
Robust Multi-agent Coordination via Evolutionary Generation of Auxiliary Adversarial Attackers

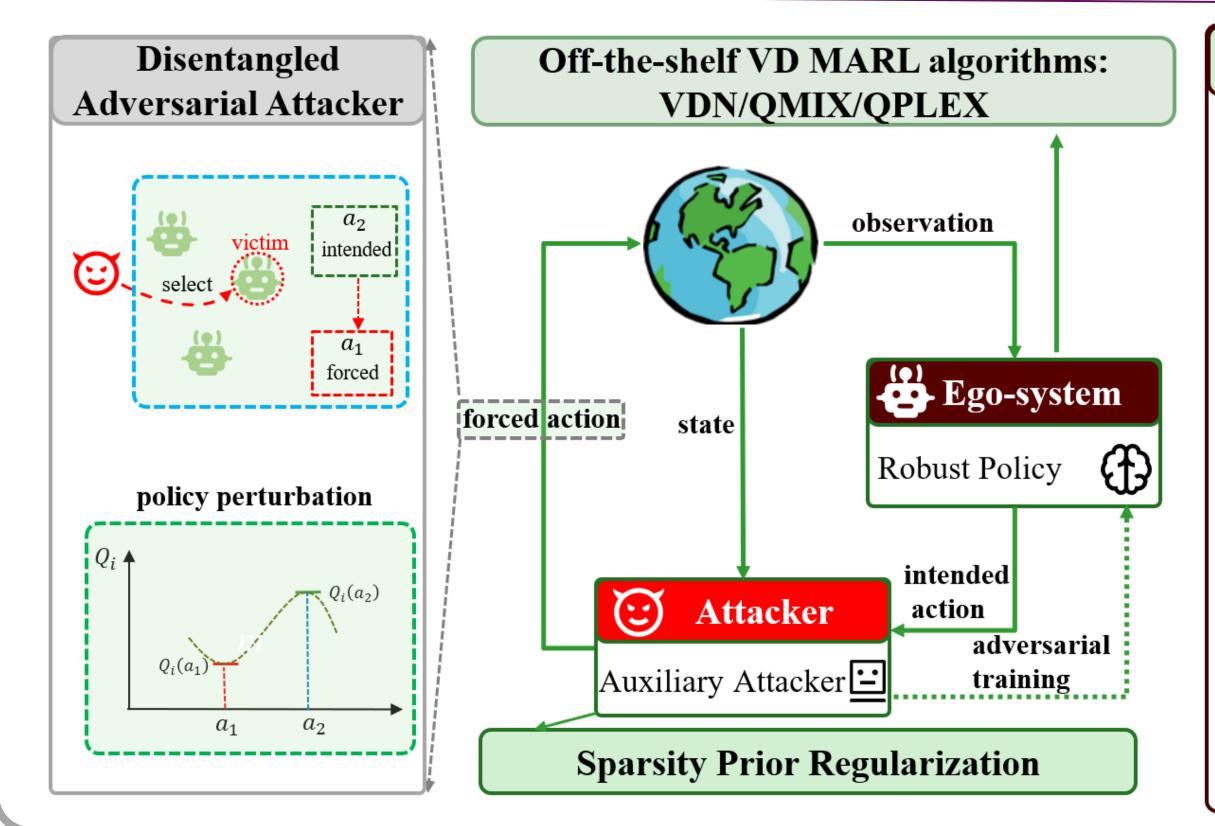
Lei Yuan*, Ziqian Zhang*, Ke Xue, Hao Yin, Feng Chen, Cong Guan, Lihe Li, Chao Qian, Yang Yu Nanjing University, Polixir Technologies

