± 3.4
g 62.5 ± 7.7 3.0 ± 4.1 30.7 ± 29.6 7.0 ± 4.9 48.7 ± 18.9 5.3 ± 6.8
f 58.8 ± 23.8 2.5 ± 3.4 21.6 ± 30.7 6.7 ± 5.3 73.1 ± 7.2 5.3 ± 4.3Walker

d 65.4 ± 5.6 1.5 ± 1.8 14.3 ± 30.5 6.3 ± 4.2 57.3 ± 21.0 8.1 ± 6.1
Overall 67.7 2.0 −13.1 3.9 53.4 4.5

DARC Lagrange H2O Lagrange CPQ

g 76.9 ± 33.5 3.6 ± 2.7 31.9 ± 28.3 13.7 ± 8.8
f 97.2 ± 8.1 5.0 ± 2.6 56.3 ± 20.9 9.4 ± 6.6Ant

d 111.2 ± 5.2 3.0 ± 1.7 27.4 ± 22.9 16.2 ± 8.1
49.6 ± 6.0 9.7 ± 2.7

g −21.3 ± 73.7 11.3 ± 6.7 −116.5 ± 228.1 46.5 ± 15.7
f 2.5 ± 76.4 4.2 ± 9.2 −329.3 ± 0.3 60.0 ± 0.0Cheetah

d 9.5 ± 72.4 1.5 ± 2.1 −301.0 ± 104.9 56.4 ± 13.4
79.6 ± 3.7 8.3 ± 1.3

g 63.5 ± 25.0 11.3 ± 10.9 22.3 ± 33.1 8.5 ± 10.8
f 58.3 ± 37.5 11.1 ± 8.2 33.1 ± 52.0 11.6 ± 12.5Hopper

d 71.1 ± 32.0 11.8 ± 10.0 49.7 ± 42.0 13.1 ± 9.3
98.0 ± 3.5 11.3 ± 2.6

g 65.5 ± 9.6 9.7 ± 11.3 45.5 ± 18.8 12.0 ± 4.5
f 73.1 ± 3.1 5.5 ± 4.8 65.6 ± 16.5 16.8 ± 5.0Walker

d 68.5 ± 7.3 12.5 ± 7.2 48.3 ± 17.1 17.0 ± 4.3
72.7 ± 9.2 8.1 ± 3.1

Overall 56.3 7.5 −30.6 23.4 75.0 9.4

within each simulator for three parameter values: 2.0, 1.5, and 0.5, indicating
how much it deviates from the real-world parameter value 1.0.

12 R. Xue et al.

5.2 Overall Performance Comparison

The detailed experimental results are shown in Table 1. Firstly, it is observed
that in scenarios with limited and low-quality offline data, the pure offline safe al-
gorithm CPQ severely violates safety constraints. This underscores the necessity
to introduce online trial-and-error for data augmentation and policy learning.
When a certain dynamics gap exists in the simulator, SAC Lagrange(sim) im-
proves safety compared to CPQ but comes with a decrease in reward. Meanwhile,
as it lacks theoretical guarantees, the performance of learned policies is highly
dependent on the fidelity of simulators, emphasizing the importance of utilizing
offline data to mitigate dynamics gaps. SAC Lagrange(id) further incorporates
an inverse dynamics model for adaptation in the real world, enhancing safety but
causing a substantial drop in reward. This highlights the substantial negative
impact of the inverse dynamics model’s empirical and generalization errors on
the policy.

Domain adaptation methods, DARC Lagrange and H2O Lagrange, fail to
perform well when considering safety issues. While DARC Lagrange achieves
higher rewards in some settings, it significantly violates safety constraints. This
validates the conflict between a trust region based on similar dynamics and
safe data, with methods leaning towards the trust region as the primary con-
straint, tending to overlook safety constraints. H2O Lagrange performs poorly
in both reward and cost, diverging significantly compared to its outstanding per-
formance in traditional environments without safety constraints. The issue arises
from H2O’s application of conservative regularization, which assigns transition
samples with larger dynamics gaps lower rewards to avoid taking corresponding
actions. However, in the safe scenario, the situation arises where samples with
larger dynamics gaps, despite having lower rewards, also have lower estimated
costs. Such actions are preferred compared to those with high costs in safe RL.
Accordingly, these samples with larger dynamic gaps and low costs are used to
update policy, leading to a significant performance gap.

Our method, DASaR, stands out by achieving the safest performance on most
simulators while maintaining high reward returns. Compared to the safest base-
line, DASaR improves safety performance by approximately 48%, and reward
performance by approximately 80%. As for the approach with the highest re-
ward, DASaR experiences a less than 10% decrease while achieving a remarkable
78% improvement in safety.

5.3 Ablation Studies and Data Sensitivity Study

To illustrate the impact of different modules of DASaR on its policy performance,
we conducted ablation studies in two environments: Ant and HalfCheetah. Re-
sults from two simulators parameterized with different gravity and friction are
averaged for each environment. Detailed statistical data along with standard
deviation information are provided in the appendix. We here present four dif-
ferent baselines: (1) wo va does not use the inverse dynamics-based relabling.
(2) wo tb dismisses the discriminator reward signal. (3) wo ucb c uses the

Dynamics Adaptive Safe RL with a Misspecified Simulator 13

DASaR wo_va wo_tb wo_ucb_c wo_ucb_i

40

50

60

70

80

90

rew
ard

75.8
70.9

38.6

77.1 78.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cos
t

1.2
1.7

0.2

1.3

2.7
reward cost

(a) Ablation in Ant

DASaR wo_va wo_tb wo_ucb_c wo_ucb_i60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

rew
ard

74.7 75.2

-60.6

72.7
75.6

2

4

6

8

10

12

cos
t

1.4 2.2

12.2

2.8 2.2

reward cost

(b) Ablation in Cheetah

100% 50% 20% 10%

30

40

50

60

70

80

rew
ard

72.8
77.9

63.7

26.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

cos
t1.3

1.5

0.8 0.8

reward cost

(c) Data Sensitivity

Fig. 1. Ablation studies in two environments and data sensitivity study.

original cost critic value instead of UCB estimation. (4) wo ucb i applies the
traditional Bellman operator into cost critic updating. The experimental results
are shown in Fig. 1(a) and 1(b). It can be observed that wo va, wo ucb c, and
wo ucb i do not show significant differences in reward compared to DASaR, but
they all exhibit an increase in cost, indicating the necessity of these modules
for guaranteeing the safety of the learned policy. On the other hand, the per-
formance of wo tb varies between two environments. In Ant, while its reward
decreases significantly, it achieves the lowest cost. However, in HalfCheetah, its
reward drops while the cost increases significantly. This highlights the impor-
tance of constraining the policy within the trust region of higher accuracy inverse
dynamics models for performance gap bounding.

Next, to verify the sensitivity of DASaR to the quantity of offline data, we
conducted a data sensitivity study in the Ant environment’s gravity simula-
tor. We designated the original 100 trajectories as 100%, then reduced the data
volume to 50%, 20%, and 10% while maintaining the same quality proportion,
ensuring that only 20% of the data was sampled by the safe policy. As shown
in Fig. 1(c), when the data volume is reduced from 100 trajectories to 50 or 20
trajectories, no significant undulation is observed. However, a significant per-
formance decline happens when it is reduced to 10 trajectories, with only 2 of
them safe. Despite the low cost, the failure in reward indicates the unbounded
performance gap. This illustrates that DASaR exhibits adequate tolerance to
reduced data volume, learning safe and high-performing policies under more
limited offline data is promising in future work.

5.4 Visualization Analysis

To assess whether the policy learned in the simulator exhibits remarkable sim-
to-real adaptation in the real world, we compare the state distribution induced
by the policy in the simulator and the real-world environment. The state dis-
tribution of DASaR and other baselines in the Ant environment are visualized
using t-SNE [27], as is shown in Fig. 2.

First of all, SAC Lagrange(sim) displays notable discrepancies in state distri-
bution between the simulator and the real world, indicating failure in sim-to-real
adaptation. In contrast, SAC Lagrange(id) shows increased similarity in state

14 R. Xue et al.

(a) DASaR
(d) DARC_Lagrange

(c) SAC_Lagrange(id)(b) SAC_Lagrange(sim)

(e) H2O_Lagrange

Fig. 2. Visualization of the state distributions in both simulator and the real.

distribution compared to SAC Lagrange(sim), despite that the discrepancy still
exists. This underscores the necessity of employing sim-to-real techniques to en-
hance adaptation in the real-world environment. While H2O Lagrange utilizes
domain adaptation techniques, substantial disparities persist between simulated
and real state distributions. This suggests the need for further adjustments in
safe RL. Both DASaR and DARC Lagrange exhibit notably enhanced similarity
in state distribution compared to other algorithms. This showcases the remark-
able adaptation capabilities of these methods, which is in accordance with their
higher performance in primary experiments. However, DARC Lagrange’s adap-
tation comes at the cost of compromising policy safety to some extent. Only
DASaR achieves remarkable adaptation capabilities while maintaining the rela-
tive safety of the learned policy.

5.5 Parameter Sensitivity Studies

To assess the sensitivity of DASaR to different hyperparameter selections, we
conduct hyperparameter sensitivity studies in the Ant gravity simulator for three
hyperparameters: 𝛼, 𝛽𝐶 , and 𝛽𝐼 . Specifically, 𝛼 is varied between 0.0, 0.2, 0.5,
and 1.0; 𝛽𝑐 is varied between 0.0, 1.0, 2.0, and 5.0; and 𝛽𝐼 is varied between 0.0,
0.5, 1.0, and 2.0. Results are shown in Fig. 3.

Firstly, concerning the hyperparameter 𝛼, it is evident that when 𝛼 is 0, the
policy yields a significantly lower reward return, indicating a considerable per-
formance gap. As 𝛼 increases to 0.2 and 0.5, the reward return experiences a
substantial increase while maintaining safety performance within an acceptable
range. However, as 𝛼 further increases to 1.0, both the reward and safety perfor-
mance of the policy decrease. This underscores the importance of both reducing
the performance gap and expanding the optimization search space of the policy
to achieve better performance in real-world environments.

Moving on to the hyperparameter 𝛽𝐶 , it is observed that in the Ant gravity
environment, the values of 𝛽𝐶 do not have a significant impact on the perfor-

Dynamics Adaptive Safe RL with a Misspecified Simulator 15

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.001e6

0

20

40

60

80

100

rew
ard

reward
0.0
0.2
0.5
1.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00step 1e6
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

cos
t

cost
0.0
0.2
0.5
1.0
cost bound

(a) 𝛼 Sensitivity

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.001e6

0

20

40

60

80

100

rew
ard

reward
0.0
1.0
2.0
5.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00step 1e6
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

cos
t

cost
0.0
1.0
2.0
5.0
cost bound

(b) 𝛽𝐶 Sensitivity

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.001e6

0

20

40

60

80

rew
ard

reward
0.0
0.5
1.0
2.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00step 1e6
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

cos
t

cost
0.0
0.5
1.0
2.0
cost bound

(c) 𝛽𝐼 Sensitivity

Fig. 3. Visualization of the curves depicting the changes in the reward and costs during
the training process of different parameter values.

mance of the policy. This suggests that in this environment, the learning of the
cost critic is relatively accurate, thus the upper confidence bound of the cost
critic will not undergo significant changes regardless of the value of 𝛽𝐶 .

