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ABSTRACT
In open multi-agent environments, the agents may encounter un-

expected teammates. Classical multi-agent learning approaches

train agents that can only coordinate with seen teammates. Recent

studies attempted to generate diverse teammates in order to en-

hance the generalizable coordination ability, but were restricted

by pre-defined teammates. In this work, our aim is to train agents

with strong coordination ability by generating teammates that fully

cover the teammate policy space, so that agents can coordinate with

any teammates. Since the teammate policy space is too huge to be

enumerated, we find only dissimilar teammates that are incompati-
ble with controllable agents, which highly reduces the number of

teammates that needed to be trained with. However, it is hard to

determine the number of such incompatible teammates beforehand.
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We therefore introduce a continual multi-agent learning process, in

which the agent learns to coordinate with different teammates until

no more incompatible teammates can be found. The above idea

is implemented in the proposed Macop (Multi-agent compatible

policy learning) algorithm. We conduct experiments in 8 scenar-

ios from 4 environments that have distinct coordination patterns.

Experiments show that Macop generates training teammates with

much lower compatibility than previous methods. As a result, in

all scenarios Macop achieves the best overall coordination ability

while never significantly worse than the baselines, showing strong

generalization ability.
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1 INTRODUCTION
Cooperative Multi-Agent Reinforcement Learning (MARL) [15] has

garnered significant attention due to its demonstrated potential

in various real-world applications. Recent studies have showcased

MARL’s exceptional performance in tasks such as pathfinding[21],

active voltage control [27], and dynamic algorithm configuration [32].

However, these achievements are typically made within closed en-

vironments where teammates are pre-defined. The system will

suffer from coordination ability decline when deploying the trained

policies in real-world scenarios, where agents may encounter un-

expected teammates in such open environments [34, 36].

Training with diverse teammates presents a promising avenue

for tackling the aforementioned challenge. Various methods have

emerged in domains such as ad-hoc teamwork [13], zero-shot co-

ordination [26], and few-shot teamwork [4]. Addressing this chal-

lenge involves two crucial factors. Firstly, to enhance generaliza-

tion and avoid overfitting to specific partners, it is essential for

agents to be exposed to diverse teammates during the training pro-

cess. Diversity can be achieved through various techniques, such

as hand-crafted policies [16], object regularizers designed among

agents [1, 2, 11], or population-based training [23, 31]. Secondly,

when dealing with multiple teammates, especially in the context

of multi-modal scenarios, specialized consideration is necessary.

Approaches like self-play [22, 25], Fictitious Co-Play [6, 23], or co-

evolving agent and partner populations [31], have been explored

(related work in App.A.1). Nevertheless, complex scenarios often

present substantial challenges arising from both complexity and

vastness of the teammate policy space. On one hand, enumerat-

ing all possible teammate groups is a daunting task, and training

the agents can be time-consuming. On the other hand, even when

we pre-define only representative and diverse teammates, some

instances may still be accidentally omitted. The exact number of

such teammates cannot be determined in advance. This prompts a

crucial question: Can we design a more efficient training paradigm

that ensures our controllable agents are trained alongside partners

in a policy space that guarantees coverage, ultimately enabling high

generalization and coordination ability with diverse teammates?

Inspired by the idea of rehearsal learning [37], we tackle the men-

tioned issue and propose a novel coordination paradigm known as

Macop, with which we can obtain a multi-agent compatible policy

via incompatible teammates evolution. The core principle of Macop

is the adversarial generation of new teammate instances, which

are strategically crafted to challenge and refine the ego-system’s

(the agents we control) coordination policy. However, the exact

number of representative teammates can not be determined before-

hand, and maintaining a sufficiently diverse population requires

significant computing and storage resources. We therefore intro-

duce Continual Teammate Dec-POMDP (CT-Dec-POMDP), wherein

the ego-system is trained with groups of teammates generated se-

quentially until convergence is reached. Our approach is rooted in

two crucial factors: instance diversity and incompatibility between

the newly generated teammates and the ego-system. During the

training process, we iteratively refine teammate generation and op-

timize the ego-system until convergence is reached. This approach

empowers the ego-system, leading to a coordination policy capa-

ble of seamlessly handling a wide array of team compositions and

promptly adapting to new teammates.

We conduct experiments on different MARL benchmarks that

have distinct coordination patterns, including Level-based Foraging

(LBF) [17], Predator-Prey (PP), Cooperative Navigation (CN) from

MPE [10], and StarCraft Multi-agent Challenge (SMAC) [20]. Exper-

imental results show that Macop exhibits remarkable improvement

compared with existing methods, achieving nearly 20% average

performance improvement in the conducted benchmarks, and more

experiments reveal it from multiple aspects.

2 PROBLEM FORMULATION
As we aim to solve a continual coordination problem, where the

controllable agents cooperate with diverse teammates arising se-

quentially, we formalize it as a Continual Teammate Dec-POMDP

(CT-Dec-POMDP) by extending the Dec-POMDP [14]. It can be

described as a tuple M = ⟨N ,S,A, 𝑃, {𝝅𝑘
tm
}∞
𝑘=1

,𝑚, Ω,𝑂, 𝑅,𝛾⟩,
N = {1, . . . , 𝑛}, S, A = A1 × ... ×A𝑛

and Ω are the sets of agents,

global state, joint action, observation. 𝑃 is the transition function,

{𝝅𝑘
tm
}∞
𝑘=1

represents the 𝑘 groups of teammates encountered by

the𝑚 controllable agents sequentially during the training phase,

and 𝛾 ∈ [0, 1) is the discounted factor. At each time step, agent 𝑖

receives the observation 𝑜𝑖 = 𝑂 (𝑠, 𝑖) and outputs action 𝑎𝑖 ∈ A𝑖
.