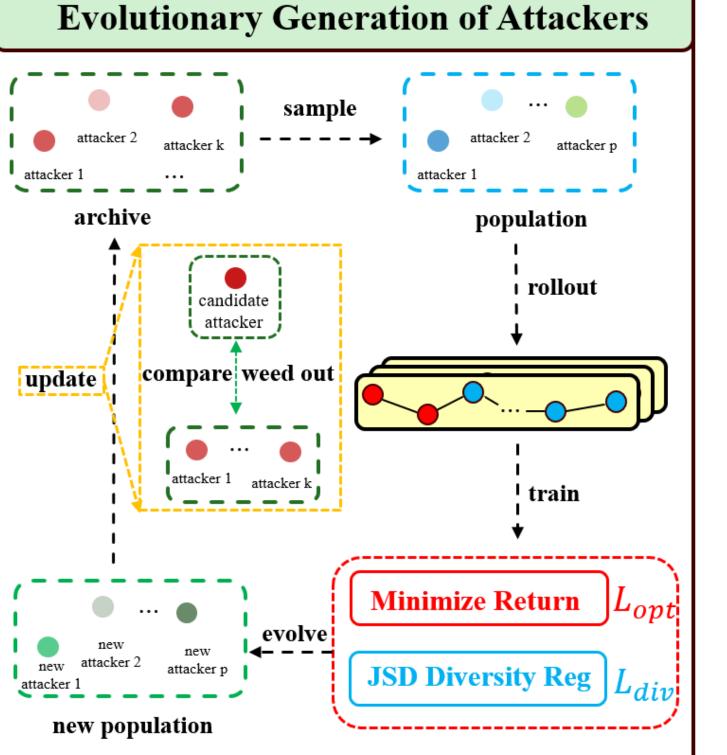
Introduction

Despite of promising potential of MARL, lack of robustness makes it difficult to be applied in the real world.

To solve a robust policy, we formalize LPA-Dec-POMDP and train a robust policy via evolutionary generation of attackers.

Method


Attacker Optimization Objective:


- minimize the reward of the ego-system
- sparsity prior regularization
- JSD diversity regularization

Attacker Population Generation:

- Quality-Diversity algorithm
- customized selection and update mechanism Robustness Training Paradigm:
- application of any off-the-shelf MARL algorithm

Workflow

Experiments

Performance on different SMAC maps

	Map_Name	2s3z	3m	3s_vs_3z	8m	MMM	1c3s5z	1 / / ~
Method		K = 8	K = 4	K = 8	K = 5	K = 8	K = 6	+/ − / ≈
Natural	vanilla QMIX	92.8 ± 1.62	97.9 ± 1.02	98.3 ± 0.78	98.2 ± 0.45	95.8 ± 1.59	88.8 ± 2.13	1/1/4
	RARL	96.4 ± 1.19	86.0 ± 5.38	80.6 ± 27.5	95.3 ± 3.31	89.3 ± 7.01	76.9 ± 9.85	0/4/2
	RAP	98.1 ± 0.76	91.3 ± 4.93	99.3 ± 0.51	91.7 ± 7.96	95.3 ± 4.98	86.7 ± 10.5	0/1/5
	RANDOM	98.0 ± 0.60	95.3 ± 2.07	99.6 ± 0.35	98.6 ± 0.90	93.8 ± 7.56	93.1 ± 4.41	1/0/5
	ROMANCE	97.9 ± 1.34	96.0 ± 1.83	97.8 ± 1.78	94.3 ± 3.94	97.1 ± 1.49	93.9 ± 1.24	
	vanilla QMIX	78.8 ± 1.28	78.7 ± 1.49	87.0 ± 0.36	66.2 ± 2.08	70.0 ± 3.97	66.6 ± 2.03	0/5/1
Random Attack	RARL	84.3 ± 2.40	67.6 ± 5.01	70.1 ± 29.1	75.7 ± 7.00	62.2 ± 10.2	56.5 ± 10.8	0/5/1
	RAP	87.3 ± 1.87	73.5 ± 3.49	89.8 ± 4.81	78.4 ± 8.22	84.2 ± 9.05	66.8 ± 9.66	0/1/5
	RANDOM	83.9 ± 6.38	76.4 ± 2.27	91.9 ± 1.32	72.0 ± 3.46	72.9 ± 7.09	60.5 ± 21.3	0/2/4
	ROMANCE	89.1 ± 1.97	78.1 ± 5.13	93.0 ± 1.82	76.2 ± 5.36	85.8 ± 8.66	77.9 ± 1.96	
	vanilla QMIX	26.7 ± 4.28	20.7 ± 2.13	30.9 ± 1.52	42.7 ± 9.79	37.9 ± 3.13	35.2 ± 8.66	0/6/0
EGA	RARL	56.1 ± 11.8	86.1 ± 0.98	60.9 ± 14.2	66.3 ± 7.25	41.5 ± 11.6	35.3 ± 4.00	0/6/0
	RAP	64.1 ± 11.9	84.0 ± 4.27	65.1 ± 4.41	84.4 ± 8.88	74.9 ± 15.5	45.4 ± 6.83	0/4/2
	RANDOM	48.3 ± 17.3	66.2 ± 16.6	54.4 ± 7.83	55.6 ± 12.5	53.1 ± 6.09	43.3 ± 10.3	0/6/0
	ROMANCE	81.6 ± 0.84	89.7 ± 1.52	90.5 ± 1.97	86.2 ± 5.11	84.0 ± 11.5	66.5 ± 3.24	. ,

Visualization Analysis

- Policy learned without ROMANCE ignores the emergent situation and still tries to assault when the attacked marauder is drawn away.
- Policy learned with ROMANCE learns to wait for the victim Marauder
- to regroup for efficient coordination.