Finally, regarding the hyperparameter 𝛽𝐼 , it is observed that as 𝛽𝐼 gradually
increases from 0 to 1.0, the safety performance of the policy also gradually im-
proves. However, when 𝛽𝐼 further increases to 2.0, the policy learning collapses,
with the reward essentially dropping to near 0 and safety no longer guaranteed.
This phenomenon primarily occurs because an excessively large 𝛽𝐼 makes the
cost critic overly conservative, potentially preventing the discovery of a policy
that satisfies the cost critic’s estimation being less than 𝑏 = 5. Consequently,
the Lagrange multiplier continues to increase, leading to the collapse of policy
learning. This underscores the importance of selecting 𝛽𝐼 appropriately.

6 Final Remarks

In this work, we present a novel algorithm, DASaR, designed to tackle the chal-
lenge of training a policy in a simulator with a dynamics gap while ensuring safe
performance in the real. DASaR aligns the value estimation from the simulator
with the real by incorporating an inverse dynamics model, resulting in a lower
performance gap across the entire offline data distribution where the inverse dy-
namics model exhibits high accuracy. Additionally, DASaR employs uncertainty
estimation to robustly model the conservative cost critic, addressing neural net-
work approximation errors and further enhancing safety performance. Extensive
experimental results demonstrate DASaR’s remarkable adaptation capabilities
across various simulators. However, communication with the simulator during

16 R. Xue et al.

deployment introduces additional overhead, future work can further apply a be-
havior cloning process to solve this problem. Additionally, the applicability of
DASaR is somewhat constrained by the presence of Assumption 1, and expand-
ing its scope remains a promising direction for further exploration. Extending
this work to the multi-agent setting is also a good choice for solving the open
environment reinforcement learning challenges [47].

Acknowledgements

This work is supported by National Science Foundation of China (61921006).
We would like to express our gratitude to the anonymous reviewers for their
kind reviews and constructive feedback.

References

1. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization. In:
ICML. pp. 22–31 (2017)

2. Afsar, M.M., Crump, T., Far, B.: Reinforcement learning based recommender sys-
tems: A survey. ACM Computing Surveys 55(7), 1–38 (2022)

3. Altman, E.: Constrained Markov decision processes. Routledge (2021)
4. Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical methods for physicists: a

comprehensive guide. Academic press (2011)
5. Brunke, L., Greeff, M., Hall, A.W., Yuan, Z., Zhou, S., Panerati, J., Schoellig,

A.P.: Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems 5, 411–
444 (2022)

6. Chebotar, Y., Handa, A., Makoviychuk, V., Macklin, M., Issac, J., Ratliff, N.,
Fox, D.: Closing the sim-to-real loop: Adapting simulation randomization with
real world experience. In: ICRA. pp. 8973–8979 (2019)

7. Chow, Y., Ghavamzadeh, M., Janson, L., Pavone, M.: Risk-constrained reinforce-
ment learning with percentile risk criteria. Journal of Machine Learning Research
18(167), 1–51 (2018)

8. Christiano, P., Shah, Z., Mordatch, I., Schneider, J., Blackwell, T., Tobin, J.,
Abbeel, P., Zaremba, W.: Transfer from simulation to real world through learning
deep inverse dynamics model. arXiv preprint arXiv:1610.03518 (2016)

9. Collins, J., Brown, R., Leitner, J., Howard, D.: Traversing the reality gap via
simulator tuning. In: ACRA. pp. 1–10 (2021)

10. Desai, S., Durugkar, I., Karnan, H., Warnell, G., Hanna, J., Stone, P.: An imita-
tion from observation approach to transfer learning with dynamics mismatch. In:
NeurIPS. pp. 3917–3929 (2020)

11. Eysenbach, B., Asawa, S., Chaudhari, S., Levine, S., Salakhutdinov, R.: Off-
dynamics reinforcement learning: Training for transfer with domain classifiers.
arXiv preprint arXiv:2006.13916 (2020)

12. Farchy, A., Barrett, S., MacAlpine, P., Stone, P.: Humanoid robots learning to
walk faster: From the real world to simulation and back. In: AAMAS. pp. 39–46
(2013)

13. Fedotov, A.A., Harremoës, P., Topsoe, F.: Refinements of pinsker’s inequality.
IEEE Transactions on Information Theory 49(6), 1491–1498 (2003)

Dynamics Adaptive Safe RL with a Misspecified Simulator 17

14. Garcıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research 16(1), 1437–1480 (2015)

15. Gu, S., Kuba, J.G., Chen, Y., Du, Y., Yang, L., Knoll, A., Yang, Y.: Safe multi-
agent reinforcement learning for multi-robot control. Artificial Intelligence 319,
103905 (2023)

16. Gu, S., Kuba, J.G., Wen, M., Chen, R., Wang, Z., Tian, Z., Wang, J.,
Knoll, A., Yang, Y.: Multi-agent constrained policy optimisation. arXiv preprint
arXiv:2110.02793 (2021)

17. Guan, C., Xue, R., Zhang, Z., Li, L., Li, Y.C., Yuan, L., Yu, Y.: Cost-aware offline
safe meta reinforcement learning with robust in-distribution online task adaptation.
In: Proceedings of the 23rd International Conference on Autonomous Agents and
Multiagent Systems. pp. 743–751 (2024)

18. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: ICML. pp.
1861–1870 (2018)

19. Höfer, S., Bekris, K., Handa, A., Gamboa, J.C., Mozifian, M., Golemo, F., Atkeson,
C., Fox, D., Goldberg, K., Leonard, J., et al.: Sim2real in robotics and automa-
tion: Applications and challenges. IEEE transactions on automation science and
engineering 18(2), 398–400 (2021)

20. Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P., Levine, S.: How to train
your robot with deep reinforcement learning: lessons we have learned. The Inter-
national Journal of Robotics Research 40(4-5), 698–721 (2021)

21. Kiran, B.R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab, A.A., Yogamani, S.,
Pérez, P.: Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems 23(6), 4909–4926 (2021)

22. Kumar, A., Zhou, A., Tucker, G., Levine, S.: Conservative q-learning for offline
reinforcement learning. In: NeurIPS. pp. 1179–1191 (2020)

23. Le, H., Voloshin, C., Yue, Y.: Batch policy learning under constraints. In: ICML.
pp. 3703–3712 (2019)

24. Lee, J., Paduraru, C., Mankowitz, D.J., Heess, N., Precup, D., Kim, K.E., Guez, A.:
Coptidice: Offline constrained reinforcement learning via stationary distribution
correction estimation. arXiv preprint arXiv:2204.08957 (2022)

25. Liu, Z., Cen, Z., Isenbaev, V., Liu, W., Wu, S., Li, B., Zhao, D.: Constrained vari-
ational policy optimization for safe reinforcement learning. In: ICML. pp. 13644–
13668 (2022)

26. Liu, Z., Guo, Z., Yao, Y., Cen, Z., Yu, W., Zhang, T., Zhao, D.: Con-
strained decision transformer for offline safe reinforcement learning. arXiv preprint
arXiv:2302.07351 (2023)

27. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. The Journal of
Machine Learning Research 9(11) (2008)

28. Mehta, B., Diaz, M., Golemo, F., Pal, C.J., Paull, L.: Active domain randomization.
In: CoRL. pp. 1162–1176. PMLR (2020)

29. Mordatch, I., Lowrey, K., Todorov, E.: Ensemble-cio: Full-body dynamic motion
planning that transfers to physical humanoids. In: IROS. pp. 5307–5314 (2015)

30. Nagabandi, A., Clavera, I., Liu, S., Fearing, R.S., Abbeel, P., Levine, S., Finn,
C.: Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. In: ICLR (2018)

31. Niu, H., Qiu, Y., Li, M., Zhou, G., HU, J., Zhan, X., et al.: When to trust your
simulator: Dynamics-aware hybrid offline-and-online reinforcement learning. In:
NeurIPS. pp. 36599–36612 (2022)

18 R. Xue et al.

32. Osband, I., Blundell, C., Pritzel, A., Van Roy, B.: Deep exploration via boot-
strapped dqn. In: NeurIPS. pp. 4026–4034 (2016)

33. Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of
robotic control with dynamics randomization. In: ICRA. pp. 3803–3810 (2018)

34. Ray, A., Achiam, J., Amodei, D.: Benchmarking safe exploration in deep reinforce-
ment learning. arXiv preprint arXiv:1910.01708 (2019)

35. Ren, A.Z., Dai, H., Burchfiel, B., Majumdar, A.: Adaptsim: Task-driven simulation
adaptation for sim-to-real transfer. arXiv preprint arXiv:2302.04903 (2023)

36. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy
optimization. In: ICML. pp. 1889–1897 (2015)

37. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without
human knowledge. nature 550(7676), 354–359 (2017)

38. Stooke, A., Achiam, J., Abbeel, P.: Responsive safety in reinforcement learning by
pid lagrangian methods. In: ICML. pp. 9133–9143 (2020)

39. Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner, D., Bohez, S., Van-
houcke, V.: Sim-to-real: Learning agile locomotion for quadruped robots. arXiv
preprint arXiv:1804.10332 (2018)

40. Tessler, C., Mankowitz, D.J., Mannor, S.: Reward constrained policy optimization.
arXiv preprint arXiv:1805.11074 (2018)

41. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain
randomization for transferring deep neural networks from simulation to the real
world. In: IROS. pp. 23–30 (2017)

42. Todorov, E., Erez, T., Tassa, Y.: Mujoco: A physics engine for model-based control.
In: 2012 IEEE/RSJ international conference on intelligent robots and systems. pp.
5026–5033. IEEE (2012)

43. Torabi, F., Warnell, G., Stone, P.: Generative adversarial imitation from observa-
tion. arXiv preprint arXiv:1807.06158 (2018)

44. Xu, H., Zhan, X., Zhu, X.: Constraints penalized q-learning for safe offline rein-
forcement learning. In: AAAI. pp. 8753–8760 (2022)

45. Yang, T.Y., Rosca, J., Narasimhan, K., Ramadge, P.J.: Projection-based con-
strained policy optimization. In: ICLR (2019)

46. Yao, Y., Liu, Z., Cen, Z., Zhu, J., Yu, W., Zhang, T., Zhao, D.: Constraint-
conditioned policy optimization for versatile safe reinforcement learning. NeurIPS
36 (2024)

47. Yuan, L., Zhang, Z., Li, L., Guan, C., Yu, Y.: A survey of progress on coop-
erative multi-agent reinforcement learning in open environment. arXiv preprint
arXiv:2312.01058 (2023)

48. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence 45(4), 4396–4415
(2022)

Dynamics Adaptive Safe RL with a Misspecified Simulator 19

Appendix

A Proofs for Theoretical Analysis

Assumption 1 For every possible state transition in the deterministic target
domain, it has a non-zero probability in the deterministic source domain.