Concretely, when training to cooperate with a group of team-

mates 𝜋𝑘
tm
, the agents do not have access to previous teammates

groups 𝜋𝑘
′

tm
, 𝑘′ = 1, ..., 𝑘 − 1. However, they are expected to remem-

ber how to cooperate with all previously encountered teammates

groups. For simplicity, we denote a group of teammates as "team-

mate" when no ambiguity arises. The training phase of cooperating

with teammate𝜋𝑘
tm

can be described asM𝑘 = ⟨N ,S,A, 𝑃, 𝝅𝑘
tm
,𝑚,Ω,

𝑂, 𝑅,𝛾⟩. The controllable agents 𝝅ego = {𝜋1

ego
, ..., 𝜋𝑚

ego
} ∈ Πego =

⊗𝑚
𝑖=1

Π𝑖 and the teammate𝝅𝑘
tm

= {𝜋𝑘,𝑚+1

tm
, ..., 𝜋

𝑘,𝑛
tm

} ∈ Πtm = ⊗𝑛
𝑖=𝑚+1

Π𝑖
formulate a new joint policy ⟨𝝅ego, 𝝅𝑘

tm
⟩. The joint action ⟨𝒂ego, 𝒂𝑘

tm
⟩ =

⟨𝝅ego (𝝉ego), 𝝅𝑘
tm

(𝝉𝑘
tm
)⟩ leads to the next state 𝑠′ ∼ 𝑃 (·|𝑠, ⟨𝒂ego, 𝒂𝑘

tm
⟩)

and the global reward𝑅(𝑠, ⟨𝒂ego, 𝒂𝑘
tm
⟩), where𝝉ego = {𝜏𝑖 }𝑚

𝑖=1
,𝝉𝑘

tm
=

{𝜏𝑖 }𝑛
𝑖=𝑚+1

. The controllable agents are optimized to maximize the

expected return when cooperating with teammate 𝝅𝑘
tm
:

max

𝝅 ego

J (⟨𝝅ego, 𝝅
𝑘
tm
⟩) = E𝝉∼𝜌 (⟨𝝅 ego,𝝅𝑘

tm
⟩) [𝐺 (𝝉 )],

(1)

where 𝐺 (𝝉 ) =
∑𝑇
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝒂𝑡 ) is the return of a joint trajectory.

At the same time, for a formal characterization of the relationship

between the policy space of 𝝅ego and 𝝅 tm, we introduce the concept

of complementary policy class:

Definition 2.1 (complementary policy class). For any sub policy

𝝅 ∈ Π𝑖:𝑗 = ⊗ 𝑗
ℎ=𝑖

Πℎ, 𝑖 ≤ 𝑗 , we define its complementary policy class

as Π𝑐𝝅 = ⊗𝑖−1

ℎ=1
Πℎ×⊗𝑛ℎ=𝑗+1

Πℎ . We denote the complementary policy

class of controllable agents and the teammate as Π𝑐
ego

and Π𝑐
tm

for

simplicity.We also referJsp (𝝅ego) = max�̄� tm∈Π𝑐
ego

J (⟨𝝅ego, �̄� tm⟩)
and Jsp (𝝅 tm) = max�̄� ego∈Π𝑐

tm

J (⟨�̄�ego, 𝝅 tm⟩) as “self-play return”

of 𝝅ego and 𝝅 tm, respectively.
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Figure 1: The overall workflow of Macop.

3 METHOD
In this section, we present the detailed design of our proposed

method Macop (c.f. Fig. 1). First, we introduce a novel continual

teammate generation module by combining population-based train-

ing and incompatible policy learning (Fig. 1(a)). Next, we outline

the design of our continual coordination policy learning paradigm

(Fig. 1(b)). These two phases proceed alternatively to train a ro-

bust multi-agent coordination policy that is capable of effectively

cooperating with diverse teammates (Fig. 1(c)).

3.1 Incompatible Teammate Generation
The primary objective of Macop is to develop a joint policy that

can effectively cooperate with diverse teammates. Since the policy

space of teammate groups is too huge to be enumerated, we focus on

identifying dissimilar teammate groups. To achieve this, we begin by

establishing a complementary-policy-agnostic measure capable of

effectively quantifying the similarity between two teammate groups,

ensuring that it remains unaffected by complementary policies.

In particular, we pair two teammate groups with any arbitrary

complementary policy, as defined in Definition 2.1. These groups

are considered similar if the probability of the trajectory produced

by both groups surpasses a predefined threshold.

Definition 3.1 (𝜖-similar policies). We measure the similarity be-

tween two different teammates 𝝅𝑖
tm
, 𝝅 𝑗

tm
with the probability of

the trajectory induced by them when paired with any comple-

mentary policies. Specifically, for any fixed complementary pol-

icy �̄� ∈ Π𝑐
tm
, the probability of the trajectory produced by the

joint policy 𝑃 (𝝉 |⟨�̄� , 𝝅 tm⟩) =
∏𝑇−1

𝑡=0
�̄� (�̄�𝑡 |𝝉𝑡 )𝝅 tm (𝒂𝑡𝑚,𝑡 |𝝉𝑡𝑚,𝑡 )𝑃 (

𝑠𝑡+1 |𝑠𝑡 , ⟨�̄�𝑡 , 𝒂𝑡𝑚,𝑡 ⟩). Accordingly, we define the dissimilarity be-

tween the two teammates 𝑑 (𝝅𝑖
tm
, 𝝅 𝑗

tm
) = max𝝉 |1− 𝑃 (𝝉 | ⟨�̄� ,𝝅𝑖

tm
⟩)

