
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

LLM-Assisted Semantically Diverse Teammates Generation
for Efficient Multi-agent Coordination

Anonymous Authors1

Abstract
Training with diverse teammates is the key for
learning generalizable agents. Typical approaches
aim to generate diverse teammates by utilizing
techniques like randomization, designing regu-
larization terms, or reducing policy compatibil-
ity, etc. However, such teammates lack seman-
tic information, resulting in inefficient teammate
generation and poor adaptability of the agents.
To tackle these challenges, we propose Semanti-
cally Diverse Teammates Generation (SEMDIV),
a novel framework leveraging the capabilities of
large language models (LLMs) to discover and
learn diverse coordination behaviors at the seman-
tic level. In each iteration, SEMDIV first generates
a novel coordination behavior described in natural
language, then translates it into a reward function
to train a teammate policy. Once the policy is
verified to be meaningful, novel, and aligned with
the behavior, the agents train a policy for coordi-
nation. Through this iterative process, SEMDIV
efficiently generates a diverse set of semantically
grounded teammates, enabling agents to develop
specialized policies, and select the most suitable
ones through language-based reasoning to adapt
to unseen teammates. Experiments across four
MARL environments show that SEMDIV gener-
ates teammates covering a wide range of coor-
dination behaviors, including those unreachable
by baseline methods. Evaluation with twenty un-
seen representative teammates demonstrates SEM-
DIV’s superior coordination and adaptability.

1. Introduction
Recently, cooperative multi-agent reinforcement learning
(MARL) has gained significant attention (Oroojlooy & Ha-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

jinezhad, 2023), demonstrating promising applications in
various fields such as autonomous driving (Zhang et al.,
2024c), domain calibration (Jiang et al., 2024), and fi-
nancial trading (Huang et al., 2024). Classic MARL ap-
proaches (Lowe et al., 2017; Rashid et al., 2018; Wang et al.,
2021; Yu et al., 2022) primarily focus on training a group of
agents to cooperatively complete specific tasks and evaluate
their performance in the same setting. However, in open
multi-agent environments (Yuan et al., 2023b), agents are
often required to team up with unseen teammates exhibiting
diverse coordination behaviors. For instance, autonomous
driving agents frequently encounter human drivers with a
wide range of driving behaviors. In such scenarios, agents
trained using conventional MARL techniques may strug-
gle to coordinate effectively, as they tend to overfit to the
behaviors of their training teammates.

Training with diverse teammates is the key for learning gen-
eralizable MARL agents. To generate diverse teammates,
recent research in areas such as ad-hoc teamwork (Mirsky
et al., 2022) and zero-shot coordination (Treutlein et al.,
2021) has emerged. FCP (Strouse et al., 2021) trains team-
mates using different random seeds, while TrajeDi (Lupu
et al., 2021) and MEP (Zhao et al., 2023) introduce diver-
sity regularization terms for teammates. Other methods
like LIPO (Charakorn et al., 2023), Macop (Yuan et al.,
2023a), BRDiv (Rahman et al., 2023), and L-BRDiv (Rah-
man et al., 2024) induce diversity by reducing compatibility
among teammates or between teammates and agents. While
achieving some progress, these approaches primarily focus
on policy-level diversity, generating teammates that lack
semantic information and are not grounded into specific
coordination behaviors. This limitation results in two sig-
nificant challenges. First, the exploration of the teammate
policy space is inefficient, as teammates are driven to opti-
mize for differences at the policy-level rather than actively
discovering novel coordination behaviors at the semantic-
level. Second, agents are unable to utilize semantic informa-
tion, and limited to trial-and-error interactions for teammate
adaptation, hindering their deployment in costly tasks.

To tackle these challenges, we propose Semantically Di-
verse Teammates Generation (SEMDIV), a novel framework
leveraging the capabilities of large language models (LLMs)

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

Coordinate using
policy ②

① “Make no passes and Johnson scores alone …”

② “Let Turing score after making one pass …”

③ “We prefer to make two passes before shooting …”

…

✅

I prefer that we make a
pass before shooting.

?