∀𝑠, 𝑠′ ∈ 𝑆, (∃𝑎 ∈ 𝐴, 𝑃𝑇 (𝑠′ |𝑠, 𝑎) > 0⇒ ∃𝑎′ ∈ 𝐴, 𝑃𝑆 (𝑠′ |𝑠, 𝑎′) > 0). (20)

Assumption 2 Given two CMDPs M𝑆 ,M𝑇 , together with their deterministic
inverse dynamics functions 𝑔𝑆 , 𝑔𝑇 and deterministic state transition functions
𝑓𝑆 , 𝑓𝑇 , and the range of action error 𝑒𝐴

𝑇
in M𝑇 , there exists 𝛽𝑆 > 0 so that the

range of state error in M𝑇 can be included by that in M𝑆:

{ 𝑓𝑇 (𝑠, 𝑔𝑇 (𝑠, 𝑠′)+𝑒𝐴𝑇) |𝑒𝐴𝑇 ∈ [−𝑙, 𝑙]} ⊆ { 𝑓𝑆 (𝑠, 𝑔𝑆 (𝑠, 𝑠′)+𝑒𝑆) |𝑒𝐴𝑆 ∈ [−𝛽𝑆 ·𝑙, 𝛽𝑆 ·𝑙]}, (21)

where 𝑙 is the range of action errors in M𝑇 .

A.1 Proofs in the Main Paper

Proposition 1. For any two policies 𝜋1, 𝜋2 and two CMDPs M𝑆 ,M𝑇 , the fol-
lowing hold for expected reward and cost returns of policies within CMDPs:

𝐽𝑅M𝑇
(𝜋2) ≥ 𝐽𝑅M𝑆

(𝜋1) −
√
2𝑅max

1−𝛾

√︃
DKL (𝜇𝜋1𝑃𝑆 (𝑠, 𝑎, 𝑠

′) | |𝜇𝜋2
𝑃𝑇
(𝑠, 𝑎, 𝑠′)), (22)

𝐽𝐶M𝑇
(𝜋2) ≤ 𝐽𝐶M𝑆

(𝜋1) +
√
2

1−𝛾

√︃
DKL (𝜇𝜋1𝑃𝑆 (𝑠, 𝑎, 𝑠

′) | |𝜇𝜋2
𝑃𝑇
(𝑠, 𝑎, 𝑠′)). (23)

Proof. First, following the proofs in TRPO [36], we rewrite the expected reward
return as 𝐽𝑅M (𝜋) =

1
1−𝛾E𝜇𝜋

𝑃M
[𝑅(𝑠, 𝑎, 𝑠′)]. Therefore, we have:

|𝐽𝑅M𝑇
(𝜋2) − 𝐽𝑅M𝑆

(𝜋1) | =
1

1 − 𝛾 |E𝜇
𝜋2
𝑃𝑇

[𝑅(𝑠, 𝑎, 𝑠′)] − E𝜇𝜋1
𝑃𝑆

[𝑅(𝑠, 𝑎, 𝑠′)] |

=
1

1 − 𝛾 |
∫
𝑆×𝐴×𝑆

(𝑅(𝑠, 𝑎, 𝑠′)𝜇𝜋2
𝑃𝑇
(𝑠, 𝑎, 𝑠′) − 𝑅(𝑠, 𝑎, 𝑠′)𝜇𝜋1

𝑃𝑆
(𝑠, 𝑎, 𝑠′))𝑑𝑠𝑑𝑎𝑑𝑠′ |

=
1

1 − 𝛾 |
∫
𝑆×𝐴×𝑆

𝑅(𝑠, 𝑎, 𝑠′) (𝜇𝜋2
𝑃𝑇
(𝑠, 𝑎, 𝑠′) − 𝜇𝜋1

𝑃𝑆
(𝑠, 𝑎, 𝑠′))𝑑𝑠𝑑𝑎𝑑𝑠′ |

≤ 2𝑅max

1 − 𝛾 DTV (𝜇𝜋2𝑃𝑇 (𝑠, 𝑎, 𝑠
′) | |𝜇𝜋1

𝑃𝑆
(𝑠, 𝑎, 𝑠′))

=
2𝑅max

1 − 𝛾 DTV (𝜇𝜋1𝑃𝑆 (𝑠, 𝑎, 𝑠
′) | |𝜇𝜋2

𝑃𝑇
(𝑠, 𝑎, 𝑠′))

≤ 2𝑅max

1 − 𝛾

√︄
DKL (𝜇𝜋1𝑃𝑆 (𝑠, 𝑎, 𝑠

′) | |𝜇𝜋2
𝑃𝑇
(𝑠, 𝑎, 𝑠′))

2

=

√
2𝑅max

1 − 𝛾

√︃
DKL (𝜇𝜋1𝑃𝑆 (𝑠, 𝑎, 𝑠

′) | |𝜇𝜋2
𝑃𝑇
(𝑠, 𝑎, 𝑠′)).

(24)
The first inequality is an application of Holder’s inequality, achieved by set-
ting p to ∞ and q to 1. The second inequality is an application of the Pinsker
inequality [13]. 𝐽𝐶M (𝜋) follows the same reason.

20 R. Xue et al.

Theorem 1. For any two policies 𝜋1 and 𝜋2, and any two CMDPs M𝑆 and
M𝑇 , the following holds:

DKL (𝜇𝜋1𝑃𝑆 (𝑠, 𝑎, 𝑠
′) | |𝜇𝜋2

𝑃𝑇
(𝑠, 𝑎, 𝑠′)) = DKL (𝑑 𝜋1𝑃𝑆 (𝑠, 𝑠

′) | |𝑑 𝜋2
𝑃𝑇
(𝑠, 𝑠′))

+E(𝑠,𝑠′)∼𝑑𝜋1
𝑃𝑆

[DKL (𝜌M𝑆
(𝑎 |𝑠, 𝑠′) | |𝜌M𝑇

(𝑎 |𝑠, 𝑠′))] . (25)

Proof. First, we have:

DKL (𝑑 𝜋1𝑃𝑆 (𝑠, 𝑠
′) | |𝑑 𝜋2

𝑃𝑇
(𝑠, 𝑠′))

=

∫
𝑆×𝑆

𝑑
𝜋1
𝑃𝑆
(𝑠, 𝑠′) (log

𝑑
𝜋1
𝑃𝑆
(𝑠, 𝑠′)

𝑑
𝜋2
𝑃𝑇
(𝑠, 𝑠′)

)𝑑𝑠𝑑𝑠′

=

∫
𝑆×𝑆
(

∫
𝐴
𝜇
𝜋1
𝑃𝑆
(𝑠, 𝑎, 𝑠′)𝑑𝑎

𝑑
𝜋1
𝑃𝑆
(𝑠, 𝑠′)

)𝑑 𝜋1
𝑃𝑆
(𝑠, 𝑠′) (log

𝑑
𝜋1
𝑃𝑆
(𝑠, 𝑠′)

𝑑
𝜋2
𝑃𝑇
(𝑠, 𝑠′)

)𝑑𝑠𝑑𝑠′

=

∫
𝑆×𝑆
(
∫
𝐴

𝜇
𝜋1
𝑃𝑆
(𝑠, 𝑎, 𝑠′)

𝑑
𝜋1
𝑃𝑆
(𝑠, 𝑠′)

𝑑𝑎)𝑑 𝜋1
𝑃𝑆
(𝑠, 𝑠′) (log

𝑑
𝜋1
𝑃𝑆
(𝑠, 𝑠′)

𝑑
𝜋2
𝑃𝑇
(𝑠, 𝑠′)

)𝑑𝑠𝑑𝑠′

=

∫
𝑆×𝐴×𝑆

𝜇
𝜋1
𝑃𝑆
(𝑠, 𝑎, 𝑠′)

𝑑
𝜋1
𝑃𝑆
(𝑠, 𝑠′)

𝑑
𝜋1
𝑃𝑆
(𝑠, 𝑠′) (log

𝑑
𝜋1
𝑃𝑆
(𝑠, 𝑠′)

𝑑
𝜋2
𝑃𝑇
(𝑠, 𝑠′)

)𝑑𝑠𝑑𝑎𝑑𝑠′

=

∫
𝑆×𝐴×𝑆

𝜇
𝜋1
𝑃𝑆
(𝑠, 𝑎, 𝑠′) (log

𝑑
𝜋1
𝑃𝑆
(𝑠, 𝑠′)

𝑑
𝜋2
𝑃𝑇
(𝑠, 𝑠′)

)𝑑𝑠𝑑𝑎𝑑𝑠′.

(26)

With the equation, we can obtain:

DKL (𝜇𝜋1𝑃𝑆 (𝑠, 𝑎, 𝑠
′) | |𝜇𝜋2

𝑃𝑇
(𝑠, 𝑎, 𝑠′)) − DKL (𝑑 𝜋1𝑃𝑆 (𝑠, 𝑠

′) | |𝑑 𝜋2
𝑃𝑇
(𝑠, 𝑠′))

=

∫
𝑆×𝐴×𝑆

𝜇
𝜋1
𝑃𝑆
(𝑠, 𝑎, 𝑠′) (log

𝜇
𝜋1
𝑃𝑆
(𝑠, 𝑎, 𝑠′)

𝜇
𝜋2
𝑃𝑇
(𝑠, 𝑎, 𝑠′)

×
𝑑
𝜋2
𝑃𝑇
(𝑠, 𝑠′)

𝑑
𝜋1
𝑃𝑆
(𝑠, 𝑠′)

)𝑑𝑠𝑑𝑎𝑑𝑠′

=

∫
𝑆×𝐴×𝑆

𝜇
𝜋1
𝑃𝑆
(𝑠, 𝑎, 𝑠′) (log

𝜌M𝑆
(𝑎 |𝑠, 𝑠′)

𝜌M𝑇
(𝑎 |𝑠, 𝑠′))𝑑𝑠𝑑𝑎𝑑𝑠

′

=

∫
𝑆×𝐴×𝑆

𝜇
𝜋1
𝑃𝑆
(𝑠, 𝑎, 𝑠′)

𝜌M𝑆
(𝑎 |𝑠, 𝑠′) 𝜌M𝑆

(𝑎 |𝑠, 𝑠′) (log
𝜌M𝑆
(𝑎 |𝑠, 𝑠′)

𝜌M𝑇
(𝑎 |𝑠, 𝑠′))𝑑𝑠𝑑𝑎𝑑𝑠

′

=

∫
𝑆×𝐴×𝑆

𝑑
𝜋1
𝑃𝑆
(𝑠, 𝑠′)𝜌M𝑆

(𝑎 |𝑠, 𝑠′) (log
𝜌M𝑆
(𝑎 |𝑠, 𝑠′)

𝜌M𝑇
(𝑎 |𝑠, 𝑠′))𝑑𝑠𝑑𝑎𝑑𝑠

′

= E(𝑠,𝑠′)∼𝑑𝜋1
𝑃𝑆

[DKL (𝜌M𝑆
(𝑎 |𝑠, 𝑠′) | |𝜌M𝑇

(𝑎 |𝑠, 𝑠′))] .

