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Abstract

Cooperative multi-agent reinforcement learning (CMARL)
has shown to be promising for many real-world applica-
tions. Previous works mainly focus on improving coordina-
tion ability via solving MARL-specific challenges (e.g., non-
stationarity, credit assignment, scalability), but ignore the
policy perturbation issue when testing in a different environ-
ment. This issue hasn’t been considered in problem formula-
tion or efficient algorithm design. To address this issue, we
firstly model the problem as a limited policy adversary Dec-
POMDP (LPA-Dec-POMDP), where some coordinators from
a team might accidentally and unpredictably encounter a lim-
ited number of malicious action attacks, but the regular coor-
dinators still strive for the intended goal. Then, we propose
Robust Multi-Agent Coordination via Evolutionary Genera-
tion of Auxiliary Adversarial Attackers (ROMANCE), which
enables the trained policy to encounter diversified and strong
auxiliary adversarial attacks during training, thus achiev-
ing high robustness under various policy perturbations. Con-
cretely, to avoid the ego-system overfitting to a specific at-
tacker, we maintain a set of attackers, which is optimized to
guarantee the attackers high attacking quality and behavior
diversity. The goal of quality is to minimize the ego-system
coordination effect, and a novel diversity regularizer based
on sparse action is applied to diversify the behaviors among
attackers. The ego-system is then paired with a population
of attackers selected from the maintained attacker set, and
alternately trained against the constantly evolving attackers.
Extensive experiments on multiple scenarios from SMAC in-
dicate our ROMANCE provides comparable or better robust-
ness and generalization ability than other baselines.

1 Introduction
Recently, cooperative multi-agent reinforcement learning
(CMARL) has attracted extensive attention (Hernandez-
Leal, Kartal, and Taylor 2019; Gronauer and Diepold 2022)
and shows potential in numerous domains like autonomous
vehicle teams (Peng et al. 2021), multi-agent path finding
(Greshler et al. 2021), multi-UAV control (Yun et al. 2022),
and dynamic algorithm configuration (Xue et al. 2022b).
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Existing CMARL methods mainly focus on solving spe-
cific challenges such as non-stationarity (Papoudakis et al.
2019), credit assignment (Wang et al. 2021a), and scalabil-
ity (Christianos et al. 2021) to improve the coordination abil-
ity in complex scenarios. Either value-based methods (Sune-
hag et al. 2018; Rashid et al. 2018; Wang et al. 2021b) or
policy-gradient-based methods (Foerster et al. 2018; Lowe
et al. 2017; Yu et al. 2022) have demonstrated remark-
able coordination ability in a wide range of tasks (e.g.,
SMAC (Samvelyan et al. 2019) and Hanabi (Yu et al. 2022)).
Despite these successes, the mainstream CMARL methods
are still difficult to be applied in real world, as they mainly
consider training and testing policy in a nondistinctive en-
vironment. Thus, the policy learned by those methods may
suffer from a performance decrease when encountering any
disagreement between training and testing (Guo et al. 2022).

Training a robust policy before deployment plays a
promising role for the mentioned problem and makes
excellent progress in single-agent reinforcement learning
(SARL) (Moos et al. 2022; Xu et al. 2022). Previous works
typically employ an adversarial training paradigm to obtain a
robust policy. These methods generally model the process of
policy learning as a minimax problem from the perspective
of game theory (Yu et al. 2021) and optimize the policy un-
der the worst-case situation (Pinto et al. 2017; Zhang et al.
2020a; Zhang, Wang, and Boedecker 2022). Nevertheless,
the multi-agent problem is much more complex (Zhang,
Yang, and Başar 2021), as multiple agents are making deci-
sions simultaneously in the environment. Also, recent works
indicate that a MARL system is usually vulnerable to any at-
tack (Guo et al. 2022). Some MARL works study the robust-
ness from various aspects, including the uncertainty in local
observation (Lin et al. 2020), model function (Zhang et al.
2020a), and message sending (Xue et al. 2022c). The men-
tioned methods either focus on investigating the robustness
from different aspects, or apply techniques such as heuristic
rules and regularizers used in SARL to train a robust coordi-
nation policy. However, how unpredictable malicious action
attacks cause policy perturbation has not been fully explored
in CMARL.

In this work, we aim to develop a robust CMARL frame-
work when malicious action attacks on some coordinators
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from a team exist. Concretely, we model the problem as a
limited policy adversary Dec-POMDP (LPA-Dec-POMDP),
where some coordinators may suffer from malicious action
attacks, while the regular coordinators should still try to
complete the intended goal.

Towards developing such a robust policy, we propose RO-
MANCE, an adversarial training paradigm based on the evo-
lutionary generation of auxiliary attackers. Specifically, we
maintain a set of attackers with high attacking quality and
behavior diversity among all generated attackers to avoid the
ego-system overfitting to a specific attacker, where high at-
tack quality requires the attacker to minimize the ego-system
reward, and diversity refers to generating different behaviors
among attackers. A sparse action regularizer is also intro-
duced to promote behavior diversity for different attackers.
Furthermore, to prevent the attackers from being too tricky
for the ego-system to complete the intended mission, we
limit the total number of attacks to a fixed value. For the
training of the ego-system, we pair it with a population of
attackers selected from the maintained set to complete the
given mission, then iteratively select and update the attacker
population under the customized quality score and diversity
distance. Finally, we obtain a highly robust coordination pol-
icy under different types and degrees of action perturbations.