𝑃 (𝝉 | ⟨�̄� ,𝝅 𝑗
tm
⟩)
| =

max𝝉 |1 − ∏𝑇−1

𝑡=0

𝝅𝑖
tm
(𝒂𝑡𝑚,𝑡 |𝝉𝑡𝑚,𝑡 )

𝝅 𝑗
tm
(𝒂𝑡𝑚,𝑡 |𝝉𝑡𝑚,𝑡 )

|. Teammates 𝝅𝑖
tm

and 𝝅 𝑗
tm

are

𝜖−similar policies if and only if 𝑑 (𝝅𝑖
tm
, 𝝅 𝑗

tm
) ≤ 𝜖, 0 ≤ 𝜖 ≤ 1, which

implies that 1 − 𝜖 ≤ 𝑃 (𝝉 | ⟨�̄� ,𝝅𝑖
tm
⟩)

𝑃 (𝝉 | ⟨�̄� ,𝝅 𝑗
tm
⟩)

≤ 1 + 𝜖,∀𝝉 .

Based on the Def. 3.1 above, our approach involves the iden-

tification of representative teammate groups, ensuring that the

dissimilarity between them surpasses the specified threshold 𝜖 . We

continually generate such dissimilar teammate groups in order to

gradually cover the space of teammate policies. Drawing inspiration

from the proven efficacy of population-based training (PBT) [7] and

evolutionary algorithms (EA) [38], we adopt an evolutionary pro-

cess to formulate the teammate generation process by maintaining

a population of teammates Ptm = {𝝅 𝑗
tm
}𝑛𝑝
𝑗=1

under the changing

controllable agents 𝝅ego. By ensuring that the teammate groups

exhibits dissimilarity between instances in not only the current

population but also previous ones, our aim is to systematically

explore and cover the entire teammate policy space over time.

Specifically, in each generation, the current population is first ini-

tialized through a customized parent selection mechanism (details

provided later). We focus on promoting diversity within the team-

mate population, striving to enhance the dissimilarity between each

individual, i.e., max

∑
𝑖≠𝑗 𝑑 (𝝅𝑖tm, 𝝅

𝑗
tm
). To achieve the goal men-

tioned, we take Jensen-Shannon divergence (JSD) [5] as a reliable

proxy to effectively measure the dissimilarity between teammates’

policies as is introduced in [35]:

L
div

= E𝑠 [
1

𝑛𝑝

𝑛𝑝∑︁
𝑖=1

𝐷𝐾𝐿 (𝝅𝑖tm (·|𝑠) | |�̄� tm (·|𝑠))], (2)

where �̄� tm (·|𝑠) = 1

𝑛𝑝

∑𝑛𝑝
𝑖=1

𝝅𝑖
tm

(·|𝑠) is the average policy of the pop-
ulation, and 𝐷𝐾𝐿 is the Kullback-Leibler (KL) divergence between

two distributions. We prove the JSD proxy is a certifiable lower

bound of the original dissimilarity objective in App.A.2.

Despite the effectiveness of the population-based training with

the L
div

in Eqn. 2, the continual generation would still result in

teammate groups with similar behaviors in different generations

without other guarantees. Meanwhile, the size of the population 𝑛𝑝
might also have a significant impact. Inspired by the relationship

between similarity and compatibility proved in [1], we extend the

theorem to our CT-Dec-POMDP:

Definition 3.2 (𝜖-compatible teammates). For the controllable

agents 𝝅ego, let Jsp (𝝅ego) = 𝛼 . We refer 𝝅 tm as an 𝜖-compatible

teammate 𝝅ego if and only if J (⟨𝝅ego, 𝝅 tm⟩) ≥ (1 − 𝜖)𝛼 .

Theorem 3.3. Given the controllable agents 𝝅 ego and teammate
policies 𝝅 tm and∀𝝅 ′

tm, 𝝅 tm, 𝝅 ′
tm are 𝜖−similar policies. Then we have

(1− 𝜖)J (⟨𝝅 ego, 𝝅 tm) ≤ J (⟨𝝅 ego, 𝝅 ′
tm⟩) ≤ (1 + 𝜖)J (⟨𝝅 ego, 𝝅 tm⟩).

The underlying idea behind Thm. 3.3 is that controllable agents,

when effectively collaborating with a specific teammate group, will

also be compatible with the teammate group’s 𝜖-similar policies.

Proofs are given in App.A.2. We thus have the following corollary:

Corollary 3.4. Given the controllable agents 𝝅 ego and teammates
𝝅 tm. If J (⟨𝝅 ego, 𝝅 ′

tm⟩) < (1−𝜖)J (⟨𝝅 ego, 𝝅 tm), then 𝝅 tm and 𝝅 ′
tm

are not 𝜖-similar policies, i.e., 𝑑 (𝝅 tm, 𝝅 ′
tm) > 𝜖 .