(27)

Finally, performing rearrangements, we have:

DKL (𝜇𝜋1𝑃𝑆 (𝑠, 𝑎, 𝑠
′) | |𝜇𝜋2

𝑃𝑇
(𝑠, 𝑎, 𝑠′)) = DKL (𝑑 𝜋1𝑃𝑆 (𝑠, 𝑠

′) | |𝑑 𝜋2
𝑃𝑇
(𝑠, 𝑠′))

+E(𝑠,𝑠′)∼𝑑𝜋1
𝑃𝑆

[DKL (𝜌M𝑆
(𝑎 |𝑠, 𝑠′) | |𝜌M𝑇

(𝑎 |𝑠, 𝑠′))] . (28)

Lemma 1. The state transition occupancy of 𝜋◦𝑔𝐼 onM𝐼 is the same with that
of 𝜋 on M𝑆, that is:

𝑑 𝜋𝑃𝑆 (𝑠, 𝑠
′) = 𝑑 𝜋◦𝑔𝐼

𝑃𝐼
(𝑠, 𝑠′). (29)

Dynamics Adaptive Safe RL with a Misspecified Simulator 21

Proof. We prove this by induction.

First of all, due to the problem formulation, M𝑆 and M𝑇 have the same
initial state distribution 𝜌, therefore, M𝑆 and M𝐼 also have the same initial
state distribution 𝜌.

Then, given the same current state 𝑠, suppose the next state distribution of
𝜋◦𝑔𝐼 inM𝐼 is 𝑝

𝜋◦𝑔𝐼
𝐼
(𝑠′ |𝑠), and the next state distribution of 𝜋 inM𝑆 is 𝑝𝜋

𝑆
(𝑠′ |𝑠),

then the following holds:

𝑝
𝜋◦𝑔𝐼
𝐼
(𝑠′ |𝑠) =

∫
𝐴

𝜋 ◦ 𝑔𝐼 (𝑎 |𝑠)𝑃𝐼 (𝑠′ |𝑠, 𝑎)𝑑𝑎

=

∫
𝐴

𝜋 ◦ 𝑔𝐼 (𝑎 |𝑠)𝛿(𝑠′ − 𝑓𝐼 (𝑠, 𝑎))𝑑𝑎

=

∫
𝐴

𝜋 ◦ 𝑔𝐼 (𝑎 |𝑠)𝛿(0)I(𝑓𝐼 (𝑠, 𝑎) = 𝑠′)𝑑𝑎

=

∫
𝐴

∫
𝐴

𝜋(𝑎′ |𝑠)𝛿(0)I(𝑔𝐼 (𝑠, 𝑓𝑆 (𝑠, 𝑎′)) = 𝑎)𝛿(0)I(𝑓𝐼 (𝑠, 𝑎) = 𝑠′)𝑑𝑎′𝑑𝑎

=

∫
𝐴

∫
𝐴

𝜋(𝑎′ |𝑠)𝛿(0)I(𝑓𝑆 (𝑠, 𝑎′) = 𝑓𝐼 (𝑠, 𝑎))𝛿(0)I(𝑓𝐼 (𝑠, 𝑎) = 𝑠′)𝑑𝑎′𝑑𝑎

=

∫
𝐴

∫
𝐴

𝜋(𝑎′ |𝑠)𝛿(0)I(𝑓𝑆 (𝑠, 𝑎′) = 𝑠′)𝛿(0)I(𝑓𝐼 (𝑠, 𝑎) = 𝑠′)𝑑𝑎′𝑑𝑎

=

∫
𝐴

𝜋(𝑎′ |𝑠)𝛿(0)I(𝑓𝑆 (𝑠, 𝑎′) = 𝑠′)𝑑𝑎′
∫
𝐴

𝛿(0)I(𝑓𝐼 (𝑠, 𝑎) = 𝑠′)𝑑𝑎

=

∫
𝐴

𝜋(𝑎′ |𝑠)𝛿(𝑠′ − 𝑓𝑆 (𝑠, 𝑎))𝑑𝑎′

= 𝑝𝜋𝑆 (𝑠
′ |𝑠).

(30)
Therefore, by induction we have 𝑑 𝜋𝑠

𝑃𝑆
(𝑠, 𝑠′) = 𝑑 𝜋𝑠◦𝑔𝐼

𝑃𝐼
(𝑠, 𝑠′).

Theorem 2. For a given inverse dynamics model 𝑔𝐼 and its induced CMDPM𝐼

with transition dynamics function 𝑃𝐼 , the following equations hold: 𝑑 𝜋
𝑃𝑆
(𝑠, 𝑠′) =

𝑑
𝜋◦𝑔𝐼
𝑃𝐼
(𝑠, 𝑠′), 𝐽𝑅′M𝑆

(𝜋) = 𝐽𝑅M𝐼
(𝜋 ◦ 𝑔𝐼), 𝐽𝐶

′

M𝑆
(𝜋) = 𝐽𝐶M𝐼

(𝜋 ◦ 𝑔𝐼), where 𝐽𝑅
′

M𝑆
(𝜋) and

𝐽𝐶
′

M𝑆
(𝜋) are the expected return of 𝜋 under the simulator M𝑆 evaluated by the

corrected reward and cost functions 𝑅′ and 𝐶′.

Proof. Lemma 1 has proved that 𝑑 𝜋
𝑃𝑆
(𝑠, 𝑠′) = 𝑑 𝜋◦𝑔𝐼

𝑃𝐼
(𝑠, 𝑠′). Therefore, we continue

to prove the rest. Due to the definition, 𝐽𝑅
′

M𝑆
(𝜋) can be expressed as 𝐽𝑅

′

M𝑆
(𝜋) =

22 R. Xue et al.

1
1−𝛾E(𝑠,𝑠′)∼𝑑𝜋

𝑃𝑆
(𝑠,𝑠′) ,𝑎′∼𝜌𝑀𝐼

(𝑠,𝑠′) [𝑅(𝑠, 𝑎′, 𝑠′)]. Therefore, we have:

𝐽𝑅
′

M𝑆
(𝜋) = 1

1 − 𝛾E(𝑠,𝑠
′)∼𝑑𝜋

𝑃𝑆
(𝑠,𝑠′) ,𝑎′∼𝜌𝑀𝐼

(𝑎′ |𝑠,𝑠′) [𝑅(𝑠, 𝑎′, 𝑠′)]

=
1

1 − 𝛾

∫
𝑆×𝐴×𝑆

𝑅(𝑠, 𝑎′, 𝑠′)𝑑 𝜋𝑃𝑆 (𝑠, 𝑠
′)𝜌𝑀𝐼

(𝑎′ |𝑠, 𝑠′)𝑑𝑠𝑑𝑎′𝑑𝑠′

=
1

1 − 𝛾

∫
𝑆×𝐴×𝑆

𝑅(𝑠, 𝑎′, 𝑠′)𝑑 𝜋◦𝑔𝐼
𝑃𝐼
(𝑠, 𝑠′)𝜌𝑀𝐼

(𝑎′ |𝑠, 𝑠′)𝑑𝑠𝑑𝑎′𝑑𝑠′

=
1

1 − 𝛾

∫
𝑆×𝐴×𝑆

𝑅(𝑠, 𝑎′, 𝑠′)𝜇𝜋◦𝑔𝐼
𝑃𝐼
(𝑠, 𝑎′, 𝑠′)𝑑𝑠𝑑𝑎′𝑑𝑠′

= 𝐽𝑅M𝐼
(𝜋 ◦ 𝑔𝐼),

(31)

where the third equality holds because of Lemma 1. Similarly, we have 𝐽𝐶
′

M𝑆
(𝜋) =

𝐽𝐶M𝐼
(𝜋 ◦ 𝑔𝐼).

A.2 More Theoretical Results

To obtain a performance bound for DASaR, we first make the following assump-
tion:

Assumption 3 The inverse dynamics model 𝑔𝐼 has zero empirical error when
sufficiently optimized. And let 𝜋𝐵 be the behavior policy of the offline dataset D𝑇 ,
for any policy 𝜋 and 𝜖 ≥ 0, if it satisfies DKL (𝑑 𝜋𝑃𝐼

(𝑠, 𝑠′) | |𝑑 𝜋𝐵
𝑃𝑇
(𝑠, 𝑠′)) ≤ 𝜖, then its

state-action transition occupancy satisfies DKL (𝜇𝜋𝑃𝐼
(𝑠, 𝑎, 𝑠′) | |𝜇𝜋

𝑃𝑇
(𝑠, 𝑎, 𝑠′)) ≤ 𝑘𝜖2,

where 𝑘 is a positive constant.

This assumption actually assumes that when the state visitation distribution of
the policy 𝜋 is similar to the behavior policy 𝜋𝐵, there will be more accurate
inference of the inverse dynamics model, thus M𝐼 will be more similar to M𝑇

in such areas. This is an intuitive result at least when 𝜖 = 0. For 𝜖 > 0, a large
enough k can make it possible. Then, we have the following results:

Lemma 2. The optimal 𝐾∗ (𝑠, 𝑠′) satisfies the following condition:

ln
1 − 𝐾∗ (𝑠, 𝑠′)
𝐾∗ (𝑠, 𝑠′) = ln

𝑑
𝜋𝐵
𝑃𝑇

𝑑 𝜋
𝑃𝐼

. (32)

Proof. Let 𝐽 (𝐾, 𝜋) = E𝑑𝜋
𝑃𝐼
[ln𝐾 (𝑠, 𝑠′)] + E𝑑𝜋𝐵

𝑃𝑇

[ln(1 − 𝐾 (𝑠, 𝑠′))], then we have:

𝐽 (𝐾, 𝜋) = E𝑑𝜋
𝑃𝐼
[ln𝐾 (𝑠, 𝑠′)] + E𝑑𝜋𝐵

𝑃𝑇

[ln(1 − 𝐾 (𝑠, 𝑠′))]

=

∫
𝑆×𝑆
(ln𝐾 (𝑠, 𝑠′)𝑑 𝜋𝑃𝐼

(𝑠, 𝑠′) + ln(1 − 𝐾 (𝑠, 𝑠′))𝑑 𝜋𝐵
𝑃𝑇
(𝑠, 𝑠′))𝑑𝑠𝑑𝑠′.