To evaluate the proposed methods, we conduct exten-
sive experiments on multiple maps from SMAC (Samvelyan
et al. 2019) and compare ROMANCE against multiple base-
lines. Empirical results demonstrate that our proposed ad-
versarial training paradigm can indeed obtain attackers with
high attack ability and diverse behaviors. Also, the coordi-
nation policy trained against the population can achieve high
robustness and generalization effectiveness with alternative
numbers of attacks during testing. Furthermore, visualiza-
tion experiments indicate how ROMANCE improves robust-
ness under malicious action perturbations.

2 Related Work
Multi-agent reinforcement learning (MARL) has made

prominent progress these years (Hernandez-Leal, Kartal,
and Taylor 2019; Gronauer and Diepold 2022). Many meth-
ods have emerged as efficient ways to promote coordina-
tion among agents, and most of them can be roughly di-
vided into policy-based and value-based methods. MAD-
DPG (Lowe et al. 2017), COMA (Foerster et al. 2018),
DOP (Wang et al. 2021c), and MAPPO (Yu et al. 2022) are
typical policy gradient-based methods that explore the opti-
mization of multi-agent policy gradient methods. MADDPG
applies the CTDE (Centralized Training Decentralized Ex-
ecution) paradigm to train the policies and optimizes each
policy via DDPG (Lillicrap et al. 2016). COMA also applies
the centralized critic to optimize the policy but employs a
counterfactual model to calculate the marginal contribution
of each agent in the multi-agent system. DOP takes a for-
ward step to apply a centralized linear mixing network to
decompose the global reward in a cooperative system and
shows performance improvement for MADDPG and COMA
significantly. Recently, MAPPO applies the widely proven
learning efficiency of proximal policy optimization tech-
nique in single-agent reinforcement learning into MARL.

Another category of MARL approaches, value-based meth-
ods, mainly focus on the factorization of the value function.
VDN (Sunehag et al. 2018) aims to decompose the team
value function into agent-wise ones by a simple additive
factorization. Following the Individual-Global-Max (IGM)
principle (Son et al. 2019), QMIX (Rashid et al. 2018) im-
proves the way of value function decomposition by learning
a non-linear mixing network, which approximates a mono-
tonic function value decomposition. QPLEX (Wang et al.
2021b) takes a duplex dueling network architecture to fac-
torize the joint value function, which achieves a full expres-
siveness power of IGM. Wang et al. (2021a) recently give
theoretical analysis of the IGM by applying a multi-agent fit-
ted Q-iteration algorithm. More details and advances about
MARL can be seen in reviews (Zhang, Yang, and Başar
2021; Canese et al. 2021; Zhu, Dastani, and Wang 2022).

Adversarial training plays a promising role for the RL
robustness (Moos et al. 2022), which involves the pertur-
bations occurring in different cases, such as state, reward,
policy, etc. These methods then train the RL policy in an
adversarial way to acquire a robust policy in the worst-
case situation. Robust adversarial reinforcement learning
(RARL) (Pinto et al. 2017) picks out specific robot joints
that the adversary acts on to find an equilibrium of the
minimax objective using an alternative learning adversary.
RARARL (Pan et al. 2019) takes a further step by introduc-
ing risk-averse robust adversarial reinforcement learning to
train a risk-averse protagonist and a risk-seeking adversary,
this approach shows substantially fewer crashes compared to
agents trained without an adversary on a self-driving vehicle
controller. The mentioned methods only learn a single ad-
versary, and this approach does not consistently yield robust-
ness to dynamics variations under standard parametrizations
of the adversary. RAP (Vinitsky et al. 2020) and GC (Song
and Schneider 2022) then learn population-based augmenta-
tion to the Robust RL formulation. See (Ilahi et al. 2021;
Moos et al. 2022) for detailed reviews, and (Smirnova,
Dohmatob, and Mary 2019; Zhang et al. 2020a,b; Oikarinen
et al. 2021; Xie et al. 2022) for some recent advances.

Robust MARL has attracted widespread attention re-
cently (Guo et al. 2022). M3DDPG (Li et al. 2019) learns
a minimax extension of MADDPG (Lowe et al. 2017)
and trains the MARL policy in an adversarial way, which
shows potential in solving the poor local optima caused
by opponents’ policy altering. In order to model the uncer-
tainty caused by the inaccurate knowledge of the model, R-
MADDPG (Zhang et al. 2020c) introduces the concept of ro-
bust Nash equilibrium, and treats the uncertainty as a natural
agent, demonstrating high superiority when facing reward
uncertainty. For the observation perturbation of CMARL,
Lin et al. (2020) learn an adversarial observation policy to
attack the system, showing that the ego-system is highly vul-
nerable to observational perturbations. RADAR (Phan et al.
2021) learns resilient MARL policy via adversarial value de-
composition. Hu and Zhang (2022) further design an action
regularizer to attack the CMARL system efficiently. Xue
et al. (2022c) recently consider the multi-agent adversar-
ial communication, learning robust communication policy
when some message senders are poisoned. To our knowl-

11754



edge, no previous work has explored CMARL under LPA-
Dec-POMDP, neither in problem formulation nor efficient
algorithm design.