I have learned …

Semantic
Level

Policy
Level

SEMDIV Agent

Learn

Teammate
policy space

Training Testing

SEMDIV Agent
Language

space
①

② ③
Johnson

Turing

Ball

Keeper

Figure 1. An overview of the training and testing process of SEMDIV.

to discover and learn diverse coordination behaviors at the
semantic level, as illustrated in Figure 1. SEMDIV employs
an iterative process: in each iteration, it first generates a
novel coordination behavior described in natural language,
then translates it into a reward function (Xie et al., 2024; Ma
et al., 2024a) to train a teammate policy. Once the policy
is verified to be capable of completing the task, distinct
from previous teammates, and aligned with the behavior,
the agents with multi-head architecture (Kessler et al., 2022;
Yuan et al., 2024) train a new policy head for coordina-
tion. Through this process, SEMDIV efficiently generates a
diverse set of semantically grounded teammates, enabling
agents to develop specialized policies, and select the most
suitable ones through language-based reasoning to adapt to
unseen teammates with specific coordination behaviors.

We conduct experiments across four MARL environments,
including Level-Based Foraging (LBF) (Papoudakis et al.,
2021), Predator-Prey (PP) (Lowe et al., 2017), StarCraft
Multi-Agent Challenge-v2 (SMACv2) (Ellis et al., 2023),
and Google Research Football (GRF) (Kurach et al., 2020).
SEMDIV successfully generates teammates with novel coor-
dination behaviors unreachable by policy-level baselines, for
example, multiple passes in GRF. Teaming up with twenty
unseen teammates with distinct and representative coordi-
nation behaviors, SEMDIV’s agents outperform the best
baseline by 19% for task success rate and 39% for the suc-
cess rate of satisfying the teammates preferred coordination
behaviors. These results highlight the capability of SEMDIV
to train adaptive agents with strong coordination ability in
open multi-agent environments.

2. Problem Formulation
In this work, we focus on cooperative MARL tasks where
agents need to coordinate with unseen and uncontrollable
teammates. This problem can be formulated as a tuple
M = ⟨N = Nag ∪Ntm,S,A, P,Ω, O,R, γ⟩ by extending
the Dec-POMDP framework (Oliehoek & Amato, 2016).

Here, N is the set of all agents, divided into controllable
agents Nag = {1, . . . , nag} and uncontrollable teammates
Ntm = {nag + 1, . . . , nag + ntm}. S is the set of global
states, A = Aag ×Atm =

∏
j∈Nag

Aj ×
∏
k∈Ntm

Ak is the
joint action space. P : S × A → Pr(S) is the transition
function, Ω is the set of observations, O : S × N → Ω is
the observation function, R : S ×A×S → R is the reward
function, and γ ∈ [0, 1) is the discount factor. At each time
step t, agent i ∈ N receives an observation oit = O(st, i) ∈
Ω and outputs an action ait ∈ Ai with policy πi(·|oi). The
joint action at = (a1t , ..., a

nag+ntm
t) leads to the next state

st+1 ∼ P (·|st,at) and a team reward R(st,at, st+1). The
objective of the controllable agents is to find a joint policy
πag(·|oag) =

∏
j∈Nag

πj(·|oj) that maximizes the expected
return with unknown teammates πtm =

∏
k∈Ntm

πk, i.e.,
Eπtm [J(πag,πtm)] = Eπtm [Est,at

[
∑
t γ

tR(st,at, st+1)]].

As we aim to study teammates generation and agents coordi-
nation at the semantic-level, we consider scenarios in which
the group of teammates1 πtm provides a natural language
description b prior to the execution phase. This description
outlines their preferred coordination behaviors, such as a
specific plan to complete the task, or the occurrence of a
particular coordination event, etc. The agents can leverage
this natural language description b to adapt their individual
policies πj∈Nag , thereby aligning their actions with the co-
ordination preferences of πtm, ultimately enhancing overall
team coordination and task performance.

3. Method
This section introduces SEMDIV (Figure 2), a novel frame-
work that leverages LLMs to efficiently generate semanti-
cally diverse teammates, and train agents with strong coordi-
nation ability. SEMDIV begins with the iterative generation
of semantically diverse coordination behaviors, enabling

1For simplicity, we denote a group of teammates as “a team-
mate” hereafter when no ambiguity arises.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

Continual learning
LLM behavior generator

……

Task description

Instruction
e.g., “Come up with another behavior …”

LLM reward generator

(SemDiv) -> ~ python main.py

{Program output}

{Evaluation results}

MARL TrainingFeedback

Teammate policy

Agents

…
𝜓! 𝜓"#! 𝜓" Policy

heads

Feature
extractor

(a) Generating coordination behavior (b) Training aligned teammate policy (c) Training agents

Reward function
Def reward1(self): -> float

Coordination behavior 𝑏!
“Make two passes before shooting …”

Previous behaviors
𝑏": “Let Johnson controls the ball …”

𝑏!#": “Pass one time and score …”

…

Similarity information
“ … Behaviors 𝑖 and 𝑗 are similar

with each other… ”

(a) (b) (c)

Figure 2. The overall workflow of SEMDIV.

efficient exploration of the teammate policy space (Sec-
tion 3.1). For each coordination behavior described in natu-
ral language, a teammate policy is trained to align with that
behavior (Section 3.2). Simultaneously, agents are continu-
ally trained with these teammates, enabling them to develop
strong coordination ability and adapt efficiently to unseen
teammates during execution (Section 3.3).