(33)

Therefore, to maximize 𝐽 (𝐾, 𝜋), ln𝐾 (𝑠, 𝑠′)𝑑 𝜋
𝑃𝐼
(𝑠, 𝑠′) + ln(1 − 𝐾 (𝑠, 𝑠′))𝑑 𝜋𝐵

𝑃𝑇
(𝑠, 𝑠′)

needs to be maximized at every (𝑠, 𝑠′). Let 𝑥 = 𝐾 (𝑠, 𝑠′), 𝑓 (𝑥) = ln(𝑥)𝑑 𝜋
𝑃𝐼
(𝑠, 𝑠′) +

Dynamics Adaptive Safe RL with a Misspecified Simulator 23

ln(1 − 𝑥)𝑑 𝜋𝐵
𝑃𝑇
(𝑠, 𝑠′), then we have:

𝜕 𝑓 (𝑥)
𝜕𝑥

=
𝑑 𝜋
𝑃𝐼
(𝑠, 𝑠′)
𝑥

−
𝑑
𝜋𝐵
𝑃𝑇
(𝑠, 𝑠′)

1 − 𝑥 . (34)

It is clear that 𝜕 𝑓 (𝑥)
𝜕𝑥

is a decreasing function for 𝑥 ∈ (0, 1), therefore the optimal
𝑥∗ satisfies:

𝑥∗

1 − 𝑥∗ =
𝑑 𝜋
𝑃𝐼
(𝑠, 𝑠′)

𝑑
𝜋𝐵
𝑃𝑇
(𝑠, 𝑠′)

, (35)

as a result:

ln
1 − 𝐾∗ (𝑠, 𝑠′)
𝐾∗ (𝑠, 𝑠′) = ln

𝑑
𝜋𝐵
𝑃𝑇

𝑑 𝜋
𝑃𝐼

. (36)

Proposition 2. For any 𝜖 > 0, there exists 𝛼 > 0 such that using a standard safe
RL algorithm to optimize in the simulator using 𝑟 ′ +𝛼Δ𝑟 and 𝑐′, the theoretically
optimal policy 𝜋 is the solution to the following optimization problem:

max
𝜋

𝐽𝑅M𝐼
(𝜋 ◦ 𝑔𝐼)

𝑠.𝑡. 𝐽𝐶M𝐼
(𝜋 ◦ 𝑔𝐼) ≤ 𝑏,

DKL (𝑑 𝜋◦𝑔𝐼𝑃𝐼
(𝑠, 𝑠′) | |𝑑 𝜋𝐵

𝑃𝑇
(𝑠, 𝑠′)) ≤ 𝜖 .

(37)

Proof. Firstly, due to Theorem 2, employing standard safe RL algorithms for
policy optimization based on 𝑟 ′ and 𝑐′ in the simulator results in the theoretically
optimal policy 𝜋 which optimizes that:

max
𝜋

𝐽𝑅M𝐼
(𝜋 ◦ 𝑔𝐼)

𝑠.𝑡. 𝐽𝐶M𝐼
(𝜋 ◦ 𝑔𝐼) ≤ 𝑏.

(38)

Next, for that DKL (𝑑 𝜋𝑃𝑆 (𝑠, 𝑠
′) | |𝑑 𝜋𝐵

𝑃𝑇
(𝑠, 𝑠′)) = E𝑑𝜋

𝑃𝑆
(𝑠,𝑠′) [ln

𝑑𝜋
𝑃𝑆

𝑑
𝜋𝐵
𝑃𝑇

], by applying the

Lagrange multiplier method and Lemma 2, it follows that for any 𝜖 > 0, there
exists 𝛼 > 0 such that using a standard safe RL algorithm to optimize in the
simulator using 𝑟 ′ + 𝛼Δ𝑟 and 𝑐′, the theoretically optimal policy 𝜋 optimizes:

max
𝜋

𝐽𝑅M𝐼
(𝜋 ◦ 𝑔𝐼)

𝑠.𝑡. 𝐽𝐶M𝐼
(𝜋 ◦ 𝑔𝐼) ≤ 𝑏,

DKL (𝑑 𝜋𝑃𝑆 (𝑠, 𝑠
′) | |𝑑 𝜋𝐵

𝑃𝑇
(𝑠, 𝑠′)) ≤ 𝜖 .

(39)

Furthermore, due to Assumption 1, it is evident that any policy that entirely
constrains the state transition occupancy measure to the offline dataset is a solu-
tion satisfying DKL (𝑑 𝜋𝑃𝑆 (𝑠, 𝑠

′) | |𝑑 𝜋𝐵
𝑃𝑇
(𝑠, 𝑠′)) = 0 ≤ 𝜖 . Additionally, since there exist

trajectories in the offline dataset that satisfy safety constraints, this optimiza-
tion problem is feasible. Ultimately, applying Lemma 1, it is concluded that 𝜋

24 R. Xue et al.

optimizes:
max
𝜋

𝐽𝑅M𝐼
(𝜋 ◦ 𝑔𝐼)

𝑠.𝑡. 𝐽𝐶M𝐼
(𝜋 ◦ 𝑔𝐼) ≤ 𝑏,

DKL (𝑑 𝜋◦𝑔𝐼𝑃𝐼
(𝑠, 𝑠′) | |𝑑 𝜋𝐵

𝑃𝑇
(𝑠, 𝑠′)) ≤ 𝜖 .

(40)

Theorem 3. Let 𝐽𝑅
′

M𝑆
(𝜋) and 𝐽𝐶′M𝑆

(𝜋) be the expected value returns of the policy

𝜋 in M𝑆 evaluated by the corrected reward and cost functions 𝑅′ and 𝐶′, 𝑔𝐼 be
the given inverse dynamics model. When Assumption 3 holds, for any 𝜖 > 0,
there exists 𝛼 > 0 such that using a standard safe RL algorithm to optimize in
the simulator using 𝑟 ′ + 𝛼Δ𝑟 and 𝑐′, the theoretically optimal policy 𝜋 obtained
meets the following condition for expected value return in the real world:

𝐽𝑅M𝑇
(𝜋 ◦ 𝑔𝐼) ≥ 𝐽𝑅

′

M𝑆
(𝜋) −

√
2𝑘𝜖 𝑅max

1−𝛾 , (41)

𝐽𝐶M𝑇
(𝜋 ◦ 𝑔𝐼) ≤ 𝐽𝐶

′

M𝑆
(𝜋) +

√
2𝑘𝜖
1−𝛾 ≤ 𝑏 +

√
2𝑘𝜖
1−𝛾 . (42)

Proof. This is a direct result combining Assumption 3, Proposition 1, Propo-
sition 2, and Theorem 2. Due to Proposition 2, for any 𝜖 > 0, there exists
𝛼 > 0, such that DKL (𝑑 𝜋◦𝑔𝐼𝑃𝐼

(𝑠, 𝑠′) | |𝑑 𝜋𝐵
𝑃𝑇
(𝑠, 𝑠′)) ≤ 𝜖 . By Assumption 3, we have

DKL (𝜇𝜋𝑃𝐼
(𝑠, 𝑎, 𝑠′) | |𝜇𝜋

𝑃𝑇
(𝑠, 𝑎, 𝑠′)) ≤ 𝑘𝜖2. Substituting this expression into Proposi-

tion 1 yields:

𝐽𝑅M𝑇
(𝜋 ◦ 𝑔𝐼) ≥ 𝐽𝑅M𝐼

(𝜋 ◦ 𝑔𝐼) −
√
2𝑘𝜖 𝑅max

1−𝛾 , (43)

𝐽𝐶M𝑇
(𝜋 ◦ 𝑔𝐼) ≤ 𝐽𝐶M𝐼

(𝜋 ◦ 𝑔𝐼) +
√
2𝑘𝜖
1−𝛾 . (44)

Using Proposition 2 again, we have:

𝐽𝑅M𝑇
(𝜋 ◦ 𝑔𝐼) ≥ 𝐽𝑅M𝐼

(𝜋 ◦ 𝑔𝐼) −
√
2𝑘𝜖 𝑅max

1−𝛾 , (45)

𝐽𝐶M𝑇
(𝜋 ◦ 𝑔𝐼) ≤ 𝐽𝐶M𝐼

(𝜋 ◦ 𝑔𝐼) +
√
2𝑘𝜖
1−𝛾 ≤ 𝑏 +

√
2𝑘𝜖
1−𝛾 . (46)

Finally, combining Theorem 2, we have:

𝐽𝑅M𝑇
(𝜋 ◦ 𝑔𝐼) ≥ 𝐽𝑅

′

M𝑆
(𝜋) −

√
2𝑘𝜖 𝑅max

1−𝛾 , (47)

𝐽𝐶M𝑇
(𝜋 ◦ 𝑔𝐼) ≤ 𝐽𝐶

′

M𝑆
(𝜋) +

√
2𝑘𝜖
1−𝛾 ≤ 𝑏 +

√
2𝑘𝜖
1−𝛾 . (48)

Theorem 3 provides bounds on the expected value return of the policy deployed
in the real world under Assumption 3. Combining the results of Theorem 2 and
Proposition 2, it can be inferred that, given 𝜖 , DASaR optimizes the lower bound
of the expected reward return and the upper bound of the expected cost return
in the real world. The value of 𝜖 is directly related to the hyperparameter 𝛼;
when 𝛼 is large, while 𝜖 is small, the search space for the policy 𝜋 will also be
smaller. Conversely, when 𝛼 is small, while 𝜖 is large, the search space for the
policy 𝜋 will also be larger. Therefore, the choice of this hyperparameter is one
of the key factors influencing performance.

Dynamics Adaptive Safe RL with a Misspecified Simulator 25

Additionally, we theoretically show that the effective training data of DASaR
for deterministic CMDPs will not be less than that of the past domain adaptation
methods even when Assumption 1 does not hold. First, we formally define the
following trust regions:

– The trust region based on state-action transitions T𝑠𝑎: ∀(𝑠, 𝑎, 𝑠′) ∈ T𝑠𝑎,
𝑃𝑆 (𝑠′ |𝑠, 𝑎) > 0, 𝑃𝑇 (𝑠′ |𝑠, 𝑎) > 0, and the action probability 𝑝(𝑎) > 0.

– The trust region based on state transitions T𝑠: ∀(𝑠, 𝑠′) ∈ T𝑠, let 𝑝𝑆 (𝑠′ |𝑠) and
𝑝𝑇 (𝑠′ |𝑠) denote the probability of state transition (𝑠, 𝑠′) in the simulator and
the real-world, then 𝑝𝑆 (𝑠′ |𝑠) > 0 and 𝑝𝑇 (𝑠′ |𝑠) > 0.

Theorem 4. T𝑠𝑎 is the trust region based on state-action transitions, T𝑠 is the
trust region based on state transitions, and D𝑇 is the offline dataset. Then

(𝑠, 𝑎, 𝑠′) ∈ T𝑠𝑎
⋂
D𝑇 ⇒ (𝑠, 𝑠′) ∈ T𝑠

⋂
D𝑇 . (49)

Proof. For any transition (𝑠, 𝑎, 𝑠′) ∈ T𝑠𝑎, due to the definition, 𝑃𝑆 (𝑠′ |𝑠, 𝑎) >
0, 𝑃𝑇 (𝑠′ |𝑠, 𝑎) > 0, also 𝑝(𝑎) > 0. Therefore, we have:

𝑝𝑆 (𝑠′ |𝑠) =
∫
𝐴

𝑃𝑆 (𝑠′, 𝑎′ |𝑠)𝑑𝑎′

=

∫
𝐴

𝑃𝑆 (𝑠′ |𝑠, 𝑎′)𝑝(𝑎′)𝑑𝑎′

> 𝑃𝑆 (𝑠′ |𝑠, 𝑎)𝑝(𝑎)
> 0.