Furthermore, some other works focus on the robustness
when coordinating with different teammates, referring to ad-
hoc teamwork (Stone et al. 2010; Gu et al. 2022; Mirsky
et al. 2022), or zero-shot coordination (ZSC) (Hu et al. 2020;
Lupu et al. 2021; Xue et al. 2022a). The former methods aim
at creating an autonomous agent that can efficiently and ro-
bustly collaborate with previously unknown teammates on
tasks to which they are all individually capable of contribut-
ing as team members. While in the ZSC setting, a special
case of ad-hoc teamwork, agents work toward a common
goal and share identical rewards at each step. The intro-
duction of adversarial attacks makes the victim an unknown
teammate with regard to regular agents, while it is even more
challenging because the unknown teammate might execute
destructive actions. Our proposed method takes a further
step toward this direction for robust CMARL.

3 Problem Formulation
This paper considers a CMARL task under the framework
of Dec-POMDP (Oliehoek and Amato 2016), which is de-
fined as a tuple M = ⟨N ,S,A, P,Ω, O,R, γ⟩. Here N =
{1, . . . , n} is the set of agents, S is the set of global states,
A = A1 × ... × An is the set of joint actions, Ω is the set
of observations, and γ ∈ [0, 1) represents the discounted
factor. At each time step, agent i receives the observation
oi = O(s, i) and outputs the action ai ∈ Ai. The joint ac-
tion a = (a1, ..., an) leads to the next state s′ ∼ P (·|s,a)
and a global reward R(s,a, s′). To relieve the partial observ-
ability, we encode the history (o1i , a

1
i , . . . , o

t−1
i , at−1

i , oti) of
agent i until timestep t into τi, then with τ = ⟨τ1, . . . , τn⟩,
the formal objective is to find a joint policy π(τ ,a)
which maximizes the global value function Qπ

tot(τ ,a) =
Es,a [

∑∞
t=0 γ

tR(s,a) | s0 = s,a0 = a,π].
We aim to optimize a policy when some coordinators

from a team suffer from policy perturbation. The vulner-
ability of CMARL makes it difficult to tolerate an unlim-
ited number of perturbations. To avoid the ego-system from
being entirely destroyed, we assume a limited number of
perturbations and formulate such setting as a LPA-Dec-
POMDP:

Definition 1 (Limited Policy Adversary Dec-POMDP)
Given a Dec-POMDP M = ⟨N ,S,A, P,Ω, O,R, γ⟩, we
define a limited policy adversary Dec-POMDP (LPA-Dec-
POMDP) M̂ = ⟨N ,S,A, P,K,Ω, O,R, γ⟩ by introducing
an adversarial attacker πadv : S× A × N → A. The
attacker perturbs the ego-agents’ policy by forcing the
agents to execute joint action â ∼ πadv(·|s,a, k) such
that s′ ∼ P (·|s, â), r = R(s, â, s′). Where K ∈ N is the
number of attacks that meets

∑
t

∑
i∈N I(âit ̸= ait) ≤ K,

and k ≤ K indicates the current remaining attack number.

To efficiently address the attacking problem, we introduce
a class of disentangled adversarial attacker policies by de-
composing a policy into two components: victim selection
and policy perturbation, in Def. 2.

Definition 2 (Disentangled Adversarial Attacker Policy)
For an adversarial attacker policy πadv , if there exist a
victim selection function v : S × N → ∆(N̂ ) and a policy
perturbation function g : N̂ × A × N → ∆(A), such that
the following two equations hold:

πadv(â|s,a, k) = v(i|s, k)g(â|i,a, k)
g(â|i,a, 0) = g(â|null,a, k) = I(â = a),

where N̂ = N ∪ {null}, i ∼ v(·|s, k), then we say that v
and g disentangle πadv .

As for the policy perturbation function, many heuristic-
based methods (Pattanaik et al. 2018; Tessler, Efroni, and
Mannor 2019; Sun et al. 2021) have been proposed to find
adversarial perturbations for a fixed RL policy. A common
attacking way is to force the victim to select the action with
the minimum Q-values at some steps (Pattanaik et al. 2018).
Thus, for policy perturbation function g, an effective and ef-
ficient form could be g(â|i,a, k) = g(âi,a−i|i,a, k) =
I(âi = argminai Qi(τ i, ai)), if k > 0 and i ̸= null. For
efficiency, we only focus on disentangled attacker policy
πadv = v◦g with a heuristic-based policy perturbation in the
rest of the paper, and, without loss of generality, we suppose
g performs a deterministic perturbation with â = g(i,a, k).

4 Method
In this section, we will explain the design of ROMANCE,
a novel framework to learn a robust coordination policy un-
der the LPA-Dec-POMDP. We first discuss the optimization
object of each attacker and then show how to maintain a set
of high-quality solutions with diverse behaviors by specially
designed update and selection mechanisms. Finally, we pro-
pose ROMANCE, an alternating training paradigm, to im-
prove the robustness of CMARL agents (ego-system) under
policy perturbations.

4.1 Attacker Optimization Objective
In this section, we discuss how to train a population of ad-
versarial attacker policies Padv = {πj

adv}
np

j=1 = {vj ◦g}np

j=1
under a fixed joint ego-system policy π, where np is the
population size. We anticipate the attacker population un-
der the goal of high quality and diversity, where the qual-
ity objective requires it to minimize the ego-system’s return
and diversity encourages attackers to behave differently. To
achieve the mentioned goal, we first show that an individual
optimal adversarial attacker could be solved under a specific
MDP setting and then discuss how to solve it.
Theorem 1 Given an LPA-Dec-POMDP M̂ = ⟨N ,S,A,
P,K,Ω, O,R, γ⟩, a fixed joint policy π of the ego-system
and a heuristic-based policy perturbation function g, there
exists an MDP M̄ = (S̄, Ā, P̄ , R̄, γ) such that the opti-
mal adversarial attacker π∗

adv for M̂ is disentangled by
an optimal policy v∗ of M̄ and g, where S̄ = S × N,
s̄ = (s, k), s̄′ = (s′, k′), k, k′ ≤ K indicates the remaining
attack budget, Ā = N ∪{null}, R̄(s̄, ā, s̄′) = −R(s, â, s′),

P̄ (s̄′|s̄, ā) =


0 k − k′ /∈ {0, 1}
P (s′|s, â)I(â = a) k − k′ = 0

P (s′|s, â)I(â ̸= a) k − k′ = 1

,
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where d̄(s̄0) = d(s0)I(k0 = K), d and d̄ are distributions
over initial state in M̂ and M̄, respectively, and a = π(s),
â = g(ā,π(s), k) are original and forced action of ego-
system, respectively.

