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Training with diverse teammates is the key for learning generalizable agents.

Introduction Method

Classic methods mainly explore on policy-level to generate teammates. 

Low efficiency: The more complex the space is, the harder to explore.
Lack semantic information: We don’t know teammates’ behaviors.

What if we explore on a higher sematic-level, first finding novel 
coordination-behaviors, and then generating the corresponding teammates?
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Reward function
Def reward1(self): -> float

Coordination behavior !!
“Make two passes before shooting …”
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We propose LLM-Assisted Semantically Diverse Teammate Generation (SEMDIV), which iteratively:

(a) utilizes LLMs to propose a novel 
coordination behavior in natural 
language (the                       step),

(c) trains ego agents 𝜋	./0	to 
coordinate with this teammate.

Finally, SEMDIV obtains a set of diverse grounded teammates + strong and adaptable coordination agents.

(b) translates this behavior into 
reward function code, and trains a 
grounded MARL teammate policy 
𝜋	"# (the                             step),

Experiments
Overall performance with unseen teammates (R1: Return, R2: Run teammates’ behavior %) A teammate example in Google Research Football (GRF): 

LLM-output coordination behavior:
We prefer to pass the ball twice before shooting.

SEMDIV discovers behaviors that baselines cannot!
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