(50)

Similarly, we have 𝑝𝑇 (𝑠′ |𝑠) > 0. Which means (𝑠, 𝑠′) can occur in both the
simulator and the real-world environment. Therefore, (𝑠, 𝑠′) ∈ T𝑠. Thus, we have

(𝑠, 𝑎, 𝑠′) ∈ T𝑠𝑎 ⇒ (𝑠, 𝑠′) ∈ T𝑠 . (51)

Further, we can obtain that:

(𝑠, 𝑎, 𝑠′) ∈ T𝑠𝑎
⋂
D𝑇 ⇒ (𝑠, 𝑠′) ∈ T𝑠

⋂
D𝑇 . (52)

Also, we will provide an example yo show that for a real-world environment,
there exists a simulator such that the trust region based on state transitions is
larger than the trust region based on state-action transitions in Sec. E.

B Detailed Description of the Environments and
Baselines

B.1 Environments

MuJoCo [42] is a high-fidelity physics engine designed for detailed and efficient
rigid body simulations with contacts. It is widely used for benchmarking RL
algorithms. Agents in MuJoCo environments receive vectorial state inputs and

26 R. Xue et al.

Ant HalfCheetah Hopper Walker

Fig. 4. MuJoCo environments used in this paper.

output continuous actions. For a comprehensive evaluation in our study, we have
selected four tasks from the Gym MuJoCo suite and made small modifications
to their reward and cost functions. Additionally, the maximum episode length
of all environments is reduced to 300 for more efficient comparisons.

• Ant: The Ant is a 3D robot consisting of one torso with four articulated legs,
each with two links. The objective is to coordinate the movements of the legs
to navigate towards a specified direction.
Due to the design of the cost function, we removed the action-related reward
from the reward function and reduced the alive reward to 0.2. The cost
function of this environment consists of three parts. The first part is the
obj cost, which is only related to the state. Let x and y be the coordinates
of the Ant robot’s position, then the obj cost can be expressed as:

obj cost(𝑥, 𝑦) =

1 − 𝟙(0.5𝑥 − 4 ≤ 𝑦 ≤ 0.5𝑥 + 4) 0 ≤ 𝑥 ≤ 20

1 − 𝟙(16 − 0.5𝑥 ≤ 𝑦 ≤ 24 − 0.5𝑥) 20 < 𝑥 ≤ 40

1 − 𝟙(−3 ≤ 𝑦 ≤ 3) otherwise

. (53)

The second part is the action cost, which is only related to the action. Let
the action 𝑎 have a dimension of 𝑑𝑎; then, the action cost can be expressed
as:

action cost(𝑎) = 𝟙(| |𝑎 | |1
𝑑𝑎

> 0.8). (54)

The final part is the done cost, which is 1 if the task stops due to reasons
other than reaching the episode length limit. The ultimate cost is the sum
of these three parts, clipped to the range [0, 1].
• HalfCheetah: The HalfCheetah is a 2-dimensional robot consisting of 9 links
forming a spine, with 8 joints allowing articulation. The challenge is to exert
torques on the joints to propel the cheetah forward as swiftly as possible.
Due to the necessity of cost computation, we have added the x-coordinate
of the robot to the observations and also removed the ctrl reward related to
actions from the reward function. The cost in this environment is divided
into two parts. The first part is the vel cost, which is solely related to the
state. If the x-coordinate of the robot at the previous time step is 𝑥0, the

Dynamics Adaptive Safe RL with a Misspecified Simulator 27

current time step is 𝑥1, and the fixed time difference between the two steps
is 𝑑𝑡, then the vel cost can be expressed as:

vel cost(𝑥0, 𝑥1) = 𝟙(𝑥1 − 𝑥0
𝑑𝑡

> 2.1). (55)

The second part is the action cost, which is similar across all environments.
Let the action 𝑎 have a dimension of 𝑑𝑎; then, the action cost can be ex-
pressed as:

action cost(𝑎) = 𝟙(| |𝑎 | |1
𝑑𝑎

> 0.7). (56)

• Hopper: The Hopper is a two-dimensional one-legged figure that consists of
four main body parts - the torso at the top, the thigh in the middle, the leg
in the bottom, and a single foot on which the entire body rests. The goal is
to make hops that move in the forward direction.
The modifications made to the observation and reward aspects for Hopper
and Walker are the same as those for HalfCheetah, and are thus omitted
here. The first two parts of the cost for Hopper are similar to those for
HalfCheetah:

vel cost(𝑥0, 𝑥1) = 𝟙(𝑥1 − 𝑥0
𝑑𝑡

> 1.4), (57)

action cost(𝑎) = 𝟙(| |𝑎 | |1
𝑑𝑎

> 0.7). (58)

While the third part of the cost is the same as the third part of Ant’s cost.
• Walker: The Walker is a two-dimensional two-legged figure that consists of
four main body parts - a single torso at the top, two thighs in the middle, two
legs in the bottom, and two feet attached to the legs. The goal is to coordinate
both sets of feet, legs, and thighs to move in the forward direction.
The three components of Walker’s cost are all similar to Hopper, with the
expressions for the first two parts being:

vel cost(𝑥0, 𝑥1) = 𝟙(𝑥1 − 𝑥0
𝑑𝑡

> 1.6), (59)

action cost(𝑎) = 𝟙(| |𝑎 | |1
𝑑𝑎

> 0.7). (60)

B.2 Simulators

For each environment, we construct three different simulators, representing vari-
ations in gravity, friction, and density parameters compared to the real environ-
ment. To thoroughly assess DASaR’s adaptation ability, each simulator is tested
with three different parameter values: 2.0, 1.5, and 0.5. These parameters can be
adjusted in the MuJoCo environment by modifying the XML files. For instance,
in MuJoCo, changing the gravity parameter of Ant can be achieved by adjusting
the value associated with the ”gravity” keyword in ant.xml.

28 R. Xue et al.

B.3 Baselines

• SAC Lagrange(sim) employs SAC Lagrange, a classic off-policy safe RL
algorithm, for training in the simulator and direct deployment in the real
world. SAC Lagrange builds upon the classical maximum entropy RL al-
gorithm SAC [18] by additionally training a cost critic network 𝑄𝐶 and
a Lagrange multiplier 𝜆. It updates 𝜆 using the value estimates from 𝑄𝐶

and finally updates the policy using 𝑄𝑅 − 𝜆𝑄𝐶 , where 𝑄𝑅 is the reward
critic network. We choose SAC Lagrange as the main baseline algorithm be-
cause it serves as the backbone algorithm for our method, DASaR. In fact,
DASaR can be combined with various off-policy safe RL algorithms such
as CVPO [25]. However, for clarity and to highlight the unique advantages
of DASaR, we chose the relatively simple SAC Lagrange as the backbone
algorithm in this paper.
• SAC Lagrange(id) is trained in the simulator and obtains a policy the
same as SAC Lagrange(sim). The only difference lies in its deployment strat-
egy, which aligns with that of DASaR, using an inverse dynamics model as
the final action output. In simple terms, considering the simulator policy as
𝜋 and the inverse dynamics model as 𝑔𝐼 , with the current real state as 𝑠, the
process is as follows: first, set the simulator state to the real state 𝑠 and use
𝜋 to output an action 𝑎 to transition to simulator state 𝑠′. Then, use 𝑔𝐼 to
compute 𝑎′ = 𝑔𝐼 (𝑠, 𝑠′) as the actual action executed in the real world. The
choice of this baseline demonstrates that relying solely on the inverse dynam-
ics model during deployment is insufficient, leading to suboptimal utilization
of offline data.
• CPQ is a pure offline safe RL algorithm built upon the classic offline al-
gorithm CQL [22]. It incorporates the conservative regularization operator
from CQL onto the cost critic, treating out-of-distribution samples as un-
safe. Additionally, CPQ no longer utilizes the Lagrangian multiplier method
for policy updates. Instead, for unsafe (𝑠, 𝑎) pairs, it directly truncates the
reward critic to 0, preventing the execution of unsafe policies. This algorithm
has become one of the most common baselines in offline safe algorithms and
represents the state-of-the-art in RL-based offline safe algorithms.
• DARC is a classic baseline in sim-to-real RL domain adaptation methods. It
trains two binary classifiers, 𝑞𝑠𝑎𝑠 (𝑡𝑎𝑟𝑔𝑒𝑡 |𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) and 𝑞𝑠𝑎 (𝑡𝑎𝑟𝑔𝑒𝑡 |𝑠𝑡 , 𝑎𝑡), to
approximate 𝑝target (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) and 𝑝source (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡). Ultimately, it employs
Δ𝑟 = log 𝑝target (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) − log 𝑝source (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) as an additional reward to
train the policy. This additional reward guides the policy to explore parts of
the simulator with dynamics similar to the real world, thereby reducing the
dynamics gap when deploying the policy to the real world.
• H2O is the latest state-of-the-art algorithm in domain adaptation. Similar

to DARC, it also computes the probability ratio
𝑝target (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑡)
𝑝source (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑡) . However,

unlike DARC, this term is not utilized as an additional reward. H2O has a
higher utilization of offline data: it directly uses offline data as training data

for the policy. For simulator data, it employs
𝑝target (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑡)
𝑝source (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑡) as the basis for

data selection. For parts of the simulator with dynamics similar to the real

Dynamics Adaptive Safe RL with a Misspecified Simulator 29

world, it has a smaller weight for the conservative regularization operator.
In contrast, for regions with significant dynamics gaps, a larger weight is
assigned to the conservative regularization operator, ensuring lower reward
estimates for these samples to prevent a substantial performance gap in the

policy. Additionally,
𝑝target (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑡)
𝑝source (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑡) is used to weight the Bellman operator

during the update of simulator data, mitigating the Bellman error caused by
dynamics gap.

C Practical Implementation and Overall Algorithm

In this section, we describe the detailed practical designs and techniques used for
DASaR. We also provide the hyperparameters used in DASaR for consistency.

C.1 Practical Implementation

In practical implementation, we made certain adjustments to the algorithm for
stability and efficiency during training.

