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Multiagent Continual Coordination via Progressive
Task Contextualization

Lei Yuan , Lihe Li , Ziqian Zhang , Fuxiang Zhang, Cong Guan , and Yang Yu

Abstract— Cooperative multiagent reinforcement learning
(MARL) has attracted significant attention and has the potential
for many real-world applications. Previous arts mainly focus
on facilitating the coordination ability from different aspects
(e.g., nonstationarity and credit assignment) in single-task or
multitask scenarios, ignoring the stream of tasks that appear
in a continual manner. This ignorance makes the continual coor-
dination an unexplored territory, neither in problem formulation
nor efficient algorithms designed. Toward tackling the mentioned
issue, this article proposes an approach, multiagent continual
coordination via progressive task contextualization (MACPro).
The key point lies in obtaining a factorized policy, using shared
feature extraction layers but separated independent task heads,
each specializing in a specific class of tasks. The task heads can
be progressively expanded based on the learned task contextu-
alization. Moreover, to cater to the popular centralized training
with decentralized execution (CTDE) paradigm in MARL, each
agent learns to predict and adopt the most relevant policy head
based on local information in a decentralized manner. We show in
multiple multiagent benchmarks that existing continual learning
methods fail, while MACPro is able to achieve close-to-optimal
performance. More results also disclose the effectiveness of
MACPro from multiple aspects, such as high generalization
ability.

Index Terms— Continual learning, cooperation and coordina-
tion, multiagent system, reinforcement learning.

I. INTRODUCTION

COOPERATIVE multiagent reinforcement learning
(MARL) has attracted prominent attention in recent

years [1] and achieved great progress in multiple aspects, such
as path finding [2], active voltage control [3], and dynamic
algorithm configuration [4]. Among the multitudinous
methods, researchers, on the one hand, focus on facilitating
coordination ability via solving specific challenges,
including nonstationarity [5], credit assignment [6], and
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scalability [7]. Other works, on the other hand, investigate the
cooperative MARL from multiple aspects, such as efficient
communication [8], zero-shot coordination (ZSC) [9], and
policy robustness [10]. A lot of methods emerge as promising
solutions for different scenarios, including policy-based
ones [11], [12], value-based series [13], [14], and many
other variants, showing remarkable coordination ability in a
wide range of tasks, such as StarCraft Multiagent Challenge
(SMAC) [15]. Despite the great success, the mainstream
cooperative MARL methods are still restricted to being
trained in a single task or multiple tasks simultaneously,
assuming that the agents have access to data from all tasks at
all times.

Unfortunately, in some real-world applications, this assump-
tion is unrealistic. On the one hand, for multiagent systems
deployed to solve real-world tasks, the dynamic or the goal of
the task may change over time [16], due to the changing nature
of the real-world environment, or different man-made goals in
different periods. In such real-world scenarios, the agents are
required to maintain the ability to solve all seen tasks but
have no access to previous tasks since the environment has
changed. On the other hand, for agents that are required to
coordinate with diverse teammates [17], particularly humans in
human-AI coordination scenarios, they need to train with dif-
ferent teammates to improve their coordination ability. When
they encounter new unseen teammates, learning from scratch
with all seen teammates (especially human participants) would
be unrealistic since the previous teammates could be unavail-
able. In this scenario, ego agents should continually adapt
to new teammates while retaining knowledge from previous
interactions. In these real-world applications, simply applying
the mainstream cooperative MARL methods to train the agents
will cause catastrophic forgetting, which is unacceptable.

Continual reinforcement learning plays a promising role in
the mentioned problem [16], where the agent aims to avoid
catastrophic forgetting, as well as enable knowledge transfer
to new tasks (also known as stability-plasticity dilemma [18]),
while maintaining scalable to a large number of tasks. Multiple
approaches have been proposed to address one or more of
these challenges, including regularization-based ones [19],
[20], experience maintaining techniques [21], [22], task struc-
ture sharing categories [23], [24], and so on. However, the
multiagent setting is much more complex than the single-agent
one, as the interaction among agents might cause additional
considerations [25]. Also, coordinating with multiple team-
mates is proved to be tough [17]. Previous works model this
problem as multitask [9] or just unimodal coordination among
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teammates [26]. In light of the significance and ubiquity of
cooperative MARL, it is, thus, imperative to consider the
continual coordination in both the problem formulation and
the algorithm design to tackle this issue.

In this work, we develop such a continual coordination
framework in cooperative MARL where tasks appear sequen-
tially. Concretely, we first develop a multiagent task context
extraction module, where information of each state in a
specific task is extracted and integrated by a product-of-expert
(POE) mechanism into a latent space to capture the task
dynamic information, and a contrastive regularizer is further
applied to optimize the learned representation, with which sim-
ilar task representations are pulled together, while dissimilar
ones are pushed apart. Next, we apply an expandable multi-
head policy architecture whose separate independent heads are
synchronously expanded with the newly instantiated context,
along with a carefully designed shared feature extraction
module. Finally, considering the popular centralized training
with decentralized execution (CTDE) paradigm in mainstream
cooperative MARL, we leverage the local information of each
agent to approximate the policy head selection process via
policy distillation in the centralized training process, with
which agents can select the optimal ones to coordinate with
other teammates in a decentralized manner.

For the evaluation of the proposed approach, multiagent
continual coordination via progressive task contextualization
(MACPro), we conduct extensive experiments on various
cooperative multiagent benchmarks in the continual set-
ting, including level-based foraging (LBF) [27], predator-prey
(PP) [11], and the SMAC benchmark [28], and compare
MACPro against previous approaches, strong baselines, and
ablations. Experimental results show that MACPro con-
siderably improves upon existing methods. More results
demonstrate its high generalization ability and its potential to
be integrated with different value-based methods to enhance its
continual learning ability. Visualization experiments provide
additional insight into how MACPro works.

II. RELATED WORK

A. Cooperative MARL

Many real-world problems are made up of multiple
interactive agents, which could usually be modeled as an
MARL problem [25], [29]. Furthermore, when the agents
hold a shared goal, this problem refers to cooperative
MARL [1], showing great progress in diverse domains such
as path finding [2], active voltage control [3], and dynamic
algorithm configuration [4] (removed). Many methods are
proposed to facilitate coordination among agents, including
policy-based ones (e.g., MADDPG [11], MAPPO [12], and
FD-MARL [30]), value-based series, such as VDN [13],
QMIX [14], and SMIX (λ) [31], or other techniques, such
as transformer [32]; these approaches have demonstrated
remarkable coordination ability in a wide range of benchmarks
(e.g., SMAC [28], Hanabi [12], and GRF [32]). Besides the
mentioned approaches and the corresponding variants, many
other methods are also proposed to investigate the cooperative
MARL, including efficient communication [8] [33] to relieve

the partial observability caused by decentralized policy exe-
cution, policy deployment in an offline manner [34], model
learning in MARL [35], policy robustness when some pertur-
bations exist [10], and training paradigm such as CTDE [36],
coordination between heterogeneous agents [37], and ad
hoc teamwork [17]. With all these well-developed techniques,
some researchers apply MARL methods to solve challenging
real-world tasks, including multiagent navigation [38], [39]
and path finding [2], active voltage control [3], backstepping
control [40], dynamic algorithm configuration [4], and mul-
tirobot control [41], [42], showcasing the great potential of
MARL in real-world applications.