The result from Cor. 3.4 shows that we can ensure that team-

mate groups generated in the current population are different from

those before by decreasing its compatibility with the controllable

agents 𝝅ego, which are trained to effectively collaborate with the

teammates generated so far. Assuming that the controllable agents
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are fixed during the teammate population evolving stage, the opti-

mization objective can be written as:

Lincom = − 1

𝑛𝑝

𝑛𝑝∑︁
𝑖=1

J (⟨𝝅ego, 𝝅
𝑖
tm
⟩). (3)

To ensure the meaningful learning of teammate groups’ policies,

it is crucial for each individual in the population to be capable of

cooperating with complementary policies. Thus, the optimization

of teammate focuses on maximizing the following objective:

Lsp =
1

𝑛𝑝

𝑛𝑝∑︁
𝑖=1

Jsp (𝝅𝑖tm), 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, .., 𝑛𝑝 . (4)

Considering the specified objectives, the complete objective func-

tion for the teammate population is as follows:

Ltm = Lsp + 𝛼
div

L
div

+ 𝛼incomLincom, (5)

where, 𝛼
div

and 𝛼incom are adjustable hyper-parameters that control

the balance between the three objectives.

3.2 Compatible Coordination Policy Learning
After generating a new teammate population that is diverse and

incompatible with the controllable agents, we aim to train the

controllable agents to effectively cooperate with newly generated

teammate groups, as well as maintain the coordination ability with

the trained ones. It requires the controllable agents to possess the

continual learning ability, as introduced in Sec. 2, where teammate

policies appear sequentially in CT-Dec-POMDP.

In the context of evolutionary-generated teammate groups ap-

pearing sequentially, employing a single generalized policy network

poses challenges due to the existence of multi-modality and vary-

ing behaviors among teammate groups. Consequently, conflicts

and degeneration in the controllable agents’ policies may arise.

To address this issue, recent approaches like MACPro [33] have

adopted a solution where customized heads are learned for each

specific task. Building upon this idea, our approach involves de-

signing a policy network with a shared backbone denoted as 𝑓𝜙 ,

complemented by multiple output heads represented as {ℎ𝜓𝑖 }𝑚𝑖=1
.

The shared backbone is responsible for extracting relevant features,

while each output head handles making the final decisions.

With the structured policy network, when paired with the new

teammate group’s policy 𝝅𝑘+1

tm
, we first instantiate a new output

head ℎ𝜓𝑚+1
. Subsequently, our focus shifts to training the control-

lable agents to effectively cooperate with the new teammate group.

Lcom = J (⟨𝝅ego, 𝝅
𝑘+1

tm
⟩). (6)

It is worth noting that once trained, the output heads {ℎ𝜓𝑖 }𝑚𝑖=1

remain fixed, and during the training process, the gradient Lcom

only propagates through the parameters 𝜙 and𝜓𝑚+1.

Training the best response via Lcom enables us to derive a policy

that is capable of cooperating with the new teammate group 𝝅𝑘+1

tm
.

However, the use of one shared backbone poses a challenge as

it inevitably leads to forgetting previously learned cooperation.

To mitigate this problem, we apply a regularization objective by

constraining the parameters from changing abruptly while learning

the new output head ℎ𝜓𝑚+1
:

Lreg = − 1

𝑚

𝑚∑︁
𝑖=1

| |𝜙 − 𝜙𝑖 | |𝑝 , (7)

where𝜙𝑖 is the saved snapshot of the backbone𝜙 after obtaining the

𝑖th output head, and | | · | |𝑝 is 𝑙𝑝 norm. This regularizationmechanism

helps to retain previously learned knowledge and ensures that the

shared backbone adapts to the new teammate. Striking a balance

between adaptability and retaining relevant knowledge, we can

effectively enhance the cooperative performance of the policy with

diverse teammates. The overall objective of the controllable agents

when encountering the (𝑘 + 1)th teammate group is defined as:

Lego = Lcom + 𝛼regLreg, (8)

where 𝛼reg is a tunable weight.

Despite the effectiveness of combining the proposed Lego and

the carefully designed policy network architecture, a major lim-

itation lies in its poor scalability as the number of output heads

increases linearly with the dynamically generated teammate groups.

To achieve better scalability, we propose a resilient head expan-

sion strategy that effectively reduces the number of output heads

while maintaining the policy’s compatibility. Upon completing the

training of the output headℎ𝜓𝑚+1
, we proceed to evaluate the coordi-

nation performance of this head and all the existing ones {ℎ𝜓𝑖 }𝑚+1

𝑖=1

when paired with the new teammate group’s policy 𝝅𝑘+1

tm
. The co-

ordination performance is measured using the empirical average

return {𝑅𝑖 }𝑚+1

𝑖=1
, where 𝑅𝑖 =

1

𝑁

∑𝑁
𝑗=1

𝐺 (𝜏𝑖
𝑗
) represents the average

return obtained by executing trajectories 𝜏𝑖
𝑗
generated by apply-

ing the 𝑖th output head. To manage the number of output heads

and prevent uncontrolled growth, we choose to retain the newly

trained head if its performance surpasses a certain threshold com-

pared to the best-performing existing head. Formally, we keep the

newly trained head if

�̂�𝑚+1−max𝑖 {�̂�𝑖 }𝑚𝑖=1

max𝑖 {�̂�𝑖 }𝑚𝑖=1

≥ 𝜆. This approach ensures

that we only expand the number of output heads when there is a

substantial improvement in performance, indicating that the new

teammate group’s behavior requires a distinct policy. Otherwise, if

the existing output heads are sufficiently generalized to cooperate

effectively with the new teammate, no new head will be expanded.

By adopting this resilient head expand strategy, we strike a

balance between reducing the number of output heads and main-

taining the policy’s adaptability, resulting in a more scalable and

efficient approach to handling dynamic teammate groups under the

continual coordination setting.

