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Background & Motivation

Real-world tasks offten come with safety concerns.
Directly interacting with the real-world environment
for safety-concerned trial-and-error incurs various
costly actions, thus offline safe RL matters.

Real-world datasets may contain data generated under
diverse safety constraints, and different constraints
may conflit with each other, thus leveraging context-
based meta RL for task identification is critical.

A safety-concerned environment is modeled as a
Constrained Markov Decision Process (CMDP):

M =(S, A P,R,C,y,b)

Method

(a) Cost-aware Context Learning (b) Safe In-Distribution Online Adaptation A
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Cost-aware context encoder learning:

Safe in-distribution online adaptation:
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Experiments

Distance metric learning loss for distinguishing tasks.
Cost contrastive loss using cost model relabeling.

Cost decoding loss to ensure informative expression.

Selecting in-distribution trajectories as contexts-safe

Cost-aware Offline Safe Meta Reinforcement Learning

with Robust In-Distribution Online Task Adaptation
Guan Cong, Ruiqi Xue, Zigian Zhang, Lihe Li, Yi-Chen Li, Lei Yuan, Yang Yu™
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Performance on different benchmarks
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Motivated Example
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(b) Trajectory Projection
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(c) Performance Comparisons

PEARL

Visualization, Generalization and Transfer
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Figure 4: The 2D projection of the learned task representation
space in AntDir using t-SNE. Here, all contexts from different
tasks are collected using a same behavioral policy.

Ablation Studies

0.5 1

01

10+

B COSTA-ts_reward
BN COSTA-ts-wo-cc_cost
B COSTA-ts-wo-cc_reward

AntDir  CheetahWalk AntCircle  CheetahVel

(a) Online Adaptation based on Thompson Sampling
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Figure 3: (a) Comparison of generalization ability in Chee-
tahVel, the left column represents the results for policies in
unseen tasks, while the right column represents the results
for policies in seen tasks. (b), (c¢) Training results of being
transferred to unseen tasks in AntDir.
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Figure 6: (a) Ablation study on the performance of COSTA with or without cost contrastive loss during online adaptation based
on Thompson sampling. The rewards are normalized by COSTA-ts’s reward. (b) Ablation study on cumulative cost during the

whole process of online adaptation in AntDir.