Despite this progress, the majority of current approaches
either focus on training the MARL policy on a single task
or the multitask setting where all tasks appear simultane-
ously, lacking attention to the continual coordination problem.
In these methods, MATTAR [43] assumes that there are some
basic tasks, training with which can accelerate the training
process in other similar tasks, and develops a multiagent
multitask training framework. TrajeDi [9] and some variants
(or improved versions), such as MAZE [44], concentrate on
coordinating with different teammates or even unseen ones like
a human; these methods are also under the assumption that we
can access all the training tasks all the time. Nekoei et al. [26]
introduce a multiagent learning testbed that supports both zero-
and few-shot settings based on Hanabi, but it only considers
the unimodal coordination among tasks, and the experimental
results demonstrate that methods such as VDN [13] trained in
the proposed testbed can coordinate well with unseen agents,
without any additional assumptions made by previous works.

B. Continual Reinforcement Learning

Continual learning is conceptually related to incremental
learning and lifelong learning as they all assume that tasks
or samples are presented in a sequential manner [18], [45].
For continual reinforcement learning [16], EWC [46] learns
new Q-functions by regularizing the l2 distance between the
optimal weights of the new task and previous ones. It requires
additional supervision information such as task changes to
update its objective and then selects a specific Q-function head
and a task-specific exploration schedule for different tasks.
CLEAR [47] is a task-agnostic method that does not require
task information during the continual learning process and
leverages big experience replay buffers to prevent forgetting.
Coreset [48] prevents catastrophic forgetting by choosing
and storing a significantly smaller subset of the previous
task’s data, which is used to rehearse the model during or
after finetuning. Some other works, such as HyperCRL [49],
[50], utilize a learned world model to promote continual
learning efficiency. Considering the scalability issue along
with the task number, CN-DPM [51], DaCoRL [52], and
LLIRL [53] decompose the whole task space into several
subsets of the data (tasks) and then utilize techniques such
as Dirichlet process mixture or Chinese restaurant process
to expand the neural network for efficient continual super-
vised learning and reinforcement learning tasks, respectively.
OWL [23] is a recently proposed approach that learns a
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Fig. 1. Example of multiagent continual coordination, where tasks (e.g., the
position of food changes in the LBF [27]) change along with the timeline.
We, thus, need to train a policy πππm to solve the concurrent task and maintain
the knowledge of previous tasks (i.e., avoid catastrophic forgetting).

multihead architecture and achieves high learning efficiency,
and CSP [24] incrementally builds a subspace of policies
for training a reinforcement learning agent on a sequence
of tasks. These works are capable of solving dynamic tasks
such as graph representation learning [54], community detec-
tion [55], identification of critical drones [56], and so on.
Other researchers also design benchmarks such as contin-
ual world [57], or baselines [58] to verify the effectiveness
of different methods in single-agent reinforcement learning.
Nekoei et al. [26] investigate whether agents can coordinate
with unseen agents by introducing a multiagent learning
testbed based on Hanabi, only considering the unimodal coor-
dination among tasks. Our work takes a further step in this
direction for this problem.

III. PROBLEM FORMULATION

This work considers a cooperative MARL problem under
partial observation, which can be formalized as a Dec-
POMDP [59], with tuple M = ⟨N ,S,A, �, P, O, R, γ ⟩,
where N = {1, . . . , n}, S,A = A1

×· · ·×An , and � are the set
of agents, states, joint actions, and local observation, respec-
tively. P : S×A→ 1(S) stands for the transition probability
function; O : S × N → � and R : S × A → R are the
corresponding observation function and reward function; and
γ ∈ [0, 1) is the discounted factor. Multiple interactive agents
in a Dec-POMDP coordinate with teammates to complete
a task under a shared reward R; at each time step, agent
i receives the local observation oi

= O(s, i) and outputs
the action ai

∈ Ai . The formal objective of the agents
is to maximize the expected cumulative discounted reward
E[
∑
∞

t=0 γ
t R(st ,aaat )].

In this work, we focus on a continual coordination prob-
lem where agents in a team are exposed to a sequence of
(infinite) tasks Y = (M1, . . . ,Mm, . . .). Each task involves
a sequential decision-making problem and can be formulated
as a Dec-POMDP Mm = ⟨Nm,Sm,Am, �m, Pm, Om, Rm, γ ⟩,
as shown in Fig. 1. These agents are continually evaluated
on all previous tasks (but cannot be trained with these tasks)
and the present task. Therefore, the agent’s policy needs to
be transferred to new tasks while maintaining the ability to
perform previous tasks. Concretely, agents that have learned M
tasks are expected to maximize the MARL objective for each
task in YM = {M1, . . . ,MM}. We consider the setting where
task boundaries are known during the centralized training

phase. During the decentralized execution phase, agents cannot
access global but only local information to finish the tasks
sampled from YM in a decentralized manner.

IV. METHOD

In this section, we will describe the detailed design of
our proposed method, MACPro. First, we propose a novel
training paradigm, including a shared feature extraction part
and an adaptive policy heads expansion module based on the
learned contexts [see Fig. 2(a)]. Next, we design an efficient
multiagent task contextualization learning module to capture
the uniqueness of each emerging task [see Fig. 2(b)]. Finally,
considering the CTDE property in mainstream cooperative
MARL, we train each agent to utilize its local information
to approximate the actual task head [see Fig. 2(c)].

A. Multiagent Task Contextualization Learning

In continual reinforcement learning where tasks keep alter-
ing sequentially, it is crucial to capture the unique context
of each emerging new task. However, the behavioral descrip-
tor of the multiagent task is much more complex than the
single-agent setting due to the interactions among agents [1].
Thus, this section aims to tackle this issue by developing an
efficient multiagent task contextualization learning module.