3.1. Iterative Generation of Semantically Diverse
Coordination Behaviors

To derive semantically diverse teammates in a cooperative
MARL task, SEMDIV first leverages an LLM to iteratively
generate a diverse set of plausible coordination behaviors
described in natural language.

Concretely, let Pn−1 = {(bm,πtm
m, Im)}n−1

m=1 denote the set
of teammates generated in the previous n − 1 iterations,
where each tuple (bm,πtm

m, Im) consists of a behavior bm,
its corresponding policy πtm

m , and a boolean value Im in-
dicating whether the teammate is valid (Im = True) or
not (Im = False). In the nth iteration, the LLM behavior
generator takes a task description desc and an instruction
inst as prompts. The description desc includes the basic
information about the environment, the agents, and the task
they need to complete. The instruction inst is a simple
sentence like “come up with a possible and concrete coor-
dination behavior”. When n > 1, to ensure novelty and
diversity in each iteration, the prompt also includes previ-
ous behaviors B = {bm ∈ {b1, . . . , bn−1} | Im = True},
with explicit instructions in inst for the LLM to avoid
replicating these behaviors while proposing a new one. Fur-
thermore, to ensure meaningful diversity in the generated
teammates, SEMDIV incorporates a feedback mechanism to
refine the behavior generation process. Specifically, when a
pair of policies πtm

m,πtm
m′ ̸=m ∈ Pn−1 are similar with each

other, this information info sim is fed back into the LLM
prompt. For example, in a navigation task, different behav-

iors such as “move to point A” and “move to coordinate
(3, 4)” might produce similar policies if point A is close to
(3, 4). By identifying such redundancies, a process elabo-
rated later, the LLM gains a deeper understanding of the
coordination task. This grounding feedback enables SEM-
DIV to iteratively generate coordination behavior-policy
pairs that are diverse at both semantic and policy levels,
enhancing exploration of the policy space. The full prompts
for the LLM behavior generator are in Appendix F.2.

Next, the LLM behavior generator utilizes the prompt
p = [desc,inst,B,info sim], along with its internal
knowledge, to output a new concrete behavior bn in nat-
ural language. This behavior is then used to generate a
corresponding policy πtm

n . If πtm
n demonstrates the intended

behavior bn, is different from previous policies in Pn−1, and
completes the task, In is set to True. Otherwise, In is set to
False. Then, Pn = Pn−1∪{(bn,πtm

n , In)}. This iterative
process continues until a sufficient number of valid team-
mates are generated, fostering the development of agents
with strong coordination capabilities.

3.2. Grounded Generation of Each Single Teammate

This section describes how SEMDIV generates a teammate
policy that aligns with a specified coordination behavior and
completes the MARL task, while ensuring that the teammate
policy is distinct from previously generated ones.

Prompts to Reward Functions Within each iteration,
given a coordination behavior bm, SEMDIV uses an LLM
to generate a corresponding reward function R̂m : S ×A×
S → R as an executable program. Similar to the behavior
generator, the LLM reward generator takes the task descrip-
tion, an instruction, and feedback information as prompts.
The task description must include basic callable attributes
and APIs to ground the reward function in the task envi-
ronment. For instance, in a 3D navigation task, attributes

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

like agent1 position: np.ndarray[(3,)] and
APIs like distance calculation functions should be provided.
The instruction is a sentence like “write a reward function
that formats as ‘def reward(self) → float’ and aligns with
the coordination behavior {bm}”. However, with only the
task description and instruction, the generated reward may
not be able to train a valid teammate for several issues: (i)
The reward function is not executable, e.g., it calls an unde-
fined attribute. (ii) The teammate fails to complete the task
after training with this reward function. (iii) The return of
the reward function remains nearly constant during training,
indicating that it’s non-functional. (iv) The teammate does
not demonstrate the intended coordination behavior bm. (v)
The teammate is similar to previously generated ones.

To address these issues, SEMDIV incorporates the above
critical grounding feedback into subsequent prompts to it-
eratively refine the reward function. This iterative process
continues until either a valid teammate policy πtm

m is learned
or the maximum number of attempts is reached. A valid
policy is one that satisfies all verification criteria (described
below), at which point the tuple (bm,πtm

m,True) is added
to Pm−1. If the maximum number of attempts is reached,
(bm,πtm

m = null,False) is added instead. The prompts
for this LLM reward generator are in Appendix F.3.