The intuition behind Thm. 1 is that the adversarial attacker
is aimed at minimizing the reward earned by the ego-system.
Under a fixed heuristic-based policy perturbation function g,
the adversarial attacker hopes to find an optimal victim pol-
icy v to help decide which agent and when to enforce the
attack. The proof can be found in Appendix. The construc-
tion of M̄ makes it possible to apply off-the-shelf DRL al-
gorithms to solve an optimal agent v of M̄, thus deriving the
optimal adversarial attacker of the LPA-Dec-POMDP.

Notice that limited numbers of attack, which could only
be executed K times, making the action sparse in both agent
and time dimension. Such sparse action often plays a vital
role in obtaining a high reward and thus would be exploited
aggressively. However, the opportunities for taking sparse
action are limited. If the attacker exhausts the opportuni-
ties at the very beginning, it will lead to sub-optimality. To
guide the agent to take sparse action more cautiously, Spar-
sity Prior Regularized Q learning (SPRQ) (Pang et al. 2021)
constructs a regularized MDP by assigning a low probability
to sparse action based on a reference distribution and solves
the task by proposing a regularized objective:

max
v

E[
T∑

t=0

γt(R̄t − λDKL(v(·|s̄t), pref (·)))], (1)

where λ ∈ R, pref is the reference distribution which as-
signs a small probability δ to sparse action “attack” and 1−δ
to “not attack” (i.e., pref (·) = ( δ

|N | , ...
δ

|N | , 1 − δ) in this
case), and DKL is the Kullback-Leibler (KL) divergence.
As claimed in Proposition 3.1 and 3.2 of (Pang et al. 2021),
the regularized optimal policy can be obtained by:

v(ā|s̄) =
pref (ā) exp (

Q̄v(s̄,ā)
λ )

Z(s̄)
, (2)

where Q̄v(s̄, ā) is the regularized Q function under v, and
Z(s̄) =

∑
ā∈Ā pref (ā) exp

Q̄v(s̄,ā)
λ is the partition function.

Following the proposed regularized Bellman optimality
operator, we parameterize Q-function with ϕ and the SPRQ
loss function is thus defined as follows:

Lopt(ϕ) = E[(Q̄ϕ(s̄t, āt)− y)2], (3)

where y = r̄t+γλ log (Eā′
t+1∼pref (·)[exp (

Q̄ϕ− (s̄t+1,ā
′
t+1)

λ )]),
and ϕ− are the parameters of the target network.

Applying the above technique can lead to an attacker with
high attack efficiency, nevertheless, only one attacker can
easily overfit to a specific ego-system type, still leading to
poor generalization ability over unseen situation. Inspired
by the wildly proved ability of Population-Based Train-
ing (PBT) (Jaderberg et al. 2019), we introduce a diver-
sity regularization objective to ensure the effective behav-
ior diversity of the whole population. The divergence of ac-
tion distribution under same states is a reliable proxy for

measuring the diversity between policies. In this way, we
use Jensen-Shannon Divergence (JSD) (Fuglede and Topsøe
2004) to reflect the diversity of the population Padv(ϕ) =

{πϕj

adv}
np

j=1 = {vϕj ◦ g}np

j=1, which can be calculated as:

JSD({vϕj (·|s̄)}np

j=1) =
1

np

np∑
j=1

DKL(v
ϕj (·|s̄), v̄(·|s̄)), (4)

where v̄(ā|s̄) = 1
np

vϕj (ā|s̄) is the average policy. Then, for
the population, the regularization objective is defined as:

Ldiv(ϕ) = Es̄∼Sa
[JSD({vϕj (·|s̄)}np

j=1)], (5)

where Sa =
⋃np

j=1 S
j
a =

⋃np

j=1{s̄|k > 0, ā ̸= null, ā ∼
vϕj (·|s̄)} is the union set of states (attack points) chosen to
be attacked by adversarial attackers.

Considering the mentioned sparse attack and behavior di-
versity, our full loss function can be derived:

Ladv(ϕ) =
1

np

np∑
j=1

Lopt(ϕj)− αLdiv(ϕ), (6)

where Lopt and Ldiv are defined in Eq. (3) and Eq. (5), re-
spectively, and α is an adjustable hyper-parameter to control
the balance between quality and behavior diversity.

4.2 Evolutionary Generation of Attackers
Despite the effectiveness of PBT with the objective in
Eq. (6), the ego-system may overfit to some specific types
of attackers in the current population and thus forget the at-
tacking modes occurring in the early training stage. To avoid
this catastrophic result, we attempt to further improve the
coverage of adversary policy space.