Specifically, considering a trajectory τ = (s0, . . . , sT ) with
horizon T rollout by any policies, we utilize a global trajectory
encoder gθ parameterized by θ to encode τ into a latent space.
Concretely, the trajectory representation is represented by
a multivariate Gaussian distribution N (µθ (τ ), σ 2

θ (τ )) whose
parameters are computed by gθ (τ ). As the trajectory hori-
zon T may alter for different tasks (e.g., 3m and 5m in
SMAC [28]), we here apply a transformer [60] architecture
(see Appendix B) to extract feature from each trajectory; thus,
the latent context of a whole trajectory can be represented as
T Gaussian distributions N (µ0, σ

2
0 ), . . . ,N (µT , σ

2
T ), where

N (µi , σ
2
i ) stands for the i th essential parts of the trajectory.

Next, considering the importance of different states in a
trajectory, we apply the POE technique [61] to acquire the
joint representation of a trajectory, which is also a Gaussian
distribution N (µθ (τ ), σ 2

θ (τ )), where

µθ (τ ) =

(
T∑

t=0

µt (σ
2
t )
−1

)(
T∑

t=0

(σ 2
t )
−1

)−1

σ 2
θ (τ ) =

(
T∑

t=0

(σ 2
t )
−1

)−1

. (1)

The detailed derivative process between the joint distribution
and each single one can be seen in [62].

The previous part can obtain representation for each tra-
jectory. Nevertheless, the learned representation lacks any
dynamic information about a specific multiagent task. As the
difference between any dynamic model lies in transition
and reward functions [63], we here apply a loss function
to force the learned trajectory representation to capture the
dynamic information of each task. Specifically, we learn a
context-aware forward model h including three predictors:
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Fig. 2. Overall framework of MACPro. (a) We design an efficient multiagent task contextualization learning module to capture the uniqueness of each emerging
task (dynamic network expansion). (b) Training paradigm, including a shared feature extraction part and an adaptive policy heads expansion module based
on the learned contexts (task contextualization learning). (c) Each agent utilizes its local information to approximate the actual task head in a decentralized
way (decentralized task approximation and execution).

hs, ho, and hr , which are responsible for predicting the next
state, local observations, and reward given the current state,
local observations, actions, and task contextualization, respec-
tively,

Lmodel = Eτ∈D′
[

T∑
t=0

∥hs[st ,ooot ,aaat , z] − st+1∥
2
2

+∥ho[st ,ooot ,aaat , z] − ooot+1∥
2
2

+ (hr [st ,ooot ,aaat , z] − rt )
2

]
(2)

where z is the task contextualization sampled from the joint
task distribution and D′ is the replay buffer for task contextu-
alization learning, which stores a small number of trajectories
for each task. However, as there are tasks with different
correlations, the mentioned optimization object Lmodel might
be insufficient for differentiable context acquisition. Therefore,
we apply another auxiliary contrastive loss [64] by pulling
together semantically similar data points (positive data pairs)
while pushing apart the dissimilar ones (negative data pairs)

Lcontg = Eτ j ,τk∈D′

[
111{y j = yk}DJ (gθ (τ j )∥gθ (τk))

+111{y j ̸= yk}
1

DJ (gθ (τ j )∥gθ (τk))+ ε

]
(3)

where 111{·} is the indicator function, y j and yk are the label(s)
of the task(s) from which τ j and τk are sampled, respectively,
and ε is a small positive constant added to avoid division
by zero. DJ (P∥Q) = DKL(P∥Q) + DKL(Q∥P) is Jeffrey’s
divergence [65] used to measure the distance between two dis-
tributions, and DKL denotes the Kullback–Leibler divergence.
We choose Jeffrey’s divergence because it is symmetric and
easy to calculate. Thus, the overall loss term is defined as
follows:

Lcontext = Lmodel + αcontgLcontg (4)

where αcontg is the coefficient balancing the loss terms.

B. Adaptive Dynamic Network Expansion

With the previously learned global trajectory encoder gθ ,
we can obtain a unique contextualization for each task. Now,
this section comes to the design of a context-based continual
learning mechanism, which incrementally clusters a stream of
stationary tasks in the dynamic environment into a series of
contexts and optimizes for the optimal policy head from the
expandable multihead neural network.

Formally, for multiple tasks appearing sequentially,
we design a policy network consisting of a shared feature
extractor φ with multiple layers of neural network (agent
index is omitted for simplicity), which can promote knowledge
sharing among different tasks. Furthermore, as there may be
some multimodal tasks, a single head for all tasks could make
the policy overfit some specific tasks. One way to solve this
problem is to learn a customized head for each task like
OWL [23]. However, this solution has poor scalability as the
number of heads increases linearly over the number of tasks
that could be infinitely many.

Thus, we develop an adaptive network expansion paradigm
based on the similarity between task contextualizations.
Specifically, we assume that the agents have already learned
M tasks and have K policy heads {ψk

}
K
k=1 so far (K ≤ M).

For each head, we store bs trajectories in buffer D′, and we
use gθ to obtain the corresponding task contextualizations with
mean values {{µ j

k }
bs
j=1}

K
k=1.

When encountering a new task (M + 1), we first uti-
lize the feature extractors φ and all the existing heads
{ψk
}

K
k=1 to derive a set of behavior policies {πππ k}

K
k=1 to

collect bs trajectories each on task (M + 1), denoted as
{{τ

j
k }

bs
j=1}

K
k=1. Next, we use gθ to derive the mean values

{{µ
′ j
k }

bs
j=1}

K
k=1 of their contextualizations and calculate the

similarities between the existing mean values {{µ j
k }

bs
j=1}

K
k=1 as

follows:

l = (l1, . . . , lK ), l ′ =
(
l ′1, . . . , l

′

K

)
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Fig. 3. Framework of decentralized task approximation and execution.

where

lk =
1
bs

bs∑
j=1

∥∥∥∥∥µ j
k −

1
bs

bs∑
i=1

µi
k

∥∥∥∥∥
2

l ′k =
1
bs

bs∑
j=1

∥∥∥∥∥µ′ jk −
1
bs

bs∑
i=1

µi
k

∥∥∥∥∥
2

, k = 1, . . . , K (5)

where l is the vector describing the dispersion of the K
existing contextualizations and l ′ is the vector describing
the distance between the K new contextualizations and the
existing ones. Let k∗ = arg min1≤k≤K l ′k such that the k th

∗
pair

of existing and new contextualizations are closest among all
K pairs. With an adjustable threshold λnew, if l ′k∗ ≤ λnewlk∗ ,
indicating task (M + 1) is similar to the task(s) that head ψk∗

takes charge, we, thus, merge it to this/these learned task(s)
and use the unified head ψk∗ for them. Otherwise, none of the
learned tasks is similar to the new one; a new head ψK+1 is
created. This phase processes along with the task sequence,
enjoying high scalability and learning efficiency.