Reward Functions to Policies Given an executable re-
ward function R̂m, SEMDIV incorporates it into the environ-
ment code and leverages an off-the-shelf cooperative MARL
algorithm to train the teammate policy πtm

m . The training
objective is to maximize the self-play return defined as:

J(π̃tm
m,πtm

m) = Est,at

[∑
t

γt (λ1rt + λ2r̂
m
t)

]
, (1)

where π̃tm
m is the complementary policy of πtm

m , which con-
trols agents Nag. It outputs actions (a1t , ..., a

nag
t), which

are combined with the actions (a
nag+1
t , . . . , a

nag+ntm
t) out-

put by πtm
m to form the joint action at. Rewards are com-

puted as the sum of two components: the task-specific
reward rt = R(st,at, st+1) and the generated reward
r̂mt = R̂m(st,at, st+1). For the weighting factors, λ1 = 1,
λ2 decays from 1 to 0 over the course of training. This
decay ensures that πtm

m learns to complete the task.

Policy Verification After training πtm
m , SEMDIV veri-

fies its validity. First, it evaluates (π̃tm
m,πtm

m) for multiple
episodes to compute returns for rt and r̂mt , checking issues
(ii) failure to complete the task, and (iii) non-functional re-
wards. For issue (iv), SEMDIV extracts the main information
in these episodes, transforms it into natural language, and
uses an LLM to confirm that πtm

m demonstrates the intended
coordination behavior bm. For issue (v), we assume a joint
agent policy πag that can effectively coordinate with all pre-
vious teammates Πm−1 = {πtm

j ∈ Pm−1 | Ij = True},

which will be elaborated in the next section. To confirm that
πtm
m is distinct from Πm−1, we check whether the following

condition holds:

J(πag,πtm
j)− J(πag,πtm

m)

|J(πag,πtm
j)|

> ϵ, (2)

for all πtm
j ∈ Πm−1, under configurations λ1 = 1, λ2 = 0

and λ1 = 0, λ2 = 1, where ϵ > 0 is a predefined threshold.
If this condition is satisfied, πtm

m is confirmed to be distinct,
as πag cannot effectively coordinate with it. Otherwise,
similarity information is recorded and provided as feedback
to the LLM behavior generator, as described in Section 3.1.
This verification process ensures the quality and diversity of
each generated teammate. The prompts used for behavior-
policy alignment verification are detailed in Appendix F.4.

3.3. Continual Learning and Execution of the
Coordinating Agents

The goal of SEMDIV is to derive a joint agent policy πag

that can effectively coordinate with both self-generated and
unseen teammates based on natural language descriptions
of their coordination behaviors. As the coordination be-
haviors of different teammates may vary significantly or
even conflict with each other, it can be challenging to train
a single policy network that coordinates effectively with
all teammates. Additionally, when training with a newly
generated teammate, the agent’s policy may lose the ability
to coordinate with previous ones due to network parameter
updates, i.e., catastrophic forgetting.

To address these challenges, SEMDIV adopts a multi-head
network architecture (Kessler et al., 2022; Yuan et al., 2024)
and empowers the agents with continual learning ability.
For each individual agent πi∈Nag , the policy network is de-
composed into a feature extractor fϕi and multiple policy
heads {hψi,j}nj=1, where n = |{πtm

1 , . . . ,πtm
n }| represents

the number of valid teammates generated up to the nth it-
eration. For simplicity, we ignore invalid teammates and
assume all teammates in Pn are valid (Im = True) in
this part. For a new generated teammate πtm

n+1 trained by
reward r̂n+1 to demonstrate behavior bn+1, SEMDIV first
instantiates a new policy head hψi,n+1 for the agent’s co-
ordination with this new teammate. The joint agent policy
πag =

∏
i∈Nag

πi =
∏
i∈Nag

fϕi ◦ hψi,n+1 is then trained to
coordinate with πtm

n+1 by maximizing the objective:

J(πag,πtm
n+1) = Est,at

[∑
t

γt
(
rt + λ2r̂

n+1
t

)]
, (3)

where λ2 is the same decaying factor with the one used in
Equation (1). Different checkpoints of πtm

n+1 are utilized for
sampling to improve generalization. During training, the
policy heads {hψi,j}nj=1 remain fixed, and gradients only