3.3 Overall Algorithm
In this section, we present a comprehensive overview of the Macop

(Multi-agent Compatible Policy Learning) procedure. Macop aims

to train controllable agents to effectively cooperate with various

teammate groups. During the training phase, Macop employs an

evolutionary method to generate diverse and incompatible team-

mate groups and trains the controllable agents to be compatible with

the teammates under the continual setting. In each iteration (gener-

ation) 𝑘 (𝑘 > 1), we first select the (𝑘 − 1)th teammate population
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P𝑘−1

tm
as the parent population. Then, the offspring population is de-

rived by training the parent population with Ltm in Eqn. 5, i.e., mu-

tation. The teammate groups are constructed based on value-based

methods [18, 24], and 𝝅 tm (·|𝑠) is replaced with 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝑖
tm

(·|𝑠))
in L

div
for practical use. With 𝑛𝑝 teammate groups of the par-

ent population and 𝑛𝑝 teammate groups of the offspring popula-

tion, we apply a carefully designed selection scheme as follows.

To expedite the training of meaningful teammate groups, we first

eliminate ⌊𝑛𝑝
2
⌋ teammate groups with the lowest self-play return,

i.e., max�̄�𝑖
ego

∈Π𝑐
tm

J (⟨�̄�𝑖
ego

, 𝝅𝑖
tm
⟩). Next, we proceed to eliminate

⌈𝑛𝑝
2
⌉ teammate groups with the highest cross-play return under

the controllable agents, i.e., J (⟨𝝅ego, 𝝅𝑖
tm
⟩), so as to improve in-

compatibility. Finally, we utilize the remaining 𝑛𝑝 teammate groups

as the new teammate population of iteration 𝑘 , i.e., P𝑘
tm
.

With the teammate population P𝑘
tm

in place, we construct 𝑛𝑝
continual coordination processes in a sequential order and train

controllable agents to learn compatible policies. The controllable

agents are optimized using Lego (defined in Eqn. 8), and the output

head is expanded as introduced in Sec. 3.2.

To determine when the continual process should be terminated,

a carefully designed stopping criterion is employed. The training

phase terminates at the 𝑘th iteration if the minimum cross-play

return of P𝑘+1

tm
and the controllable agents in iteration 𝑘 exceeds a

certain value, i.e., 𝐶 =
min𝑖 J(⟨𝝅 ego,𝝅𝑖

tm
⟩)

1

𝑛𝑝

∑𝑛𝑝

𝑖=1
Jsp (𝝅𝑖

tm
)

≥ 𝜉, 𝝅𝑖
tm

∈ P𝑘+1

tm
. It indi-

cates that the controllable agents at the 𝑘th iteration can effectively

cooperate with the (𝑘 + 1)th teammate population even they have

been trained to decrease the compatibility, and the teammate policy

space is covered for a given environment.

During the testing phase, a meta-testing paradigm is employed to

determine which output head is selected to pair with an unknown

teammate group. Initially, all output heads are allowed to interact

with the teammate group to collect a few trajectories, and their

cooperation abilities are evaluated based on empirical returns. The

output head with the highest performance is then chosen for testing.

The pseudo-codes for both the training and testing phases of our

Macop procedure are provided in App.A.3.

4 EXPERIMENTS
We conduct experiments to answer these questions: 1) Can Macop

generate controllable agents capable of effectively collaborating

with diverse teammates in different scenarios? 2) Does the evolu-

tionary generation of teammates bring about a noticeable increase

in diversity? 3) What is the detailed training process of Macop? 4)

How does each component and hyperparameter influence Macop?

4.1 Environments and Baselines
We select four multi-agent coordination environments and design

eight scenarios as evaluation benchmarks (Fig. 2). Level-based For-

aging (LBF) [17] is a challenging multi-agent cooperative game,

where agents with varying levels navigate through a grid world,

collaboratively striving to collect food with different levels. The

successful collection occurs when the sum of levels of participating

agents matches or exceeds the level of the food item. Predator Prey

(PP) and Cooperative Navigation (CN) are two benchmarks coming

from the popular MPE environment [10]. In the PP scenario, agents

(predators) must together pursue the moving prey. In CN, multi-

ple agents receive rewards when they navigate toward landmarks

while ensuring they avoid collisions with one another. We also

conduct experiments in the widely used StarCraft II environment,

SMAC [20], which involves unit micromanagement tasks. In this

setting, ally units are trained to beat enemy units controlled by the

built-in AI. We specifically design two scenarios for each mentioned

benchmark (e.g., PP1 and PP2), and details are in App.A.4.

To investigate whether Macop is capable of coordinating with

diverse seen/unseen teammates, we implement Macop on the popu-

lar value-based methods VDN [24] and QMIX [18], and compare it

with multiple baselines. First, to assess the impact of the teammate

generation process on the coordination ability of the controllable

agents, we compare Macop with FCP [23], which initially gener-

ates a set of teammate policies independently and then trains the

controllable agents to be the best response to the set of teammates.

The diversity among teammate polices is achieved solely through

network random initialization. Additionally, we examine another

population-based training mechanism that trains the teammate

population using both Lsp and Ldiv
, aiming to generate teammates

with enhanced diversity. This approach, which aligns with exist-

ing literature [3, 11], is referred to as TrajeDi for convenience. On

the other hand, LIPO [1] induces teammate diversity by reducing

the compatibility between the teammate policies in the population.