The previous part solves the head expansion issue, while
a single shared feature extractor may inevitably cause forget-
ting. We here apply an l2-regularizer to relieve this issue by
constraining the parameters of the shared part that does not
change too drastically when learning task (M + 1)

Lreg =

n∑
i=1

∥∥φi − φ
M
i

∥∥
2 (6)

where φM
i is the saved snapshot of agent i’s feature extractor

φi after training on task M . We choose l2-regularizer because
it is straightforward and easy to calculate. As we can apply
MACPro to any value-based methods, we, thus, obtain the tem-
poral difference error LTD as [r + γ maxa′ Qtot(s ′, a′; θ−) −
Qtot(s, a; θ)]2, where θ− are parameters of a periodically
updated target network. The overall loss term of training
agents’ policies is defined as

LRL = LTD + αregLreg (7)

where αreg is the coefficient balancing the two loss terms.

C. Decentralized Task Approximation

Although we have obtained an efficient continual learning
approach for any tasks that appear in a sequential way, it is still
far away from the MARL setting, as it requires the trajectory

of global states to obtain the task representation, while agents
in an MARL system can only acquire its local information.

Toward tackling the issue, we here develop a distillation
solution. Concretely, for agent i with its local trajectory history
τ i
= (oi

0, . . . , oi
T ), we design a local trajectory encoder fθ ′i that

is similar to the global trajectory encoder gθ . fθ ′i takes τ i as
input and outputs N (µθ ′i (τ

i ), σ 2
θ ′i
(τ i )). We, thus, optimize fθ ′i

by minimizing Jeffrey’s divergence between the distributions,
as defined in the following equation:

Loracle = E(τ,τ i )∈D′
[

DJ

(
gθ (τ )∥ fθ ′i (τ

i )
)]

(8)

where · denotes gradient stop, and τ and τ i stand for the
global and local trajectories of the same task, respectively.
To accelerate this learning process and make it consistent with
task contextualization learning, we design a local auxiliary
contrastive loss

Lcontl = Eτ j ,τk∈D′

[
111{y j = yk}DJ ( fθ ′i (τ

i
j )∥ fθ ′i (τ

i
k ))

+111{y j ̸= yk}
1

DJ ( fθ ′i (τ
i
j )∥ fθ ′i (τ

i
k ))+ ϵ

]
.

(9)

The overall loss term of this part is

Lapprox = Loracle + αcontlLcontl (10)

where αcontl is the coefficient balancing the loss terms.
During the decentralized execution phase (Fig. 3), agents

first roll out P episodes to probe the environment. Concretely,
for each probing episode p(p = 1, . . . , P), agents randomly
choose one policy head to interact with the evaluating task
to collect trajectory τ i

p and calculate the mean value µθ ′i (τ
i
p)

of the trajectory representation fθ ′i (τ
i
p). Finally, each agent i

selects the most optimal task head by comparing the distance
with the K existing task contextualization as follows:

k⋆i
= argmin

1≤k≤K
min

1≤p≤P

∥∥∥∥∥∥µθ ′i (τ i
p

)
−

1
bs

bs∑
j=1

µ
j
k

∥∥∥∥∥∥
2

(11)

and uses head ψk⋆ i
with feature extractor φ for testing.

V. EXPERIMENTAL EVALUATION

In this section, we design extensive experiments for the
following questions:

1) Can our approach MACPro achieve high continual abil-
ity compared to other baselines in different scenarios,
and how each component influences its performance (see
Section V-B)?

2) What task representation is learned by our approach, and
how does it influence the continual learning ability (see
Section V-C)?

3) Can MACPro be integrated into multiple cooperative
MARL methods, and how does each hyperparameter
influence its performance (see Section V-D)?
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Fig. 4. Experimental environments used in this article. (a) LBF, where the position of the food changes in different tasks as indicated by the number on the
food. (b) PP, where, in different tasks, the position of landmarks, the agents’ acceleration, maximum speed, positions, and the fixed heuristic policies that the
prey uses are different. (c) and (d) Marines and SZ from SMAC involve various numbers and types of battle agents, respectively.

A. Environments and Baselines

For the evaluation benchmarks, we select four multiagent
environments (see Fig. 4), where LBF [27] is a cooperative
grid world game with agents that are rewarded if they con-
currently navigate to the food and collect it. The position
of the food changes in different tasks as indicated by the
number of the food. PP [11] is another popular benchmark
where agents (predators) need to chase the adversary agent
(prey) and encounter it to win the game. In different tasks,
the position of landmarks, the agents’ acceleration, maximum
speed, positions, and the fixed heuristic policies that the prey
uses are different. Marines and Stalkers and Zealots (SZ) from
SMAC [28] involve various numbers of the agents.

To evaluate if MACPro can achieve good performance
on these benchmarks when different tasks appear con-
tinually, we apply it to a popular valued-based method
QMIX [14]. Compared baselines include Finetuning, which
directly tunes the learned policy on the current task; EWC [46],
a regularization-based method that constrains the whole agent
network from dramatic change; and Coreset [48], which uses
a shared replay buffer over all the tasks so that data on old
tasks can rehearse the agents during fine-tuning on the new
task. Also, OWL [23] is included as it is similar to our work
but applies the bandit algorithm for head selection. To further
study the head selection process, we design Random, with
MACPro selecting a head randomly during testing, and Oracle,
where MACPro’s head selection is based on the ground-truth
head information. We run each method for five distinct random
seeds for a fair comparison. Also, for the combination of
different methods and tasks, we test 32 episodes and report
the average performance. More details about benchmarks and
baselines used in this article can be seen in Appendix A.

B. Competitive Results and Ablations

1) Continual Learning Ability Comparison: At first glance,
we compare MACPro against the mentioned baselines to
investigate the continual learning ability, as shown in Fig. 5.
We can find that Finetuning achieves the most inferior
performance in different benchmarks, showing that a conven-
tional reinforcement learning training paradigm is improper
for continual learning scenarios. Other successful approaches
for single-agent continual learning, such as Coreset, EWC,

and OWL, also suffer from performance degradation in the
involved benchmarks, demonstrating the necessity of specific
consideration for MARL settings. The Oracle baseline, where
we give all the ground-truth task identification when testing,
can be seen as an upper bound of performance on the related
benchmarks, acquiring superiority over all baselines in all
benchmarks, demonstrating that multihead architecture can
solve the multimodal tasks, while conventional approaches
fail. Our approach, MACPro, obtains comparable performance
to Oracle, indicating the efficiency of all the designed mod-
ules. Random, which selects a head randomly when testing,
suffers from terrible performance degradation compared with
MACPro and Oracle, showing that the success of MACPro
is due to the appropriate head selection mechanism but not a
larger network with multiple heads.