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

propagate through fϕi and the new head hψi,n+1 . Since the
feature extractors fϕi are already well-trained to capture the
common features of the task, πag can quickly adapt to new
teammates. However, πag may lose the coordinate ability
with previous teammates if fϕi updates dramatically, i.e.,
catastrophic forgetting. So, SEMDIV applies a regulariza-
tion term to constrain the update, forming the final objective
for training the joint agent policy:

max
ϕi,ψi,n+1

i∈Nag

J(πag,πtm
n+1)− α

1

|Nag|
∑
i∈Nag

||ϕi − ϕ̄i||p, (4)

where J is the objective defined in Equation (3), α is a
hyperparameter, ϕ̄i is the snapshot of parameters ϕi after
training with the last teammate πtm

n , and || · ||p represents
the lp norm. This learning framework effectively balances
the need to adapt to new teammates while preserving the
ability to coordinate with previous ones. It has excellent
scalability as the number of diverse teammates increases
during training. Once the training process is complete, SEM-
DIV produces a joint agent policy πag with a set of policy
heads {hψi,j}, each tailored to coordinate with a class of
teammates exhibiting a specific coordination behavior bj . It
is worth noting that, the agents are equipped with contin-
ual learning ability to adapt to future teammates that may
appear after this training process, showcasing potential for
online real-world applications.

During the execution phase, the agents need to coordinate
with an unseen teammate πtm with coordination behavior b
described in natural language. SEMDIV utilizes an LLM to
select the optimal policy head for the agents before rollout.
This LLM selector takes the task description, learned behav-
iors {bj | Ij = True}, behavior b, and an instruction as
prompts. The instruction is a sentence like “select the policy
that can best coordinate with the teammate”. Then, the
LLM outputs the index k of the selected head hψi,k . Finally,
each individual agent i uses πi = fϕi ◦ hψi,k to effectively
coordinate with teammate πtm. This approach enables the
agents to adapt to the teammate through language-based
reasoning, avoiding the need for trial-and-error interactions
and significantly improving efficiency. The prompts for this
LLM are provided in Appendix F.5.

4. Experiments
In this section, we conduct a series of experiments to ad-
dress the following questions: (1) Can SEMDIV effectively
coordinate with unseen teammates who provide descriptions
of their coordination behaviors (Section 4.2)? (2) How does
SEMDIV operate in detail during a single run (Section 4.3)?
(3) Can baselines achieve the performance of SEMDIV by
increasing the population size (Section 4.4)?

4.1. Environments, Teammates, and Baselines

We evaluate SEMDIV and baseline methods across four
classic multi-agent coordination environments. The first is
Level-Based Foraging (LBF) (Papoudakis et al., 2021), a
grid-world scenario where agents coordinate to collect food
items together. Next, we introduce a modified version of
the Predator-Prey (PP) (Lowe et al., 2017) environment,
incorporating two prey types to enhance complexity. We
then conduct experiments using the StarCraft Multi-Agent
Challenge-v2 (SMACv2) (Ellis et al., 2023), which tasks
agents with controlling StarCraft units to defeat enemies
controlled by the game’s built-in AI. SMACv2 improves
upon SMAC (Samvelyan et al., 2019) by introducing fea-
tures like randomized start positions, making it significantly
more challenging. Finally, we test in Google Research
Football (GRF) (Kurach et al., 2020), where agents con-
trol football players aiming to score through diverse tactics.
Detailed introduction are provided in Appendix D.1.

In each environment, we train five teammates exhibiting
distinct and representative coordination behaviors. For ex-
ample, in GRF, we train teammates that prefer scoring after
completing one or two passes. These teammates, along
with their behavior descriptions, remain entirely unknown
to the tested methods during training, ensuring an unbiased
performance evaluation. To assess whether agents can effec-
tively coordinate with these teammates to complete tasks,
we measure the task success rates, denoted as R1. Addi-
tionally, we evaluate the success rate of agents in satisfying
the teammates’ preferred coordination behaviors, denoted
as R2. Detailed introduction of the testing teammates are
illustrated in Appendix D.2.

Next, we present the implementation details of SEMDIV
and the baselines for comparison. In our experiments, we
employ GPT-4o as the LLM2. For MARL algorithms, we
utilize MAPPO (Yu et al., 2022) for GRF and VDN (Sune-
hag et al., 2018) for other environments. We first compare
SEMDIV with classic two-stage population-based training
(PBT) methods that induce diversity at the policy level, in-
cluding FCP (Strouse et al., 2021), MEP (Zhao et al., 2023),
and LIPO (Charakorn et al., 2023). These methods train a
population of diverse teammates using different techniques
in the first stage, and use them to train agents in the sec-
ond stage. Then, we compare SEMDIV with Macop (Yuan
et al., 2023a), which employs an iterative process similar
to SEMDIV but generates new teammates by minimizing
compatibility with agents. For a fair comparison, we derive
a total of 6 teammates and extract their three checkpoints:
the initial, middle, and final stages of training (Strouse et al.,
2021). This results in 3 checkpoints per teammate and a total
of 18 teammate policies for agent training across all meth-

2We use the gpt-4o-2024-08-06 model via APIs at
https://platform.openai.com/docs/guides/gpt.