• Discriminator. We train the discriminator similarly to GAIL, with the only
difference being a change in input from (𝑠, 𝑎) to (𝑠, 𝑠′). To prevent overfitting
of the discriminator, we introduced Gaussian noise sampled from N(0, 0.1)
into the discriminator’s input. Additionally, to stabilize the training of the
discriminator and prevent overly concentrated outputs, we incorporated a
binomial entropy loss with a weight of −0.001. Additionally, for additional
reward Δ𝑟 = ln 1−𝐾 (𝑠,𝑠′)

𝐾 (𝑠,𝑠′) , we clip it to the range of [−20, 20] and add a
constant 20 to it to ensure it is positive.
• Conservative cost function learning. To address the issue of cost un-
derestimation caused by the approximation errors in the inverse dynamics
model function, we use Formula (61) as the update target:

B𝑒𝑄𝐶,𝑖 (𝑠, 𝑎) = max
𝑒𝐴∈𝐸𝐴

𝑆

(𝐶 (𝑠, 𝑔𝐸𝐼 (𝑠, 𝑠′), 𝑠𝑒
𝐴) + 𝛾E𝑎′∼𝜋 (· |𝑠𝑒) [𝑄𝐶,𝑖 (𝑠𝑒

𝐴

, 𝑎′)]). (61)

To approximate the max operator in continuous spaces, we sample 𝑛 = 20
candidates 𝑒𝐴 from 𝐸𝐴

𝑆
as the candidate set. However, applying this formula

for updates would require the simulator to perform 𝑛 dynamics computations
and the policy 𝜋 to conduct an additional 𝑛 inference operations. Compared
to the original single-step Bellman operator computation, this formula sig-
nificantly increases computational costs. Therefore, due to computational
resource constraints, we simplified this formula in our practical implementa-
tion:

B𝑒′𝑄𝐶,𝑖 (𝑠, 𝑎) = 𝑐(𝑠, 𝑔𝐸𝐼 (𝑠, 𝑠′), 𝑠′)+𝛾 max
𝑒𝐴∈𝐸′𝐴

𝑆

(E𝑎′∼𝜋 (· |𝑠′) [𝑄𝐶,𝑖 (𝑠′, 𝑎′+𝑒𝐴)]), (62)

where 𝐸 ′𝐴
𝑆

= [−𝛽𝐼 ·
√︃
Var𝑖∈{1,...,𝐸𝐼 } [𝑔𝑖𝐼 (𝑠′, 𝑠′′)], 𝛽𝐼 ·

√︃
Var𝑖∈{1,...,𝐸𝐼 } [𝑔𝑖𝐼 (𝑠′, 𝑠′′)]]

and 𝑠′′ = 𝑓𝑆 (𝑠′, 𝑎′). Formula (62) simplifies the robustness update from the

30 R. Xue et al.

entire temporal difference target to the target Q network, eliminating the
need for additional 𝑛 dynamics computations and requiring only one ad-
ditional computation to obtain 𝑠′′. While this simplification weakens the
conservatism and robustness of the cost critic, it significantly reduces com-
putational costs. Furthermore, considering that in continuous state spaces,
single-step state transitions do not introduce significant changes to the state,
there is not a substantial difference between 𝑠 and 𝑠′, as well as between 𝑠′

and 𝑠′′. Therefore, we can further simplify Formula (62) to obtain:

B𝑒′′𝑄𝐶,𝑖 (𝑠, 𝑎) = 𝑐(𝑠, 𝑔𝐸𝐼 (𝑠, 𝑠′), 𝑠′)+𝛾 max
𝑒𝐴∈𝐸𝐴

𝑆

(E𝑎′∼𝜋 (· |𝑠′) [𝑄𝐶,𝑖 (𝑠′, 𝑎′+𝑒𝐴)]). (63)

The simplification of Formula (63) completely eliminates the need for ad-
ditional dynamics computations in the simulator, reducing the additional
overhead to neural network calculations that can be processed in parallel.
However, if computational resources are abundant, and there are no concerns
about training speed, we still recommend using Formula (61) for updates to
achieve better policy performance. Additionally, to ensure a more stable
learning process of the cost critic, the operator B𝑒′′ is only used after 40
learning epochs, before which we use the traditional Bellman operator to
update the cost critic.

C.2 Overall Algorithm

In this section, we will provide an overview of the overall algorithmic process.
During training, we will first train the ensemble inverse dynamics model to

minimize the following supervised learning loss:

Lid = E(𝑠,𝑎,𝑠′)∼𝐷𝑇
[
𝐸𝐼∑︁
𝑖=1

| |𝑔𝑖𝐼 (𝑠, 𝑠′) − 𝑎 | |22] . (64)

Next, based on the learned ensemble inverse dynamics model, we perform value
relabeling to obtain:

𝑟 ′ = 𝑅′ (𝑠, 𝑎, 𝑠′) = 𝑅(𝑠, 𝑔𝐸
𝐼
(𝑠, 𝑠′), 𝑠′), (65)

𝑐′ = 𝐶′ (𝑠, 𝑎, 𝑠′) = 𝐶 (𝑠, 𝑔𝐸
𝐼
(𝑠, 𝑠′), 𝑠′), (66)

where 𝑔𝐸
𝐼

= E𝑖∈{1,...,𝐸𝐼 } [𝑔𝑖𝐼 (𝑠, 𝑠′)]. To constrain the policy within the offline
dataset where 𝑔𝐸

𝐼
possesses high accuracy, we utilize the following loss to learn

a binary discriminator 𝐾 (𝑠, 𝑠′):

Ldis = −E(𝑠,𝑠′)∼𝐷𝑆
[ln𝐾 (𝑠, 𝑠′)] − E(𝑠,𝑠′)∼𝐷𝑇

[ln(1 − 𝐾 (𝑠, 𝑠′))] . (67)

Based on this discriminator, we have:

Δ𝑟 = ln
1 − 𝐾 (𝑠, 𝑠′)
𝐾 (𝑠, 𝑠′) . (68)

Dynamics Adaptive Safe RL with a Misspecified Simulator 31

Algorithm 1 DASaR Training

Input: safe RL algorithm SAC Lagrange, simulator, real-world offline data 𝐷𝑇 , dis-
count factor 𝛾, safety constraint limit 𝑏, reward function 𝑅, cost function 𝐶, hy-
perparameters 𝛼, 𝛽𝐶 , 𝛽𝐼 .

Initialize: empty buffer 𝐷𝑆 , ensemble inverse dynamics model {𝑔𝑖
𝐼
}𝐸𝐼

𝑖=1, discriminator

𝐾, policy 𝜋𝜃 , reward critic 𝑄𝑅, ensemble cost critic {𝑄𝐶,𝑖}𝐸𝑐

𝑖=1, Lagrangian multiplier
𝜆.

1: for step in supervised training steps do
2: Sample a batch {(𝑠, 𝑎, 𝑠′)} from 𝐷𝑇 .
3: Compute Lid according to Eqn. 64.
4: Update {𝑔𝑖

𝐼
}𝐸𝐼

𝑖=1 to minimize Lid.
5: end for
6: for step in RL training steps do
7: for each environment step do
8: Observe current simulator state 𝑠.
9: Compute 𝑎 ∼ 𝜋𝜃 (·|𝑠).
10: Step action 𝑎 in the simulator and observe the next simulator state 𝑠′.
11: Update 𝐷𝑆 ← 𝐷𝑆

⋃{(𝑠, 𝑎, 𝑅(𝑠, 𝑎, 𝑠′), 𝐶 (𝑠, 𝑎, 𝑠′), 𝑠′)}.
12: end for
13: for each discriminator gradient step do
14: Sample a batch {(𝑠𝑆 , 𝑠′𝑆)} from 𝐷𝑆 .
15: Sample a batch {(𝑠𝑇 , 𝑠′𝑇)} from 𝐷𝑇 .
16: Compute Ldis according to Eqn. 67.
17: Update 𝐾 to minimize Ldis.
18: end for
19: for each policy gradient step do
20: Sample a batch {(𝑠, 𝑎, 𝑅(𝑠, 𝑎, 𝑠′), 𝐶 (𝑠, 𝑎, 𝑠′), 𝑠′)} from 𝐷𝑆 .
21: Compute relabeled reward and cost 𝑟′, 𝑐′ according to Eqn. 65.
22: Compute Δ𝑟 according to Eqn. 68.
23: Update 𝑄𝑅 with 𝑟′ + 𝛼Δ𝑟 by SAC Lagrange.
24: Compute Lqc according to Eqn. 69.

25: Update {𝑄𝐶,𝑖}𝐸𝑐

𝑖=1 to minimize Lqc.

26: Compute 𝑄𝐶,UCB according to Eqn. 70.
27: Update 𝜋𝜃 , 𝜆 with 𝑄𝑅 and 𝑄𝐶,UCB by SAC Lagrange.
28: end for
29: end for
30: Return 𝜋𝜃 , {𝑔𝑖𝐼 }

𝐸𝐼

𝑖=1.

Then, update the reward critic 𝑄𝑅 based on SAC using 𝑟 ′ +𝛼Δ𝑟, and update the
ensemble cost critic with the following loss:

Lqc = E(𝑠,𝑎,𝑠′)∼𝐷𝑆
[
𝐸𝐶∑︁
𝑖=1

(𝑄𝐶,𝑖 (𝑠, 𝑎) − B𝑒′′𝑄𝐶,𝑖 (𝑠, 𝑎))2] . (69)

Finally, we have the upper confidence bound of cost critic as:

𝑄𝐶,UCB (𝑠, 𝑎) = E𝑖∈{1,...,𝐸𝐶 } [𝑄𝐶,𝑖 (𝑠, 𝑎)] + 𝛽𝐶 ·
√︃
Var𝑖∈{1,...,𝐸𝐶 } [𝑄𝐶,𝑖 (𝑠, 𝑎)] . (70)

32 R. Xue et al.

Algorithm 2 DASaR Deployment

Input: simulator, real-world environment, simulator-based policy 𝜋𝜃 , ensemble inverse
dynamics model {𝑔𝑖

𝐼
}𝐸𝐼

𝑖=1.
1: for step=1 to 𝑇max do
2: Observe the current state of the real-world environment 𝑠.
3: Set the simulator’s current state to 𝑠.
4: Compute 𝑎 ∼ 𝜋𝜃 (·|𝑠).
5: Step action 𝑎 in the simulator and observe the next simulator state 𝑠′.
6: Compute 𝑎′ = E𝑖∈{1,...,𝐸𝐼 } [𝑔𝑖𝐼 (𝑠, 𝑠

′)].
7: Step action 𝑎′ in the real-world environment.
8: end for

During deployment, the simulator, the real-world environment, the simulator-
based policy 𝜋 and the inverse dynamics model will work together. When the
current state of the real-world environment is 𝑠, DASaR will first set the simu-
lator state to 𝑠 and 𝜋 will put out an action 𝑎 to let the state in the simulator
transition to 𝑠′. Then, a real action 𝑎′ = 𝑔𝐸

𝐼
(𝑠, 𝑠′) will be computed to take place

in the real-world environment.
Detailed training and deployment pseudo codes are provided in Algorithm 1

and Algorithm 2, respectively.