Furthermore, we display the performance on every single
task in PP in Fig. 6; we can find that baselines, Finetuning,
EWC, and Coreset, all suffer from performance degradation
on one task after training on it, i.e., catastrophic forget-
ting, demonstrating the necessity of specific consideration
for MARL continual learning. Other baselines, OWL and
Random, fail to choose the appropriate head for testing and
do not perform well on all tasks. Learning the new task as
quickly as Finetuning without forgetting the old ones, our
method MACPro obtains excellent performance. The compara-
ble average performance to Oracle also indicates that MACPro
can accurately choose the optimal head for testing.

2) Ablation Studies: As MACPro is composed of multiple
components, we here design ablation studies on benchmark
LBF and PP to investigate their impacts. First, for task
contextualization learning, we derive W/o model by removing
the forward model h and its corresponding loss term Lmodel
and using the contrastive loss only to optimize the global
trajectory encoder gθ . Next, instead of extracting the repre-
sentation of trajectories with POE, we use the average of the
Gaussian distributions generated by the transformer network
as the representation, and we call it W/o POE. Furthermore,
we also introduce W/o oracle, which has a similar number
of parameters as MACPro, to investigate whether the supe-
riority of MACPro over QMIX is due to the increase in
the number of parameters. Finally, we remove both global
contrastive loss Lcontg and local contrastive loss Lcontl to derive
W/o contg,l .
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Fig. 5. Performance comparison with baselines. Each task is trained for 400k steps in LBF and 500k steps in other benchmarks, and each plot indicates the
average performance across all tasks seen so far. Different background colors indicate different task periods. (a) LBF. (b) PP. (c) Marines. (d) SZ.

Fig. 6. Complete continual learning results on PP. Four plots for four tasks are displayed. The plot for each task has a gray background, indicating that
the agents are training on this task during this period, and there exists blank space in the plots of task n(n > 1) because the task has not appeared yet,
so we do not test the performance on it until agents have started training on it. For example, task 2 appears at t = 0.4M, and it is trained for 400k steps,
so t = 0.0 ∼ 0.4M is blank and t = 0.4M ∼ 0.8M has a gray background.

TABLE I
ABLATION STUDIES ON LBF. THE VALUES IN THE TABLE ARE THE RETURN VALUES

As shown in Tables I and II, we can find that when the
model loss is removed, W/o model suffers from performance
degradation in most tasks, indicating the necessity for task
representation learning. Furthermore, the POE mechanism also
slightly influences the learning performance, demonstrating
that the special integration of multiple representations of tra-
jectories can facilitate representation learning. Consequently,

when removing the oracle loss function, W/o oracle sustains
great performance degradation and even fails in some tasks,
indicating that a simply larger network cannot fundamentally
improve the performance. We also find that contrastive learn-
ing loss has a positive effect on performance. We further
design W/o contg and W/o contl by setting αcontg = 0 and
αcontl = 0 to study the impact of contrastive loss. Both variants
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TABLE II
ABLATION STUDIES ON PP. THE VALUES IN THE TABLE ARE THE RETURN VALUES

Fig. 7. Generalization results. (a) LBF. (b) PP. (c) Marines. (d) SZ.

suffer from performance degradation, indicating the necessity
of contrastive learning.

3) Generalization Results: As we focus on training each
emerging task sequentially, it produces a significant risk of
overfitting. What is more, the ultimate goal of continual
learning agents is to not only perform well on seen tasks but
also utilize the learned experiences to complete future unseen
tasks. Here, we design experiments to test the generalization
ability of MACPro compared with multiple baselines. Con-
cretely, we design 20 additional tasks (details can be seen
in Appendix A) for each benchmark that agents have not
encountered before to conduct zero-shot experiments.

As can be seen from Fig. 7, MACPro demonstrates the
most superior performance compared to the multiple compared
baselines, indicating that it has strong generalization ability
due to the multiagent task contextualization learning module
and the decentralized task approximation procedure. Note that
the baseline Oracle is not tested here because there is no
ground-truth head selection on unseen tasks.

C. Task Contextualization Analysis

Then, we visualize the development of continual learning
performance, along with changes in task representation and
factored heads, to demonstrate how our method works. Con-
cretely, we build a task sequence with ten tasks of benchmark

PP. As shown in Fig. 8, when t = 1.0M, the incoming task
3 is similar to task 1, and their latent variables are distributed
in the same area (the green ellipse). Task 3 shares the same
head as task 1, leading to an unchanged number of task heads.
When a dissimilar task is encountered at t = 2.5M, none
of the learned tasks is similar to the incoming task 6. The
latent variables of task 6 are distributed in a new area (the red
ellipse), and MACPro expands a new head accordingly. This
process continuously proceeds, until the learning procedure
ends at t = 5.0M, when the latent variables of all ten tasks
are distributed in four separate clusters, and MACPro has four
heads, respectively. The latent variables of the representations
fθ ′i (τ

i ) encoded by individual trajectory encoders, denoted as
◦, are also displayed (we omit them in the first two 3-D figures
for simplicity). It shows that the representations learned by
fθ ′i (τ

i ) are close to gθ (τ ), enabling accurate decentralized task
approximation and good performance.

Consequently, we can further find the learning curve in the
top row of Fig. 8, along with the number of separate heads that
change according to the corresponding task representations.
We also compare two extreme-case methods, where Finetuning
holds a single head for all tasks, enjoying high scalability but
strong catastrophic forgetting. On the contrary, MACPro w/o
adaptive expansion maintains one head for each task and can
achieve high learning efficiency, but the heads’ storage cost
may impede it when facing a large number of tasks. Our
method, MACPro, achieves comparable or even better learning
ability but consumes fewer heads, showing high learning
efficiency and scalability.

D. Integrative Abilities and Sensitive Studies

MACPro is agnostic to specific value-based cooperative
MARL methods. Thus, we can use it as a plug-in module and
integrate it with existing MARL methods, such as VDN [13],
QMIX [14], and QPLEX [67]. As shown in Table III, when
integrating with MACPro, the performance of the baselines
vastly improves, indicating that MACPro has a high generality
ability for different methods to facilitate continual learning.

As MACPro includes multiple hyperparameters, here,
we conduct experiments on benchmark PP to investigate how
each one influences continual learning ability. First, αreg con-
trols the extent of the restriction on changing the parameters of
the shared feature extractor φi . If it is too small, the dramatic
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Fig. 8. Task contextualization analysis. Similar tasks have the same background color, e.g., task 1 and task 3 correspond to the green background. When
encountering a new task, we sample latent variables generated by gθ (τ ) and apply dimensionality reduction to them by principal component analysis (PCA) [66],
denoted as △.