5

https://platform.openai.com/docs/guides/gpt

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

Table 1. Coordination performance (mean ± std) with unseen teammates across four environments. “R1” and “R2” represent the success
rates of task completion and agents satisfying the teammates preferred coordination behaviors, respectively. The best result in each
column, excluding performance upper bounds of SEMDIV (denoted in gray), is highlighted in bold.

Methods LBF PP SMACv2 GRF Average

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

Oracle 1.00 1.00 0.91 0.90 0.94 0.93 0.95 0.95 0.95 0.95

SEMDIV 0.900.900.90 ±0.050.050.05 0.900.900.90 ±0.050.050.05 0.720.720.72 ±0.030.030.03 0.540.540.54 ±0.100.100.10 0.650.650.65 ±0.020.020.02 0.640.640.64 ±0.020.020.02 0.670.670.67 ±0.080.080.08 0.620.620.62 ±0.070.070.07 0.740.740.74 0.680.680.68
SEMDIV-Dist 0.45 ±0.14 0.45 ±0.14 0.51 ±0.03 0.28 ±0.05 0.24 ±0.08 0.23 ±0.08 0.47 ±0.20 0.37 ±0.16 0.42 0.33
SEMDIV-R1 0.91 ±0.04 0.91 ±0.04 0.76 ±0.01 0.53 ±0.04 0.70 ±0.00 0.69 ±0.01 0.88 ±0.06 0.62 ±0.08 0.81 0.69
SEMDIV-R2 0.91 ±0.04 0.91 ±0.04 0.74 ±0.01 0.58 ±0.06 0.70 ±0.00 0.69 ±0.01 0.78 ±0.08 0.73 ±0.05 0.78 0.73
Macop-R1 0.82 ±0.10 0.81 ±0.11 0.58 ±0.02 0.23 ±0.00 0.48 ±0.03 0.45 ±0.03 0.59 ±0.15 0.44 ±0.04 0.62 0.48
Macop-R2 0.82 ±0.10 0.81 ±0.11 0.54 ±0.01 0.25 ±0.00 0.47 ±0.03 0.45 ±0.03 0.56 ±0.15 0.45 ±0.03 0.60 0.49

SEMDIV-PBT 0.64 ±0.02 0.64 ±0.02 0.70 ±0.01 0.31 ±0.01 0.61 ±0.01 0.61 ±0.01 0.57 ±0.30 0.39 ±0.12 0.63 0.49
Macop-PBT 0.61 ±0.00 0.60 ±0.02 0.720.720.72 ±0.030.030.03 0.33 ±0.03 0.56 ±0.04 0.54 ±0.03 0.49 ±0.24 0.35 ±0.10 0.60 0.46

FCP 0.46 ±0.22 0.43 ±0.20 0.57 ±0.23 0.21 ±0.15 0.40 ±0.05 0.37 ±0.06 0.50 ±0.25 0.36 ±0.12 0.48 0.34
MEP 0.57 ±0.08 0.56 ±0.08 0.70 ±0.01 0.31 ±0.01 0.55 ±0.04 0.47 ±0.02 0.50 ±0.26 0.35 ±0.14 0.58 0.42
LIPO 0.54 ±0.00 0.51 ±0.02 0.69 ±0.02 0.31 ±0.01 0.45 ±0.10 0.38 ±0.06 0.51 ±0.25 0.37 ±0.12 0.55 0.39

LLM-Agent 0.88 ±0.05 0.88 ±0.05 0.71 ±0.09 0.53 ±0.08 0.35 ±0.10 0.35 ±0.10 0.14 ±0.09 0.12 ±0.09 0.52 0.47

ods. To analyze the quality of the generated teammates and
the impact of the multi-head architecture, we use the team-
mates of SEMDIV and Macop as the first-stage teammates
in PBT methods, denoted as {SEMDIV, Macop}-PBT. To in-
vestigate the head selection module, we include {SEMDIV,
Macop}-R1 and -R2, which report the results of the heads
with the highest R1 or R2 values, serving as upper bounds.
Additionally, we introduce SEMDIV-Dist, an ablation of
SEMDIV that selects heads based on the distance between
embeddings of behavior descriptions, computed using a T5-
XL model (Chung et al., 2024). Since SEMDIV combines
the strengths of MARL and LLMs, we also include a base-
line LLM-Agent that uses LLM only, to assess the necessity
of MARL. All methods are evaluated over three random
seeds. Finally, we report the self-play performance of test-
ing teammates as upper bounds (Oracle). Further details for
SEMDIV and the baselines are in Appendix B and C.

