Multi－agent Continual Coordination via
 Progressive Task Contextualization

Lei Yuan ${ }^{1,2}$ ，Lihe Li＇，Ziqian Zhang ${ }^{1}$ ，Fuxiang Zhang ${ }^{1,2}$ ，Cong Guan ${ }^{1}$ ，Yang Yu ${ }^{1,2,{ }^{2}}$
${ }^{1}$ National Key Laboratory for Novel Software Technology，Nanjing University，${ }^{2}$ Polixir．ai

PロLIXIR

Introduction

\square Many real－world problems consist of multiple interactive agents， and can be modeled as multi－agent systems（MAS）．
\square We can apply reinforcement learning（RL），a machine learning paradigm that involves agents learning to make decisions，to train multi－agent systems to solve different tasks．
－If all agents in the multi－agent system share the same reward， this learning paradigm can be formulated as cooperative multi－ agent reinforcement learning（CMARL）．

However，

\square Mainstream CMARL methods are still restricted to being trained in one single task or multiple tasks simultaneously and thus cannot learn a stream of tasks in a continual manner．
－To solve this issue，we formalize continual coordination and learn a MAS in a stream of tasks via progressive task contextualization．

Method

Experiments

\square Performance on different benchmarks

MACPro achieves the best continual learning performance on all multi－agent benchmarks．
－Swift knowledge transfer to new tasks（plasticity） while avoiding catastrophic forgetting（stability）．
\square Visualization Analysis

Expand a new head only for dissimilar tasks， without sacrificing performance．
Enjoy high scalability and learning efficiency．