TABLE III
INTEGRATIVE ABILITIES

change of φi ’s parameters may induce severe forgetting. On the
other hand, if it is too large, agents remember the old task
at the expense of not learning the new task. We, thus, find
each hyperparameter via grid search. As shown in Fig. 9(a),
we can find that αreg = 500 is the best choice in this
benchmark. Furthermore, another adjustable hyperparameter
αcontg influences the training of global trajectory encoder gθ
in multiagent task contextualization learning. Fig. 9(b) shows
that αcontg = 0.1 performs the best. In decentralized task
approximation, αcontl balances the learning of local trajectory
encoder fθ ′i . We find that in Fig. 9(c), αcontl = 0.1 performs
the best. During decentralized execution, agents first probe P
episodes before evaluation to derive the task contextualization
and select the optimal head. The more episodes the agents
can probe, the more information about the evaluating task the
agents can gain. However, setting P to a very large value is
not practical. We find in Fig. 9(d) that P = 20 is enough for
accurate task approximation.

VI. FINAL REMARKS

Observing the great significance and practicability of con-
tinual learning, this work takes a further step toward continual
coordination in cooperative MARL. We first formulate this
problem, where agents are centralized trained with access to
global information; then, an efficient task contextualization
learning module is designed to obtain efficient task represen-
tation, and an adaptive dynamic network expansion technique
is applied. We, finally, design a local continual coordination

Fig. 9. Test results of parameter sensitivity studies. (a) Sensitivity of αreg.
(b) Sensitivity of αcontg . (c) Sensitivity of αconti . (d) # probe episodes P .

mechanism to approximate the global optimal task head selec-
tion. Extensive experiments demonstrate the effectiveness of
our approach. To the best of our knowledge, the proposed
MACPro is the first multiagent continual algorithm capable
of multiagent scenarios. While our work contributes valuable
insights into continual coordination, it is crucial to recognize
the limitations, including the cost of few-shot exploration and
extra data storage, and the need for heuristically designed
environments or tasks. Future work on more reasonable and
efficient ways, such as ZSC, generative replay, and envi-
ronment automatic generation, extending MACPro to more
complex scenarios, such as continual coordination with com-
munication or robust continual coordination, and applying
MACPro to real-world applications, would be of great value.

APPENDIX A
DETAILS ABOUT BASELINES AND BENCHMARKS

A. Baselines

Finetuning is a simple method based on a single feature
extraction model and policy head to learn a sequence of tasks,
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Fig. 10. Benchmark LBF used in this article. (a) 5 × 5 grid. (b) 6 × 6 grid.

ignoring the changes in tasks and directly tuning the learned
policy on the current task. However, if the current task is
different from the previous ones, the parameters of the policy
network would change dramatically to acquire good perfor-
mance on the current task, thus inducing the phenomenon of
catastrophic forgetting.

EWC [46] is one of the regularization-based approaches to
address the catastrophic forgetting problem. Concretely, it tries
to maintain expertise on old tasks by selectively slowing down
learning on the weights that are important for them. The loss
function for learning the current task M is

L(θ) = LM(θ)+
λ

2

∑
j

F j (θ j − θM−1, j )
2 (12)

where LM(θ) is the loss for task M only and Fi is the i th

diagonal element of the Fisher information matrix F . θM−1 is
the saved snapshot of θ after training task M−1, and j labels
each parameter. λ is an adjustable coefficient to control the
tradeoff between the current task and previous ones. In this
article, we set the parameters of the agent’s Q network as θ
and calculate the Fisher information matrix F with temporal
difference error.

Unlike EWC that constrains the change of network param-
eters when learning a new task, Coreset [48], one of the
replay-based methods, prevents catastrophic forgetting by
choosing and storing a significantly smaller subset of data of
the previous tasks. When learning the current task, the stored
data are also utilized for training the policy, which is expected
to remember the previous tasks. In this article, we set the
replay buffer to uniformly store trajectories of all seen tasks,
including the current one. A small batch of trajectories of one
randomly chosen task is sampled from the buffer to train the
agents’ network.

OWL [23] is a recent approach that learns a multihead
architecture and achieves high learning efficiency when the
tasks in a sequence have conflicting goals. Specifically,
it learns a factorized policy with a shared feature extractor
but separate heads, each specializing in only one task. With a
similar architecture to our method MACPro, we can apply it
to learn task sequences in a continual manner. During testing,
OWL uses bandit algorithms to find the policy that achieves
the highest test task reward. However, this strategy could bring
performance degradation since agents choose action uniformly
at the beginning of the episodes.

Fig. 11. Benchmark PP used in this article, where the prey’s policy is to
run in the opposite direction of the nearest predator.

B. Benchmarks

We select four multiagent environments for the evalu-
ation benchmarks. LBF [27] is a cooperative grid world
game (see Fig. 10). Here, the positions of two agents and
one food are represented by discrete states, and agents are
randomly spawned at cells (0, 0), (0, 1), (1, 0), (1, 1). Each
agent observes the relative position of other agents and the
food, moves a single cell in one of the four directions (up,
left, down, right), and gains reward 1 if and only if both
agents navigate to the food and be at a distance of one
cell from the food. In continual learning ability comparison,
we design five tasks in a 5 × 5 grid, with the food at cell
(0, 4), (2, 4), (4, 4), (4, 2), (4, 0) [green food in Fig. 10(a)],
respectively. To test the generalization ability of different
methods, we further design 20 tasks in both 5 × 5 and
6 × 6 grid, and the food position is changed as well [red
food in Fig. 10(a) and (b)].

PP [11] is another popular benchmark where three agents
(predators) need to chase the adversary agent (prey) and collide
it to win the game (see Fig. 11). Here, agents and landmarks
are represented by circles of different sizes, and colliding
means circles’ intersection. Positions of the two fixed land-
marks and positions and speed of the predators and the prey
are encoded into continuous states. The predators and the
prey can accelerate in one of the four directions (up, left,
down, right). In different tasks, the position of landmarks,
the predators and the prey’s acceleration, maximum speed,
and spawn areas, and the fixed heuristic policies that the
prey uses are different. Specifically, the prey: 1) runs in the
opposite direction of the nearest predator; 2) stays still at
a position far away from the predators; 3) runs toward the
nearest predator; and 4) runs in a random direction with great
speed. Predators gain reward 1 if n of them collide with the
prey at the same time [n = 1 in cases 1), 2), and 4) and
n = 2 in case 3)]. In the generalization test, for one original
task, we create one corresponding additional task by adding
one constant ξ to the original value of different task param-
eters, including landmark’s size, x-coordinate, y-coordinate,
predator’s and prey’s size, acceleration, and maximum speed.
We set ξ = ±0.01,±0.02, 0.03 on the four original tasks to
derive 20 addition tasks to test the generalization ability.
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Fig. 12. Benchmark Marines and SZ used in this article. (a) Task 5m_vs_6m
in the Marines series. (b) Task 2s3z in the SZ series.