D Experimental Details

D.1 Offline Data Collection

The offline datasets for each environment are obtained by sampling from five
behavioral policies within the environment learned by CPO [1]. One behavioral
policy is trained using CPO with the safety constraint limit 𝑏 = 5. Two other
behavioral policies are trained with 𝑏 = 25, and the remaining two are trained
with 𝑏 = 50. Let the maximum training step for the policy with 𝑏 = 5 be denoted
as 𝑇max. Then, one of the policies trained with 𝑏 = 25 has a training step limit
of 𝑇max

3 , while the other has a limit of 𝑇max. The policies trained with 𝑏 = 50
follow the same pattern. To be specific, the maximum training step of Ant is
𝑇max = 3𝑒7 while that of the other environments is 𝑇max = 1.8𝑒7.

The detailed distribution of trajectory rewards and costs for each environ-
ment’s offline dataset is illustrated in Figure 5.

D.2 The Hyperparameter Choice of DASaR

The training progress of DASaR involves supervised learning and reinforcement
learning, these two parts all depend on the choices of hyperparameters to ensure
the stability and effectiveness of training. Therefore, we provide the hyperpa-
rameters used in the experiment of DASaR in Table 2 to guarantee the repro-
ducibility of the performance. We implement DASaR based on SAC within the

Dynamics Adaptive Safe RL with a Misspecified Simulator 33

0 20 40 60 80 100 120 140 160
cost

200

400

600

800

1000

1200

re
w

ar
d

(a) Ant

0 20 40 60 80 100
cost

460

480

500

520

540

560

580

600

re
w

ar
d

(b) HalfCheetah

0 20 40 60 80
cost

560

580

600

620

640

660

680

700

re
w

ar
d

(c) Hopper

0 20 40 60 80 100 120
cost

200

300

400

500

600

700

800

900

re
w

ar
d

(d) Walker

Fig. 5. Visualization of the reward and cost distribution of the trajectories for different
environments. The points to the left of the red lines represent trajectories that adhere
to the safety constraint limit.

RLKit 1 framework. Default parameters in the framework are used for those hy-
perparameters not mentioned in the following table. In these hyperparameters,
reward scaling means we give the total reward 𝑟 ′ +𝛼Δ𝑟 a weight 𝜔 when learning
the reward critic. Lagrange multiplier update warm up epoch means we keep the
Lagrange multiplier unchanged for some epochs until the estimation of critics
does not have a large error. Other hyperparameters not mentioned in the table
are the same as the default hyperparameters for SAC.

E Additional Experimental Results

E.1 Case Study: When The Trust Region Conflicts With Safe Data

To better illustrate the conflict between the trust region based on state-action
transition and safe data mentioned in the main text, and to confirm the existence
of environments where the trust region based on state transition is larger than
the trust region based on state-action transition, we designed an easily under-
standable toy environment. The environment is roughly depicted in Fig. 6(a),
where the agent starts from the left starting point and aims to reach the goal

1 https://github.com/rail-berkeley/rlkit

34 R. Xue et al.

Table 2. Hyperparameter choices of DASaR. Values wrapped in {} means it differs in
{Ant,HalfCheetah,Hopper,Walker}.

Hyperparameter Value

Inverse Dynamics Model

network hidden layers [256, 256]
ensemble number 𝐸𝐼 7

batch size 512
maximum learning epochs 2000
early stop validation ration 0.1

learning rate 0.0001

Discriminator

network hidden layers [256, 256]
source batch size 512
target batch size 512

update step per RL step 1
learning rate 0.0001

Policy Learning

safety constraint limit 𝑏 5
𝛼 0.5
𝛽𝐶 {2.0, 2.0, 6.0, 6.0}
𝛽𝐼 1.0

reward scaling 0.5
cost critic ensemble number 𝐸𝐶 4

error 𝑒𝐴 sampling number 𝑛 20
network hidden layers [256, 256]

batch size 512
training epochs 400
steps per epoch 5000

Lagrange multiplier update warm up epoch 40
policy learning rate 0.0001
critic learning rate 0.0003

Lagrange multiplier learning rate 0.00001
𝛾 0.99

point on the right. However, there is a trapezoidal shadow area in the middle
of the environment where moving is unsafe and incurs a cost of 1. The agent’s
state has two dimensions representing the current x and y coordinates, and the
action also has two dimensions representing the distance moved in the x and y
directions, with each dimension ranging from [−1, 1]. However, there are discrep-
ancies in the construction of the environment’s simulator, where the dynamics
transition is correct in the first dimension (x-axis) of the state but not in the
second dimension, causing a doubling of the magnitude of state transitions. That
is, suppose the current state is (𝑥1, 𝑦1), and the action taken is (Δ𝑥,Δ𝑦), then in
the simulator, the state at the next time step would be (𝑥1 + Δ𝑥, 𝑦1 + 2Δ𝑦).

In this environment, the trust region based on state-action transition only
includes state-action transitions in the real-world environment where there is
no change in the y direction. However, to traverse the shadow area in the mid-

Dynamics Adaptive Safe RL with a Misspecified Simulator 35

start

goal

starting_point
goal_point

(a) Env (b) DASaR Visitation

(c) DARC Visitation Pattern 1 (d) DARC Visitation Pattern 2

Fig. 6. Visualization of a toy environment and how DASaR and DARC Lagrange per-
form in it. (We breviate DARC Lagrange as DARC.)

dle, which is necessary for a safe trajectory, changes in the y direction are in-
evitable. Consequently, the trust region defined by state-action transition con-
flicts with the safe data. Moreover, for any transition in the real environment
((𝑥1, 𝑦1), (Δ𝑥1,Δ𝑦1), (𝑥1 + Δ𝑥1, 𝑦1 + Δ𝑦1)),Δ𝑥1,Δ𝑦1 ∈ [−1, 1], there always ex-
ists an action (Δ𝑥1, Δ𝑦12) in the simulator that validates the state transition
((𝑥1, 𝑦1), (𝑥1 + Δ𝑥1, 𝑦1 + Δ𝑦1)), thus the trust region based on state transition
can cover the entire real environment, which is much larger than the trust re-
gion based on state-action transition.

To show DASaR’s better adaptation ability, we compare it with the typical
domain adaptation algorithm DARC Lagrange. Fig. 6(b) shows the state vis-
itation of DASaR in both the simulator and the real-world environment. It is
clear that DASaR can achieve nearly the same state visitation in the simula-
tor and the real-world environment and maintain safety simultaneously. How-
ever, DARC Lagrange exhibits two distinct behavioral patterns, as illustrated
in Fig.6(c) and6(d). In the first pattern, it disregards the constraint of the trust
region and instead attempts to satisfy the safety constraint. However, in this
scenario, although DARC shows small safety violations in the simulator, it in-
curs more safety violations when deployed in the real-world environment due

36 R. Xue et al.

to the presence of the dynamics gap. The second pattern emerges as the policy
progresses, attempting to comply with the trust region constraint by approach-
ing the target point directly with more horizontal trajectories. However, due to
the conflict between safe data and the trust region, it already exhibits numer-
ous safety violations in the simulator, resulting in continued safety violations
in the real-world environment. These results vividly illustrate the limitations of
traditional domain adaptation methods, highlighting the rationality of DASaR’s
design under Assumption 1.

E.2 Detailed Results of Ablation Studies and Data Sensitivity
Study

In the main paper’s ablation studies and data sensitivity study, we only present
the average results of each baseline without standard deviation information.
Therefore, in this section, we present the detailed results of both the ablation
studies and the data sensitivity study in Tab. 3 and 4.

Table 3. Detailed results of the ablation studies. The highest performance in each row
is emphasized in blue.

Environment
Ant Cheetah

Overall
g f g f

DASaR
reward↑ 72.8 ± 14.2 78.8 ± 8.8 63.2 ± 8.4 86.2 ± 8.5 75.3
cost↓ 1.3 ± 1.2 1.1 ± 1.4 1.7 ± 1.6 1.2 ± 1.1 1.3

wo va
reward↑ 67.8 ± 17.2 74.0 ± 10.7 63.1 ± 9.9 87.2 ± 8.9 73.0
cost↓ 1.3 ± 1.1 2.1 ± 2.6 2.3 ± 2.6 2.0 ± 3.4 1.9

wo tb
reward↑ 34.8 ± 12.5 42.5 ± 14.1 −46.5 ± 144.5 −74.7 ± 218.2 −11.0
cost↓ 0.2 ± 0.2 0.2 ± 0.6 10.8 ± 12.0 13.6 ± 16.8 6.2

wo ucb c
reward↑ 73.8 ± 17.8 80.4 ± 8.2 57.0 ± 49.6 88.3 ± 6.1 74.9
cost↓ 1.5 ± 1.3 1.2 ± 1.1 4.6 ± 6.7 1.0 ± 1.0 2.1

wo ucb i
reward↑ 72.0 ± 18.4 84.8 ± 6.5 66.4 ± 8.0 84.8 ± 10.3 77.0
cost↓ 3.1 ± 2.3 2.3 ± 3.4 2.8 ± 2.4 1.7 ± 1.5 2.5

Table 4. Detailed results of the data sensitivity study in Ant gravity.

Environment Ant gravity

100%
reward↑ 72.8 ± 14.2
cost↓ 1.3 ± 1.2

50%
reward↑ 77.9 ± 17.1
cost↓ 1.5 ± 1.5

20%
reward↑ 63.7 ± 30.0
cost↓ 0.8 ± 0.5

10%
reward↑ 26.0 ± 24.2
cost↓ 0.8 ± 1.3

Dynamics Adaptive Safe RL with a Misspecified Simulator 37

E.3 Relationship Between Reward and Inverse Dynamics Model
Uncertainty

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00step 1e6

0

20

40

60

80

rew
ard

0.050

0.075

0.100

0.125

0.150

0.175

0.200

unc
ert

ain
ty

reward
uncertainty

(a) Ant gravity

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00step 1e6

0

20

40

60

80

rew
ard

0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

unc
ert

ain
ty

reward
uncertainty

(b) Ant friction

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00step 1e6

0

20

40

60

80

100

rew
ard

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

unc
ert

ain
ty

reward
uncertainty

(c) Ant density

Fig. 7. Visualization of the curves depicting the changes in the real reward and uncer-
tainty during the training process.

The performance of DASaR’s policy in the real world is closely related to
the accuracy of the inverse dynamics model. For an ensemble inverse dynamics
model, its accuracy can be reflected using the uncertainty of the model ensemble.
Therefore, we visualize the changes in the reward of the policy in three simulators
of the Ant environment and the uncertainty of the inverse dynamics model, as
shown in Fig. 7.

Two conclusions can be drawn from this. First, the introduction of additional
reward based on the discriminator does indeed constrain the policy within re-
gions where the inverse dynamics model has higher accuracy, thus providing some
evidence for the correctness of Proposition 2. Second, there exists a negative cor-
relation between the reward in the real world and uncertainty. As uncertainty
gradually decreases, the reward in the real world also tends to increase. Con-
versely, when uncertainty exhibits certain fluctuations, the reward in the real
world also fluctuates accordingly, which is particularly evident in Ant gravity.