Concretely, it trains the teammate population with an auxiliary

objective JLIPO = −∑
𝑖≠𝑗 J (⟨𝝅𝑖

tm
, 𝝅 𝑗

tm
⟩), where the indices 𝑖, 𝑗

refer to two randomly sampled teammates in the population. Fur-

thermore, with the teammate generation module held constant,

we proceed to compare Macop with Finetune. Finetune directly

tunes all the parameters of the controllable agents to coordinate

with the currently paired teammate group. We also investigate two

other approaches: Single Head, which applies regularization Lreg

to the backbone but does not utilize the multi-head architecture,

and Random Head, which randomly selects an existing head during

evaluation, thus verifying the necessity of Macop’s testing para-

digm. Finally, we employ the popular continual learning method

EWC [8] to learn to coordinate with the teammates generated by

TrajeDi, thereby providing an overall validation of the effectiveness

of Macop. More details are illustrated in App.A.4.

4.2 Competitive Results
In this section, we analyze the effectiveness of the controllable

agents learned from different methods from two aspects: coor-

dination performance with diverse seen/unseen teammates, and

continual learning ability on a sequence of incoming teammates.

Overall Coordination Performance: To ensure a fair compar-

ison of coordination performance, we aggregate all the teammate

groups generated by Macop and baselines into an evaluation set. For
eachmethod, we pair the learned controllable agents with teammate

groups in this evaluation set to run 32 episodes for each pairing.

The average episodic return over all episodes when pairing with

different teammate groups is calculated as the evaluation metric.

This metric serves as a comprehensive measure of the overall coor-

dination performance and generalization ability of the controllable

agents. We run each method for five distinct random seeds.
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Figure 2: Environments used in this paper, all details could be seen in App.A.4.

Table 1: Average test return ± std when paired with teammate groups from evaluation set in different scenarios. We re-scale
the value by taking the result of Finetune as an anchor and present average performance improvement w.r.t Finetune. The
best result of each column is highlighted in bold. The symbols ‘+’, ‘≈’, and ‘-’ indicate that the result is significantly inferior to,
almost equivalent to, and superior to Macop, respectively, based on the Wilcoxon rank-sum test [12] with confidence level 0.05.

Method

LBF PP CN SMAC Avg. Performance

LBF1 LBF4 PP1 PP2 CN2 CN3 SMAC1 SMAC2 Improvement (%)

Macop (ours) 1.14 ± 0.02 1.64 ± 0.03 1.73 ± 0.11 2.14 ± 0.53 1.66 ± 0.03 1.70 ± 0.06 1.26 ± 0.42 1.56 ± 0.17 60.44
Single Head 0.98 ± 0.07 1.10 ± 0.32 0.87 ± 0.58 1.44 ± 0.52 1.01 ± 0.49 0.99 ± 0.24 1.06 ± 0.14 1.25 ± 0.40 8.92

Random Head 0.92 ± 0.05 0.85 ± 0.10 0.88 ± 0.17 1.18 ± 0.39 0.98 ± 0.23 0.92 ± 0.11 0.97 ± 0.14 1.28 ± 0.21 −0.25

LIPO [1] 1.07 ± 0.09 1.53 ± 0.14 1.64 ± 0.21 1.93 ± 0.52 1.13 ± 0.41 1.33 ± 0.25 1.19 ± 0.18 1.08 ± 0.21 36.27

FCP [23] 1.16 ± 0.02 1.33 ± 0.06 1.17 ± 0.85 1.34 ± 0.12 0.90 ± 0.48 1.41 ± 0.23 0.97 ± 0.19 1.54 ± 0.10 25.82

TrajeDi [11] 1.16 ± 0.06 1.34 ± 0.11 1.68 ± 0.33 1.56 ± 0.52 1.29 ± 0.23 1.53 ± 0.11 1.25 ± 0.12 1.57 ± 0.16 42.26

EWC [8] 0.97 ± 0.08 0.99 ± 0.16 0.83 ± 0.48 0.77 ± 0.43 0.57 ± 0.37 0.71 ± 0.27 1.03 ± 0.13 0.61 ± 0.09 −18.82

Finetune 1.00 ± 0.16 1.00 ± 0.27 1.00 ± 0.58 1.00 ± 0.68 1.00 ± 0.31 1.00 ± 0.24 1.00 ± 0.17 1.00 ± 0.23 /
+/ ≈ /− 3/4/0 6/1/0 2/5/0 6/1/0 7/0/0 7/0/0 5/2/0 4/3/0 7/0/0

As depicted in Tab. 1, we observe that FCP, TrajeDi, and LIPO

exhibit limited coordination ability in different scenarios. This high-

lights the need for ample coverage in teammate policy space to

establish a robust coordination policy. Intriguingly, the three men-

tioned methods have similar performance, indicating that certain

design elements, such as instance diversity among teammates, fail

to fundamentally address this challenge. In contrast, when using

generated teammates, simply finetuning the multi-agent policy or

employing widely-used continual approaches like EWC exhibits in-

ferior coordination performance, as confirmed by our experiments

and in line with the findings in MACPro [33]. It proves the necessity

of specialized designs tailored for multi-agent continual learning

settings. Furthermore, Macop exhibits a remarkable performance

advantage over nearly all baselines across various scenarios, demon-

strating that controllable agents trained by Macop possess robust

coordination abilities. Furthermore, we discovered that the Single

Head architecture struggles due to the presence of multi-modality

in teammate behavior, underscoring the necessity of a multi-head

architecture. An effectively designed testing paradigm, utilizing

multiple available learned heads, proves indispensable. It is worth

noting that Random Head fails to select the optimal head for evalu-

ation, resulting in a degradation in performance. Our pipeline relies

on efficient design for continual learning, and more comprehensive

results on the necessity of each component can be found in Sec. 4.5.