The other benchmarks are two task series, named Marines
and SZ (see Fig. 12), from SMAC [28], involving vari-
ous numbers of Marines and Stalkers/Zealots in two camps,
respectively. The goal of the multiagent algorithm is to control
one of the camps to defeat the other. Agents receive a positive
reward signal by causing damage to enemies, killing enemies,
and winning the battle. On the contrary, agents receive a
negative reward signal when they receive damage from ene-
mies, get killed, and lose the battle. Each agent observes
information about the map within a circular area around it
and takes actions, including moving and firing when it is
alive. In continual learning ability comparison, the Marines
series consists of: 1) 5m_vs_6m; 2) 13m; 3) 4m; and 4)
8m_vs_9m; the SZ series consists of: 1) 2s1z_vs_3z; 2) 2s3z;
3) 3s5z; and 4) 2s2z_vs_4s, where m stands for marine,
which can attack an enemy unit from a long distance at a
time, s stands for the stalker, which attacks like a marine
and has a self-regenerate shield, and z stands for zealot,
which also has a self-regenerate shield but can only attack
an enemy unit from a short distance. For the generalization
test, we first decrease the default sight range and shoot range
by 1 to create four additional tasks for both Marines and SZ.
Then, we design scenarios {3m, 5m, 6m, 7m, 8m, 9m, 10m,
11m, 12m, 4m_vs_5m, 6m_vs_7m, 7m_vs_8m, 9m_vs_10m,
10m_vs_11m, 11m_vs_12m, 12m _vs_13m} for Marines and
scenarios {1s1z, 1s2z, 1s3z, 2s1z, 2s2z, 2s4z, 3s1z, 3s2z, 3s3z,
3s4z, 4s2z, 4s3z, 4s4z, 2s2z_vs_4z, 3s3z_vs_6s, 4s4z_vs_8z}
for SZ. If vs is in the task name, it indicates that the
two camps are asymmetric, e.g., in 5m_vs_6m, there are
five marines in our camp and six enemy marines. Other-
wise, it indicates that the two camps are symmetric, e.g.,
in 2s3z, there are two stalkers and three zealots in both
camps.

C. Value Function Factorization MARL Methods

As we investigate the integrative abilities of MACPro in this
article, here, we introduce the value-based methods used in this
article, including VDN [13], QMIX [14], and QPLEX [67].
The difference among the three methods lies in the mixing
networks, with increasing representational complexity. Our
proposed framework MACPro follows the CTDE paradigm
used in value-based MARL methods.

These three methods all follow the individual-global-
max (IGM) [68] principle, which asserts the consistency
between joint and local greedy action selections by the
joint value function Qtot(τ , a) and individual value functions

Fig. 13. Overall structure of QMIX. (a) Detailed structure of the mixing
network, whose weights and biases are generated from a hypernet (red), which
takes the global state as the input. (b) QMIX is composed of a mixing network
and several agent networks (overall structure). (c) Detailed structure of the
individual agent network.

[Qi (τ
i , ai )]ni=1

∀τ ∈ T , arg max
a∈A

Qtot(τ , a)

=

(
arg max

a1∈A
Q1
(
τ 1, a1), . . . , arg max

an∈A
Qn
(
τ n, an)). (13)

VDN [13] factorizes the global value function QVDN
tot (τ , a)

as the sum of all agents’ local value functions [Qi (τ
i , ai )]ni=1

QVDN
tot (τ , a) =

n∑
i=1

Qi
(
τ i , ai). (14)

QMIX [14] (see Fig. 13) extends VDN by factorizing the
global value function QQMIX

tot (τ , a) as a monotonic combina-
tion of the agents’ local value functions [Qi (τ

i , ai )]ni=1

∀i ∈ N ,
∂QQMIX

tot (τ , a)
∂Qi

(
τ i , ai

) > 0. (15)

We mainly implement MACPro on QMIX for its proven
performance in various papers. VDN and QMIX are two
sufficient conditions of the IGM principle to factorize the
global value function, but the conditions that they propose
are not necessary. To achieve a complete IGM function class,
QPLEX [67] uses duplex dueling network architecture by
decomposing the global value function as

QQPLEX
tot (τ , a) = Vtot(τ )+ Atot(τ , a)

=

n∑
i=1

Qi
(
τ , ai)

+

n∑
i=1

(
λi (τ , a)− 1

)
Ai
(
τ , ai)

(16)

where λi (τ , a) is the weight depending on the joint history and
action, and Ai (τ , ai ) is the advantage function conditioning on
the history information of each agent. QPLEX aims to find the
monotonic property between the individual Q function and the
individual advantage function.

APPENDIX B
ARCHITECTURE, INFRASTRUCTURE, AND

HYPERPARAMETERS’ CHOICES OF MACPRO

A. Network Architecture

In benchmarks, LBF and PP, the number of agents, the
dimension of state, observation, and action remain unchanged
in different tasks. Specifically, for (1) agent networks,
we apply the technique of parameter sharing and design
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Fig. 14. Network architecture used in Marines and SZ. (a) Mixing network. (b) Individual Q network.

the feature extractor φ as a five-layer multi-layer perceptron
(MLP) and a gated recurrent unit (GRU) [69]. The hidden
dimension is 128 for the MLP and 64 for the GRU. Then, each
separated head is a linear layer, which takes the output of the
feature extractor as input and outputs the Q value of all actions.
For (2) task contextualization learning, we design a global
trajectory encoder gθ and a context-aware forward model h.
gθ consists of a transformer encoder, an MLP, and a POE
module. The six-layer transformer encoder takes trajectory
τ = (s1, . . . , sT ) as input and outputs T 32-D embeddings.
Then, the three-layer MLP transforms these embeddings into
means and standard deviations of T Gaussians. Finally, the
POE module acquires the joint representation of the trajectory,
which is also a Gaussian distribution N (µθ (τ ), σ 2

θ (τ )). The
context-aware forward model h is a three-layer MLP that
takes as input the concatenation of the current state, local
observations, actions, and task contextualization sampled from
the joint task distribution and outputs the next state, next local
observations, and reward. The hidden dimension is 64, and
the reconstruction loss is calculated by mean squared error.
For (3) decentralized task approximation, the local trajectory
encoders fθ ′i (i = 1, . . . , n) have the same structure as the
global trajectory encoder gθ .