4.2. Competitive Results

In this section, we present the overall results of SEMDIV,
its ablations, and the baseline methods when coordinat-
ing with unseen teammates across four environments. As
shown in Table 1, the classic method FCP demonstrates
poor performance, due to its limited ability to generate
sufficiently diverse teammates. In contrast, methods that
incorporate additional diversity objectives, such as MEP
and LIPO, show improved performance, highlighting the
importance of fostering distinct coordination behaviors that
cannot be captured by simply training with varied seeds.
However, all these two-stage PBT methods exhibit limited
coordination ability. When we replace the first-stage team-
mates with those generated by SEMDIV or Macop (*-PBT),
performance improves significantly, suggesting that the two-

stage framework struggles to generate sufficiently diverse
teammates without considering the agents. Among these
PBT methods, SEMDIV-PBT achieves the best results (see
the third block of the table), demonstrating that SEMDIV
generates teammates with superior quality and diversity.

Further analysis reveals that a single policy network is insuf-
ficient to effectively adapt to all distinct teammates, i.e., the
multi-modality issue. The multi-head versions of SEMDIV
and Macop (second table block) outperform their PBT coun-
terparts, indicating that multi-head architecture can address
this issue. Next, SEMDIV consistently outperforms all base-
lines, demonstrating the effectiveness of its semantically
diverse teammate generation. In the multi-head settings,
SEMDIV leverages an LLM to understand the behaviors
and coordination tasks, thus selecting matched policy heads.
It achieves results comparable to the upper bounds of -R1
and -R2, and outperforms the best baseline Macop by 19%
for R1 and 39% for R2. In contrast, SEMDIV-Dist selects
heads based on embedding distances between behavior de-
scriptions, and shows significant performance degradation,
indicating that language embedding similarity alone is in-
sufficient to address the complex task of head selection.
Although SEMDIV still falls short of the Oracle baseline,
we can bridge the gap by generating more teammates or
incorporate additional diversity objectives.

Additionally, while LLM-Agent performs comparably to
SEMDIV in simpler tasks such as LBF and PP, it experi-
ences a severe performance degradation in more complex
environments, highlighting the necessity of incorporating
task-specific reinforcement learning for successful multi-
agent coordination. More experimental results, including
performance of each testing teammate, are in Appendix E.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

FCP Teammates
SEMDIV Teammates

(a) (b) (c)

“Execute one pass before taking a shot at the goal.”

t = 1 t = 13 t = 25

pass

shoot

Johnson

Turing

R1 of teammate
R2 of teammate
R1 of agent
R2 of agent

R
2R
1

1e7
Step

Johnson scores alone

Johnson dribbles &
attracts defence

Make two passes

Figure 3. A case study in the GRF environment. (a) Learning curves of the teammate and the agent in the first iteration of SEMDIV.
(b) An episode where the first generated teammate successfully scores a goal and demonstrates the desired coordination behavior. (c)
Trajectories visualization of the 12 teammates generated by SEMDIV and FCP.

4.3. Case Study

To illustrate the functionality of SEMDIV in detail, we
present a case study that demonstrates the teammate genera-
tion process, agent training, and evaluation with an unseen
teammate during a single run in the GRF environment.

At the beginning, the LLM behavior generator takes the
designed prompt as input, and outputs a possible coordina-
tion behavior: execute one pass before taking a shot at the
goal. Based on this behavior and the context of the football
game, the LLM reward generator outputs the corresponding
reward function in Python:

def reward1(self) -> float:
Check if the score event happens at this step
if self.score:

Check if there is exactly one pass in the history
if len(self.pass_history) == 1:

Check if the pass is between the two players
... (Codes omitted for clarity)
Large reward to reinforce the desired behavior
return 100.0