Among different methods, Quality-Diversity (QD) algo-
rithms (Cully and Demiris 2017; Chatzilygeroudis et al.
2021) can obtain a set of high-quality solutions with di-
verse behaviors efficiently, which have recently been used
to discover diverse policies (Wang, Xue, and Qian 2022),
generate environments (Bhatt et al. 2022) and partners (Xue
et al. 2022a) in RL. As a specific type of evolutionary al-
gorithms (Bäck 1996), QD algorithms usually maintain an
archive (i.e., a set of solutions with high-performance and
diverse behaviors generated so far) and simulate the natural
evolution process with iterative update and selection.

Inspired by QD algorithms, we design specialized update
and selection mechanisms to generate desired auxiliary ad-
versarial attackers. We maintain an archive Arcadv with the
maximum size na, where each individual (i.e., attacker) is
assigned its quality score and behavior. Specifically, given
an ego-agent joint policy π, the quality score of adversarial
attacker πϕi

adv is defined as the attacker’s discounted cumula-
tive return:

Quality(πϕi

adv) = Eτ̄ [
∑
t

γtR̄(s̄, ā)|π], (7)

where τ̄ is trajectory of attacker πϕi

adv , and R̄ is defined in
Thm. 1. To describe the behavior of πϕi

adv , we calculate the
distance between it and another attacker πϕj

adv:

Dist(πϕi

adv, π
ϕj

adv) = Es̄∼Si,j
a
[JSD(vϕi(·|s̄), vϕj (·|s̄))], (8)
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where Si,j
a = Si

a ∪ Sj
a is the attack points set. For simplic-

ity, we use Quality(i) and Dist(i, j) to denote the quality
score of πϕi

adv and the distance between πϕi

adv and π
ϕj

adv , re-
spectively, and i, j are their indexes in the archive.

In each iteration, we use fitness-based selection (Blickle
and Thiele 1996) according to their quality scores to se-
lect np adversarial attackers from the archive and inter-
act with the ego-system. Next, we take the optimization
step described in Eq. (6) as an implicit mutation opera-
tor and derive new attackers. The archive is then updated
one by one by adding the newly generated attackers. We
avoid adding attackers with similar behaviors to keep the
archive diverse (Cully and Mouret 2013; Wang, Xue, and
Qian 2022). That is, whenever we want to add a new attacker
to the archive, we first choose the most similar attacker in the
archive and calculate their behavior distance. If the distance
exceeds a certain threshold, the new attacker will be added.
Otherwise, we keep one at random. Note that if the current
archive size exceeds the capacity na after adding the new at-
tacker, the oldest one will be deleted. The full procedure of
the mentioned process is shown in Algo. 1 in Appendix, and
we refer to such an iteration as a generation.

4.3 Robustness Training Paradigm
After obtaining a set of attackers with high quality in attack-
ing and high diversity in behaviors, we aim to learn a robust
ego-system under the existing attackers. We first investigate
LPA-Dec-POMDP with a fixed adversarial attacker πadv and
how ego-agent joint policy could be optimized.

Theorem 2 Given an LPA-Dec-POMDP M̂ = ⟨N ,S,A,
P,K,Ω, O,R, γ⟩, a fixed deterministic adversarial attacker
policy πadv , there exists a Dec-POMDP M̃ = ⟨N , S̃,A, P̃ ,

Ω, Õ, R̃, γ⟩, such that the optimal policy of M̃ is the optimal
policy for M̂ given πadv , where S̃ = S × N, s̃ = (s, k),
s̃′ = (s′, k′), d̃(s̃0) = d(s0)I(k0 = K), Õ(s̃, i) = O(s, i),
R̃(s̃,a, s̃′) = R(s, â, s′),

P̃ (s̃′|s̃,a) =
{
0 k − k′ /∈ {0, 1}
P (s′|s, â) otherwise

,

where d̃ and d are distributions over initial state in M̃ and
M̂, respectively, and â = πadv(s,a, k) indicates the exe-
cuted joint action of the ego-system.

Theorem 3 Given M̂ = ⟨N ,S,A, P,K,Ω, O,R, γ⟩, a
stochastic adversarial attacker policy πadv , there exists a
Dec-POMDP M̃ = ⟨N , S̃,A, P̃ ,Ω, Õ, R̃, γ⟩, such that
∀π, we have Ṽπ(s̃) ≤ V̂π◦πadv

(s, k), where s̃ = (s, k),
V̂π◦πadv

(s, k) denotes the state value function in the orig-
inal LPA-Dec-POMDP M̂, for ∀s ∈ S, ∀k ∈ {0, 1, ...,K}.

The intuition behind Thm. 2 is that the constructed
Dec-POMDP M̃ is functionally identical to the LPA-Dec-
POMDP given the fixed πadv . This theorem unveils that
LPA-Dec-POMDP can be viewed as a particular version
of Dec-POMDP whose policy should be robust under the
“under-attack” transition and reward function. The theorem

is also easy to be extended to a population version where
πadv ∼ p(Padv), where p is some distribution over the pop-
ulation of adversarial attackers Padv . Thm. 3 illustrates that,
under the circumstance where πadv is a stochastic policy, the
value function in the new Dec-POMDP is the lower bound
of the value function of the same joint policy in the original
LPA-Dec-POMDP. Related proof can be found in Appendix.
The theorem reveals that by optimizing the ego-system un-
der the constructed Dec-POMDP M̃, we can get a robust
ego-system under the Limited Adversary Dec-POMDP M̂.