Continual LearningAbility: To investigate the continual learn-
ing ability of different methods, we utilize all teammate groups

generated by Macop to construct a fixed teammate sequence. Four

continual learning methods are applied to train the controllable

agents to coordinate with this teammate sequence in a contin-

ual manner, including Macop, a replay-based method CLEAR [19],

EWC [8] and Finetune. We introduce two metrics inspired by the

continual learning setting [29, 30]: (1) Backward Transfer BWT=
1

𝐾−1
(∑𝐾

𝑘=2

1

𝑘−1

∑𝑘−1

𝑗=1
(𝛼 𝑗
𝑘
− 𝛼

𝑗
𝑗
)) evaluates the average influence

of learning to cooperate with the newest teammate group on co-

ordination with previously encountered teammates. (2) Forward

Transfer FWT= 1

𝐾−1
(∑𝐾

𝑘=2

1

𝑘−1

∑𝑘
𝑗=2

(𝛼 𝑗
𝑗
− 𝛼 𝑗 )) assesses the aver-

age influence of all previously encountered teammate groups on

coordination with the new teammate. Here,𝛼
𝑗

𝑘
is the episodic return

of the controllable agents paired with the 𝑗 th teammate group after

completing training to cooperate with the 𝑘th teammate group.

Additionally, 𝛼 𝑗 is the episodic return of a randomly initialized

complementary policy trained with the 𝑗 th teammate group.

We record experimental results in Tab. 2. Finetune demonstrates

the worst BWT among all methods, validating the necessity of al-

gorithm design to prevent catastrophic forgetting. However, even

popular continual learning methods, CLEAR and EWC, grapple

with forgetting to some degree. In contrast, Macop achieves the

best BWT in all evaluated environments. As for FWT,Macop obtains

a competitive result compared with other methods. Taking both

BWT and FWT into consideration, Macop demonstrates a strong

continual learning ability, empowering controllable agents to pro-

gressively acquire coordination ability with diverse teammates,

along with the expanding coverage of teammate policy space.
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Table 2: Continual learning ability. Average BWT/FWT ± std of four different methods.

Method

LBF4 PP1 CN3 SMAC1

BWT FWT BWT FWT BWT FWT BWT FWT

Macop −0.01 ± 0.02 0.07 ± 0.07 0.03 ± 0.04 −0.16 ± 0.18 0.04 ± 0.06 0.10 ± 0.09 −0.02 ± 0.11 0.07 ± 0.19

CLEAR −0.05 ± 0.07 0.07 ± 0.06 0.01 ± 0.08 −0.05 ± 0.11 −0.16 ± 0.15 0.00 ± 0.20 −0.50 ± 0.32 0.04 ± 0.35

EWC −0.30 ± 0.08 0.05 ± 0.07 −0.34 ± 0.08 −0.05 ± 0.13 −0.20 ± 0.11 0.03 ± 0.11 −1.02 ± 0.47 0.05 ± 0.31

Finetune −0.34 ± 0.07 0.04 ± 0.06 −0.37 ± 0.07 −0.05 ± 0.22 −0.31 ± 0.11 0.05 ± 0.10 −1.24 ± 0.51 0.33 ± 0.35
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Figure 3: Teammate policy space analysis. (a) The t-SNE projections of the self-play trajectory features of Macop’s generated
teammate groups in CN2. (b)(c) The cross-play returns of Macop’s and TrajeDi’s generated teammate groups in LBF4. (d) The
change in TrajeDi’s coordination ability with varying population sizes in LBF4 and CN2, compared with Macop.

4.3 Teammate Policy Space Analysis
To investigate whether Macop is capable of generating teammate

groups with diverse behaviors, a straightforward method involves

comparing the self-play trajectories of different teammate groups.

Concretely, we first learn a transformer-based encoder to map

trajectories into a low-dimensional feature space (details will be

provided in App.A.4.3). We subsequently encode the teammates’

self-play trajectories generated by Macop into the feature space. For

visualization, we sample 10 teammate groups in the CN2 scenario

and extract their trajectory features, as shown in Fig. 3(a). The

projection displays a notable dispersion, validating that teammate

groups generated by Macop exhibit diverse behaviors as expected.

Furthermore, we conduct experiments to assess the compati-

bility among the generated teammate groups. In accordance with

Def. 3.2, we paired different teammate groups in LBF4. The cross-

play returns of Macop and TrajeDi are presented in Fig. 3(b)(c). It is

evident that when pairing two distinct groups from Macop, there

is a noticeable drop in returns outside the main diagonal, indicat-

ing the incompatibility among the teammate groups generated by

Macop. Conversely, the cross-play returns of TrajeDi’s teammate

groups are nearly identical to their self-play returns, suggesting a

significantly lower level of incompatibility among teammate groups

because of the poorer coverage of teammate policy space.

To further explore whether methods without dynamic team-

mate generation can realize policy space coverage by increasing

the population size, we obtain teammates using TrajeDi, varying in

population size from 1 to 15, to train the controllable agents. Subse-

quently, we evaluate their coordination ability using the evaluation
set, as depicted in Fig. 3(d). The results illustrate that coordination

ability improves as the population size increases until convergence.

However, a considerable performance gap between TrajeDi and

Macop persists. It proves that vanilla methods that lack dynamic

teammate generation struggle with new and unfamiliar teammates

due to inadequate coverage of the teammates’ policy space. On the

contrary, Macop’s deliberate generation of incompatible teammates

contributes to a more comprehensive coverage of the teammate

policy space, ultimately enhancing its coordination ability.

