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Introduction

dMany real-world problems consist of multiple interactive agents,
and can be modeled as multi-agent systems (MAS).

dWe can apply reinforcement learning (RL), a machine learning
paradigm that involves agents learning to make decisions, to
train multi-agent systems to solve different tasks.

dIf all agents in the multi-agent system share the same reward,
this learning paradigm can be formulated as cooperative multi-
agent reinforcement learning (CMARL).
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However,
dMainstream CMARL methods are still restricted to being trained
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d MACPro achieves the best continual learning d Expand a new head only for dissimilar tasks,
performance on all multi-agent benchmarks. without sacrificing performance.
d Swift knowledge transfer to new tasks (plasticity) d Enjoy high scalability and learning efficiency.

while avoiding catastrophic forgetting (stability).
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