Accordingly, many CMARL algorithms can be applied.
Specifically, we take QMIX (Rashid et al. 2018) as the prob-
lem solver, where there exists a Q network Qi(τ

i, ai) for
each agent i and a mixing network that takes each Q value
along with the global state as input and produces the value
of Qtot. Under the Dec-POMDP M̃ proposed in Thm. 3, we
parameterize QMIX with θ and train it through minimizing:

Lego(θ) = E[(Qtot(τ̃ , a, s̃; θ)− ytot)
2], (9)

where ytot = r̃ + γmaxa′ Qtot(τ̃
′, a′, s̃′; θ−), and θ− are

parameters of a periodically updated target network.
In our ROMANCE framework, we select a population of

adversarial attackers from the archive, alternatively optimize
the adversarial attackers or ego-system by fixing the other,
and update the archive accordingly. The full algorithm of
our ROMANCE can be seen in Algo. 2 in Appendix.

5 Experiments
In this section, we conduct extensive experiments to answer
the following questions: 1) Can ROMANCE1 achieve high
robustness compared to other baselines in different scenar-
ios? 2) Can ROMANCE obtain a set of attackers with high
attacking quality and diversity? 3) Can ROMANCE be inte-
grated into multiple CMARL methods, and how does each
hyperparameter influence the performance of ROMANCE?

We conduct experiments on SMAC (Samvelyan et al.
2019), a widely used combat scenario of StarCraft II unit mi-
cromanagement tasks, where we train the ally units to beat
enemy units controlled by the built-in AI with an unknown
strategy. At each timestep, agents can move or attack any
enemies and receive a global reward equal to the total dam-
age done to enemy units. Here we consider multiple maps
include maps 2s3z, 3m, 3s vs 3z, 8m, MMM, and 1c3s5z.
The detailed descriptions are presented in Appendix.

To ensure fair evaluation, we carry out all the experiments
with five random seeds, and the results are presented with a
95% confidence interval. Detailed network architecture, hy-
perparameter setting of ROMANCE are shown in Appendix.

5.1 Competitive Results and Analysis
We implement ROMANCE based on QMIX (Rashid et al.
2018) for its widely proven coordination ability. Then, RO-
MANCE is compared against four baselines: the vanilla
QMIX, which is obtained to complete the task without
any adversarial training, RANDOM, which adds random

1Code is available at https://github.com/zzq-bot/ROMANCE

11757



Assault

Assault Retreat

Assault

Retreat & 
regroup

: victim : attacker : original action : forced action: regular agents

Figure 1: Visualization of action selection under unseen
action attack. The first and second rows show the policy
learned without and with ROMANCE, respectively.

attack during training, and two strong baselines named
RARL (Pinto et al. 2017) and RAP (Vinitsky et al. 2020).

RARL (Pinto et al. 2017) trains a robust agent in the pres-
ence of an adversarial attacker who applies disturbance to
the system. Iteratively, the attacker learns to be an optimal
destabilization policy, and then the agent learns to fulfill the
original task while being robust to the adversarial attacker.

RAP (Vinitsky et al. 2020) extends RARL by introduc-
ing population based training. At each rollout, it samples an
attacker uniformly from the population and trains the agent
and attackers iteratively as RARL does. The introduction of
population improves the generalization by forcing the agent
to be robust to a wide range of attackers, thus avoiding being
exploited by some specific attackers.

Robustness Visualization At first glance, we conduct ex-
periments on map MMM to investigate how the training
framework influences the coordination policy behavior un-
der unpredictable attacks. As shown in Fig. 1, when one
coordinator from a well-trained coordination policy suffers
from an action attack, the policy without adversarial train-
ing will still take the original coordination pattern but ignore
the emergent situation, resulting in a sub-optimal policy. As
seen at the beginning of the battle, the survivors learned by
vanilla QMIX still try to assault but ignore the attacked Ma-
rauder when it is drawn away by a malicious attack, causing
severe damage to the team. Still, our ROMANCE can obtain
a policy where the survivors retreat and wait for the Ma-
rauder to regroup for efficient coordination. At the middle
stage of the battle, when some Marines are close to death but
cannot get healed because the Medivac’s action is being at-
tacked, the survivors with full health learned by ROMANCE
will charge forward to replace the dying Marine and cover
him to let him get healed, while policy learned by vanilla
QMIX still ramble in the map but ignore the teammates.

Training phase evaluation Fig. 2 shows the learning
curves of different methods of maps 3s vs 3z and 2s3z when
facing fixed unknown attackers. ROMANCE outperforms
all baselines in both maps at each generation either in terms
of convergence speed or asymptotic performance. RAN-
DOM achieves the worst performance in almost every gen-
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Figure 2: Averaged test win rates on two maps.

eration, indicating that adding random policy perturbation
can somehow improve the exploration ability under an en-
vironment without attack but has no effect on tasks where
attackers exist. The superiority of ROMANCE over RARL
and RAP demonstrates the necessity of adversarial popula-
tion and diverse population training, respectively. In Fig. 3,
we present the learning curves of different methods imple-
mented on QPLEX and VDN on map 2s3z. The curves show
that ROMANCE can significantly enhance the robustness of
value-based MARL algorithms when they are integrated.
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Figure 3: Average test win rates of VDN and QPLEX on
map 2s3z during the training phase.