4.4 Learning Process Analysis
To gain a comprehensive understanding of Macop’s functioning,

it’s essential to delve into its learning process, which involves gen-

erating incompatible teammates and refining controllable agents

until convergence. Fig. 4 illustrates the process in PP1, showcasing

key aspects, including the number of generated teammate groups,

the number of policy heads, and the stop criterion 𝐶 , on each it-

eration (Fig. 4(c)). In the first iteration, the teammate generation

module produces a population of four distinct teammate groups,

with three specializing in capturing the first prey and one focused

on the second prey (Fig. 4(a)). However, the population lacks de-

sired diversity, as none of the groups learn to catch the remaining

third prey. Controllable agents acquire the ability to collaborate

with their teammates: Head 1 coordinates to capture the first prey,

while Head 2 interacts with the group targeting the second prey.

During the second iteration, the teammate generation module

generates new teammates incompatible with the controllable agents,

expanding the coverage of the teammate policy space. As shown in

Fig. 4(b), a new teammate group (“tm5” in blue) successfully learns

to capture the last prey, showcasing a novel behavior. Consequently,

when the controllable agents complete their training with this new

group, they establish a new head for better coordination.

The dynamic interplay between the adversarial teammate gener-

ation module and the training of controllable agents persists until

the seventh iteration, resulting in an increased number of team-

mate groups and policy heads. In this final iteration, the teammate

generation module endeavors to generate seemingly “incompatible”

teammates as it has throughout the training process, but it encoun-

ters failure. The generated teammate groups up to this point have

already effectively covered a wide range of the teammate policy
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Figure 4: Macop’s learning process analysis. (a)(b) The self-play trajectories of the first four/five teammate groups. (c) The
change of the number of trained teammate groups, the number of existing heads, and the stop criterion 𝐶 on each iteration. (d)
Coordination performance comparison with different teammate groups in the evaluation set.
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Figure 5: Ablation and sensitivity studies.
space. The controllable agents have successfully learnt to coordinate

with a sufficiently diverse array of teammates. The newly generated

teammate groups do not exhibit enough incompatibility, as indi-

cated by the stop criterion surpassing the specified threshold 𝜉 . This

signifies that the cross-play performance between the controllable

agents and these new “incompatible” teammates is comparable to

the self-play performance of the teammate groups. It’s worth noting

that the 𝐶 value of the second iteration also exceeds the threshold,

yet a minimum iteration count of 4 is enforced to ensure thorough

exploration of the teammate policy space. This automated learning

process within Macop terminates after the seventh iteration. As a

result, Macop obtains controllable agents that possess 10 heads and

strong coordination ability, as illustrated in Fig. 4(d).

4.5 Ablation and Sensitivity Studies
We here conduct ablation studies on CN2 and SMAC1 to compre-

hensively assess the impacts of multiple modules. No Incom, No Div,
and No Incom & Div, are derived by setting 𝛼incom = 0, 𝛼

div
= 0,

and 𝛼incom = 𝛼
div

= 0, respectively. Furthermore, we examine the

impact of Lreg, and designate this variant as No Reg to explore the

effects of regularization on the backbone network 𝜙 . To ensure a

fair comparison, we incorporate the teammate groups generated

by the four ablations into the evaluation set. The results, as illus-
trated in Fig. 5(a), reveal essential insights into the functioning of

Macop. Removing Lincom or L
div

leads to a performance degrada-

tion compared to the complete Macop, highlighting the significant

contributions to the teammate diversity. Moreover, No Incom &

Div exhibits a substantial performance degradation, verifying the

necessity of actively generating diverse teammates, instead of rely-

ing solely on random network initialization. Furthermore, No Reg

demonstrates the poorest performance among all the variants. The

absence of regularization on the backbone network undermines

the controllable agents’ continual learning ability, weakening their

coordination capability with diverse teammates. These findings

emphasize that each module plays an indispensable role in Macop.

As Macop includes multiple hyperparameters, we conduct ex-

periments to investigate their sensitivity. The teammate groups

generated by different hyperparameter settings are also incorpo-

rated into the evaluation set for a fair comparison. One important

hyperparameter is the population size 𝑛𝑝 . On one hand, with a very

small population, Macop cannot cover the teammate policy space

in an efficient manner. On the other hand, setting the population

size to an excessively large number will unnecessarily increase the

running time of Macop, reducing the overall efficiency. As shown in

Fig. 5(b), we can find that when 𝑛𝑝 ≤ 4, the performance of Macop

does improve with increasing population size. However, there is no

further improvement as we continue to increase 𝑛𝑝 , proving that

𝑛𝑝 = 4 is the best setting in scenario PP2. More detailed analysis of

other important hyperparameters is provided in App.A.5.

5 FINAL REMARKS
We propose a novel approach to multi-agent policy learning called

Macop, which is designed to enhance the coordination abilities of

controllable agents when working with diverse teammates. Our

approach starts by framing the problem as an CT-Dec-POMDP.

This framework entails training the ego-system with sequentially

generated groups of teammates until convergence is achieved. Em-

pirical results obtained across various environments, compared

against multiple baseline methods, provide strong evidence of its

effectiveness. Looking ahead, in scenarios where we operate un-

der a few-shot setting and need to collect some trajectories for

selectingan the optimal head during policy deployment, developing

mechanisms such as context-based recognition could be a poten-

tial future solution. Additionally, an intriguing direction for future

research involves harnessing the capabilities of large language

models [28] like ChatGPT [9] to expedite the learning process and

further enhance the generalization capabilities of our approach.
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