In benchmark Marines and SZ, a new difficulty arises since
the number of agents, the dimension of state, observation,
and action could vary from task to task, making the networks
used in LBF and PP fail to work. Inspired by the unshaped
network [70] and the popularly used population-invariant
network (PIN) technique in MARL [43], we design a different
feature extractor, head, and monotonic mixing network [14]
that learns the global Q value as a combination of local Q
values. For the feature extractor (see Fig. 14), we decompose
the observation oi into different parts, including agent i’s own
information oown

i , ally information oal
i , and enemy information

oen
i . Then, we feed them into attention networks to derive a

fixed-dimension embedding e

q = MLPq
(
oown

i

)
Kal = MLPKal

([
oal1

i , . . . , oal j

i , . . .
])

Val = MLPVal

([
oal1

i , . . . , oal j

i , . . .
])

eal = softmax
(

qKal
T/√dk

)
Val

Ken = MLPKen

([
oen1

i , . . . , oen j

i , . . .
])

Ven = MLPVen

([
oen1

i , . . . , oen j

i , . . .
])

een = softmax
(

qKen
T/√dk

)
Ven

e =
[
MLP

(
oown

i

)
, eal, een

]
(17)

where [·, ·] is the vector concatenation operation, dk is the
dimension of the query vector, and bold symbols are matrices.
Embedding e is then fed into an MLP and a GRU to derive
the output of the feature extractor φi . Finally, the output is
fed into the policy head, a three-layer MLP, to derive the Q
value. Furthermore, the dimension of states could also vary
in Marines and SZ. Like the way we deal with observations,
state s is decomposed into ally information sal

i and enemy
information sen

j . Then, their embeddings are fed into an
attention network to derive a fixed-dimension embedding es .
Finally, we feed es into the original mixing network whose
structure is used in benchmarks LBF and PP.

Besides the networks mentioned above, the global trajectory
encoder gθ , forward model h, and local trajectory encoders
fθ ′i are also involved with this issue. For gθ and fθ ′i , we first
apply the same technique to derive the fixed-dimension embed-
dings of states and observations and then feed them into
the transformer encoders. For the forward model h, we treat
each agent’s action as a part of its own observation and feed
their concatenation into the attention network to derive an
embedding, which will be fed into h with the embedding
of state and task contextualization. Then, h outputs a fixed-
dimension embedding. We decode it into the next state, local
observations, and reward with task-specific MLP decoders to
calculate the reconstruction loss Lmodel.

B. Overall Flow of MACPro

To illustrate the process of training, the overall training
flow of MACPro is shown in Algorithm 1. Here, lines 3–14
express the process of dynamic agent network expansion,
where we use task contextualization to decide whether we
should initialize a new head for the current task. To initialize
a new head (line 12), we propose two strategies. One strategy
is to copy the parameters of the head learned from the last task.
The other is to construct an entirely new head by resetting the
parameters randomly. We use the first strategy in LBF, PP,
and Marines and the second one in SZ. Both strategies work
well in the experiments. Then, we started training on the new
task. In line 15, we can choose to reset the ϵ-greedy schedule
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Algorithm 1 MACPro: Training
Input: Task sequence Y = {task 1, . . . , task M}
Initialize: trajectory encoder gθ , forward model h, indi-
vidual trajectory encoders fθ ′i :n , agents’ feature extractors
φ1:n

1: for m = 1, . . . ,M do
2: Set up task m
3: if m = 1 then
4: ψ1

1:n ← Initialized new head
5: else
6: // Dynamic Network Expansion
7: Calculate l, l ′ according to Equation 5
8: Find k∗ = arg min1≤k≤K l ′k
9: if l ′k∗ ≤ λnewlk∗ then

10: Merge task m to the task(s) that ψk∗
1:n tasks charge,

ψm
1:n ← ψ

k∗
1:n

11: else
12: ψm

1:n ← Initialized new head
13: end if
14: end if
15: (Optional) Reset the ϵ-greedy schedule
16: for t = 1, . . . , Ttask m do
17: Collect trajectories with {φ1:n, ψ

m
1:n}, store in buffers

D,D′
18: Update {φ1:n, ψ

m
1:n} according to LRL

19: if t mod κ1 = 0 then
20: // κ1 is the interval of updating

the encoders
21: // Task Contextualization

Learning
22: Train gθ , h according to Lcontext
23: Train fθ ′1:n according to Lapprox
24: end if
25: if t mod κ2 = 0 then
26: // κ2 is the interval of saving

the learning head
27: Save head ψm

1:n
28: end if
29: end for
30: Evaluate task 1, . . . ,m according to Alg. 2
31: Empty the experience replay buffer D = ∅
32: end for

to enhance exploration (adopted in SZ) or not (adopted in
LBF, PP, and Marines), where the schedule is to decay ϵ from
1 to 0.05 in 50k timesteps. Next, we iteratively update the
parameters of each component in lines 16–27, where we also
save the current head. Finally, we test all seen tasks, empty the
replay buffer for the current task, and switch to the next task.

Besides, the execution flow of MACPro is shown in
Algorithm 2. In the execution phase, for each testing task,
agents first roll out P episodes to probe the environment
and derive the context (lines 3–7). With the gathered local
information, each agent independently selects an optimal head
to perform this task (lines 8 and 9). The whole framework is
trained end to end with collected episodic data on NVIDIA
GeForce RTX 2080 Ti and 3090 GPUs with a time cost of

Algorithm 2 MACPro: Execution
Input: Task sequence {task 1, . . . , task M}, feature extractors
φ1:n , heads {ψk

1:n}
K
k=1

Parameter: Number of probing episodes P

1: for m = 1, . . . ,M do
2: Set up task m
3: for p = 1, . . . , P do
4: Randomly choose an integer k from {1, . . . , K }
5: Agents collect one trajectory τττ p with {φ1:n, ψ

k
1:n}

6: Each agent i calculates the mean value µθ ′i (τ
i
p) of the

trajectory representation fθ ′i (τ
i
p)

7: end for
8: Each agent i selects the optimal head ψk⋆ i

i , where k⋆i
=

argmin
1≤k≤K

min
1≤p≤P

∥µθ ′i (τ
i
p)−

1
bs

∑bs
j=1 µ

j
k∥2.

9: Agents test with {φi , ψ
k⋆ i

i }
n
i=1

10: end for

TABLE IV
HYPERPARAMETERS IN EXPERIMENT

about 5 h in benchmark LBF and PP, and 18 h in benchmark
Marines and SZ.

C. Hyperparameters Choices

Our implementation of MACPro1 is based on the PyMARL2

[28] codebase with StarCraft 2.4.6.2.69232 and uses its default
hyperparameter settings. For example, the discounted factor
used to calculate the temporal difference error is set to
the default value of 0.99. The selection of the additional
hyperparameters introduced in our approach, e.g., the time
interval of saving the heads, is listed in Table IV. We use
this set of parameters for MACPro in all experiments shown
in this article. For the ablation studies, we change one or two
parameters to derive a variant of MACPro, investigating the

1https://github.com/lilh76/MACPro
2https://github.com/oxwhirl/pymarl
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impact of different components. For example, in the variant
W/o contg , αcontg is set to 0, while other parameters remain
the same as in Table IV.
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