Robustness Comparison We here come to show whether
ROMANCE can improve the coordination ability under dif-
ferent unpredictable attacks compared with multiple base-
lines. As shown in Tab. 1, we present three settings, where
“Natural” means no attackers or the attack number K = 0
during testing, “Random Attack” indicates that every agent
in the ego-system might be attacked randomly at each step,
“EGA (Evolutionary Generation based Attackers)” are un-
seen attackers with high performance and diversity gener-
ated by our method in multiple extra runs, which could be
viewed as out-of-distribution attackers for different meth-
ods. In the “Natural” setting, ROMANCE achieves com-
parable or better performance compared to other baselines.
RARL achieves inferiority over other baselines because it
aims to learn a worst-case performance, leading to a pes-
simistic result for the coordination ability. RAP and RAN-
DOM show superiority over the vanilla QMIX in some
maps, such as 2s3z. We believe this is because random
attacks or a weak adversarial population during training
can promote exploration for MARL under natural circum-
stances. Furthermore, when suffering from a random attack
during testing (i.e., the “Random Attack” setting), vanilla
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Method
Map Name 2s3z

K = 8
3m

K = 4
3s vs 3z
K = 8

8m
K = 5

MMM
K = 8

1c3s5z
K = 6

+/− / ≈

Natural

vanilla QMIX 92.8± 1.62 97.9± 1.02 98.3± 0.78 98.2± 0.45 95.8± 1.59 88.8± 2.13 1/1/4
RARL 96.4± 1.19 86.0± 5.38 80.6± 27.5 95.3± 3.31 89.3± 7.01 76.9± 9.85 0/4/2
RAP 98.1± 0.76 91.3± 4.93 99.3± 0.51 91.7± 7.96 95.3± 4.98 86.7± 10.5 0/1/5

RANDOM 98.0± 0.60 95.3± 2.07 99.6± 0.35 98.6± 0.90 93.8± 7.56 93.1± 4.41 1/0/5
ROMANCE 97.9± 1.34 96.0± 1.83 97.8± 1.78 94.3± 3.94 97.1± 1.49 93.9± 1.24

Random
Attack

vanilla QMIX 78.8± 1.28 78.7± 1.49 87.0± 0.36 66.2± 2.08 70.0± 3.97 66.6± 2.03 0/5/1
RARL 84.3± 2.40 67.6± 5.01 70.1± 29.1 75.7± 7.00 62.2± 10.2 56.5± 10.8 0/5/1
RAP 87.3± 1.87 73.5± 3.49 89.8± 4.81 78.4± 8.22 84.2± 9.05 66.8± 9.66 0/1/5

RANDOM 83.9± 6.38 76.4± 2.27 91.9± 1.32 72.0± 3.46 72.9± 7.09 60.5± 21.3 0/2/4
ROMANCE 89.1± 1.97 78.1± 5.13 93.0± 1.82 76.2± 5.36 85.8± 8.66 77.9± 1.96

EGA

vanilla QMIX 26.7± 4.28 20.7± 2.13 30.9± 1.52 42.7± 9.79 37.9± 3.13 35.2± 8.66 0/6/0
RARL 56.1± 11.8 86.1± 0.98 60.9± 14.2 66.3± 7.25 41.5± 11.6 35.3± 4.00 0/6/0
RAP 64.1± 11.9 84.0± 4.27 65.1± 4.41 84.4± 8.88 74.9± 15.5 45.4± 6.83 0/4/2

RANDOM 48.3± 17.3 66.2± 16.6 54.4± 7.83 55.6± 12.5 53.1± 6.09 43.3± 10.3 0/6/0
ROMANCE 81.6± 0.84 89.7± 1.52 90.5± 1.97 86.2± 5.11 84.0± 11.5 66.5± 3.24

Table 1: Average test win rates of different methods under various attack settings, where K is the number of attacks during
training, “Natural” means no attack during testing, “Random Attack” indicates every agent in the ego-system may be attacked
randomly, and “EGA” means our evolutionary generation based attackers. The best result of each column is highlighted in
bold. The symbols ‘+, ‘−’ and ‘≈’ indicate that the result is significantly superior to, inferior to, and almost equivalent to
ROMANCE, respectively, according to the Wilcoxon rank-sum test (Mann and Whitney 1947) with confidence level 0.05.

Method K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 14
vanilla QMIX 59.2± 2.66 42.1± 0.81 26.7± 4.28 17.3± 0.62 12.2± 0.33 8.74± 0.14 6.42± 0.84 2.82± 0.70

RARL 72.7± 4.22 65.2± 9.11 56.1± 11.8 46.3± 12.1 38.0± 13.5 31.8± 13.1 25.9± 12.3 18.6± 10.9
RAP 81.7± 7.37 73.6± 7.46 64.1± 11.9 53.5± 11.7 42.5± 11.6 33.9± 11.4 25.8± 10.7 14.0± 7.50

RANDOM 69.3± 10.9 56.8± 12.8 48.3± 17.3 34.7± 17.3 25.5± 15.8 19.8± 14.3 14.9± 12.6 10.0± 9.69
ROMANCE 89.9± 1.19 86.4± 1.87 81.6± 0.84 75.1± 0.58 66.7± 1.56 57.4± 1.61 48.6± 2.60 41.5± 2.17

Table 2: Average test win rates of each method when the test number of attacks K changes on map 2s3z. The best result of each
column is highlighted in bold, and the column for the training number (i.e., K = 8) is highlighted as gray.

QMIX has the most remarkable performance decrease in
most maps, demonstrating the multi-agent coordination pol-
icy’s vulnerability without any adversarial training. Methods
based on adversarial training such as RANDOM, RARL,
and RAP show superiority over vanilla QMIX, indicat-
ing that adversarial training can improve the robustness
of MARL policy. We further find that when encounter-
ing strong attackers (i.e., the “EGA” setting), all baselines
sustain a severe performance decrease. The proposed RO-
MANCE achieves a high superiority over other baselines on
most maps under different attack modes, indicating it can in-
deed learn a robust coordination policy under different pol-
icy perturbation conditions.

Beyond-limited-budget evaluation As this study consid-
ers a setting where the number of attacks is fixed during the
training phase, we evaluate the generalization ability when
altering the attack budget during testing. We conduct exper-
iments on map 2s3z with the number of attacks K = 8 dur-
ing training. As shown in Tab. 2, when the budget is different
from the training phase, policy learned with vanilla QMIX
and RANDOM sustain a severe performance decrease even
when the budget slightly changes, indicating that these two
methods may overfit to the training situation and lack of gen-
eralization. RARL and RAP show superiority over vanilla
QMIX and RANDOM, demonstrating that adversarial train-
ing can relieve the overfitting problem but is still inferior
to ROMANCE along with the budget increasing, manifest-

ing the high generalization ability gained by the training
paradigm of ROMANCE.

5.2 Attacker Population Validation
As our method needs to maintain a set of adversarial at-
tackers, we design experiments to investigate the attackers
generated by our method. As shown in Fig. 4(a), the mul-
tiple attack methods can correspondingly decrease the ego-
system’s performance, and our EGA (Evolutionary Genera-
tion based Attackers) show high superiority over others both
in return and test win rate, demonstrating the effectiveness
of the proposed training paradigm. EGA, EGA w/o sa, and
PBA (Population-Based Attackers) outperform ATA (Alter-
nating Training Attackers) and RANDOM, indicating that
population training can indeed improve the attacking abil-
ity. Nevertheless, PBA works inefficiently, showing that only
randomly initialized individuals in the population are insuf-
ficient for efficient population training. The superiority of
EGA over its ablation EGA w/o sa demonstrates the effec-
tiveness of sparse action regularizer.

Furthermore, we analyze the behavior representations
learned by each attacking method in a two-dimensional
plane using the t-SNE method (Van der Maaten and Hinton
2008). As shown in Fig. 4(b), we can discover that the tra-
ditional population-based training paradigm can only gen-
erate attackers with very limited diversity and quality, with
most points gathering around in a few specific areas, while
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: High-quality individuals : PBA Others: EGA/

(a) Attack quality on map 3m (b) Behavior diversity of the population (c) Sparse attack learned by ROMANCE

Figure 4: Attacker quality validation, where EGA and EGA w/o sa are our Evolutionary Generation of Attackers with and
without sparse action regularizer, respectively; PBA and ATA refer to Population-Based Attackers and Alternate Training At-
tackers, respectively; RANDOM means that we select a coordinator to attack randomly; (a) The attacking quality. (b) The
t-SNE projection of attackers on map 3m. (c) Attack points produced on two maps with and without sparse action regularizer.
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Figure 5: More experiments about ROMANCE.

our EGA can find widespread points with both high qual-
ity and diversity. Fig. 4(c) shows that our sparse action reg-
ularizer can efficiently promote the sparse attacking points
to disperse as much as possible within one episode, which
can also implicitly promote the diversity of the attackers in
a population by preventing attackers from exhausting the at-
tack opportunities at the very beginning.

5.3 Integrative and Parameter Sensitive Studies
ROMANCE is agnostic to specific value decomposition
MARL methods. We can regard it as a plug-in model
and integrate it with existing MARL value decomposition
methods like QPLEX (Wang et al. 2021b), QMIX (Rashid
et al. 2018), and VDN (Sunehag et al. 2018). As shown
in Fig. 5(a), when integrating with ROMANCE, the perfor-
mance of the baselines vastly improves on map 2s3z, indi-
cating that the proposed training paradigm can significantly
enhance robustness for these value-based MARL methods.

One of the crucial elements of our framework is the hyper-
parameter α which controls the attack quality and diversity.
We here conduct experiments to study the sensibility of α
in Eq. (6) for the whole framework. As shown in Fig. 5(b),
on map 3s vs 3z, the performance is more influenced when
we set α = 0 or 0.01, which refers to optimizing the at-
tacking quality only but almost ignoring the diversity goal,

indicating the importance of behavior diversity for the pop-
ulation training. Nevertheless, other choices have a negligi-
ble impact on the performance. We believe this is because
the customized selection and update operators of the evolu-
tion mechanism can help balance the two goals for a slightly
larger α. More experimental results, such as how each pa-
rameter influences ROMANCE, are shown in Appendix.

6 Conclusion
This paper considers the robust cooperative MARL problem,
where some coordinators suffer from unpredictable policy
perturbation. We first formalize this problem as an LPA-
Dec-POMDP, where some coordinators from a team may
sustain action perturbation accidentally and unpredictably.
We then propose ROMANCE, an efficient approach to learn
robust multi-agent coordination via evolutionary generation
of auxiliary adversarial attackers. Experimental results on
robustness and generalization testing verify the effective-
ness of ROMANCE, and more analysis results also con-
firm it from multiple aspects. As our method aims to learn
a disentangled adversarial attacker policy, which demands a
heuristic-based policy perturbation function, future work on
more reasonable and efficient ways such as observation per-
turbation and automatic search for the best budget for differ-
ent tasks would be of great value. Furthermore, how to de-
sign efficient and effective robust multi-agent reinforcement
learning algorithms for the open-environment setting (Zhou
2022) is also valuable for the MARL community.
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