Default return, no extra reward in other cases
return 0.0

The generated function correctly utilizes the provided envi-
ronment attributes to encourage the teammate to learn the
specified passing tactic. The inclusion of well-documented
comments enhances the reward’s interpretability. This func-
tion is then incorporated into the reward wrapper class. Sub-
sequently, SEMDIV applies the MAPPO (Yu et al., 2022)
algorithm to train the teammates to maximize both the task
reward and the generated reward, as defined in Equation (1).
The training results are shown in Figure 3(a). Upon com-
pleting training, SEMDIV verifies the validity of the learned
teammate policy. First, as shown in the learning curves,
at the early stage of training, the teammate occasionally
scores goals without completing the desired passing behav-
ior, leading to a discrepancy between the blue and green
curves. As training goes, the teammate successfully learns
to score while maximizing the generated reward. Second,
trajectory data is extracted and translated into natural lan-

guage, producing a summary: “In this episode, Johnson
passed to Turing, and finally successfully scored a goal. The
player who scored the goal is Turing · · · ” Based on this
summary, an LLM confirms that the policy aligns with the
intended coordination behavior. Key steps of this episode
are visualized in Figure 3(b). Third, the similarity check
is skipped as this is the first teammate. This coordination
behavior and its corresponding teammate policy are thus
validated as suitable for training the agent.

Next, SEMDIV creates a new policy head for the agent,
and trains it to coordinate with this teammate, as defined in
Equation (4). For this initial teammate, the regularization
coefficient α is set to 0. The agent efficiently learns to
score goals with the teammate while executing the intended
passing tactic, resulting in rapidly rising and overlapping
learning curves shown in red and orange. This process is
repeated iteratively until the agent is trained with six distinct
valid teammates.

To assess the impact of the semantic-level exploration tech-
nique on enhancing diversity among teammate policies, we
visualize the generated trajectories. Specifically, we col-
lect 100 trajectories for each of the six valid teammates,
totaling 600 trajectories. For comparison, we also gather
an equivalent dataset from six teammates generated dur-
ing a run using FCP (Strouse et al., 2021). From these
trajectories, we extract those that result in a goal, convert
them into vector representations, and apply t-SNE (Van der
Maaten & Hinton, 2008) for visualization. As shown in
Figure 3(c), the projection of SEMDIV exhibits a broader
and more dispersed coverage compared to FCP (highlighted
in circles). This confirms that semantic-level exploration
significantly enhances the coverage of the teammate policy
space, ultimately enhancing the agent’s coordination.

Finally, the agent is evaluated with an unseen teammate. For
example, a teammate joins the team as Turing, the player at
the center. Our agent controls the other player, Johnson, and

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

FCPSEMDIV-PBT

R1
R1

teammates trained with agents (GRF)

teammates trained with agents (LBF)

SEMDIV

Figure 4. Coordination performance with testing teammates when
agents train with various numbers of generated teammates.

needs to coordinate with Turing. Before the game begins,
Turing describes his/her desired coordination behavior: “I
prefer to score myself.” The LLM head selector takes the
task description, Turing’s desired behavior, and behaviors
the agent have learned, as inputs. It inferences that “This
policy (the one described above) fulfills Turing’s desire to
score, as it allows him to set up for a shot after receiving
a pass.”, and selects the optimal head. Equipped with the
selected head, the team achieves an 88% scoring rate with
the teammate, with all goals scored by Turing. This case
study highlights the effectiveness of SEMDIV in generating
diverse teammate policies, enabling efficient coordination
even with unseen teammates.

4.4. The Impact of the Number of Teammates

One of the key factors affecting performance is the number
of teammates with whom the agents train. To investigate its
impact, we run SEMDIV, its variant SEMDIV-PBT, and the
baseline FCP with different numbers of training teammates,
and assess the agents’ performance with the testing team-
mates. As shown in Figure 4, when training with only one
teammate, these methods degenerate to the same setting,
showing almost identical performance. As the number of
teammates increases, SEMDIV-PBT outperforms FCP with
the same number of training teammates, achieving compa-
rable or even superior results to FCP with a significantly
larger number of 48 teammates. This demonstrates that
generating semantically diverse teammates not only enables
more efficient exploration of the teammate policy space but
also facilitates the discovery of coordination behaviors that
policy-level exploration alone cannot cover. For instance,
in the GRF environment, we observe that FCP and other
baselines fail to discover complex tactics that pass multiple
times. Furthermore, with its multi-head architecture, SEM-
DIV scales more effectively with the number of teammates,
achieving significantly better performance than SEMDIV-
PBT. This highlights the importance of a specialized design
that allows for rapid adaptation to unseen teammates.

5. Related Work
In open multi-agent environments, the important factors of
the environment or the multi-agent system may change un-
expectedly (Yuan et al., 2023b). To handle the change of
teammates, recent research in areas such as ad-hoc team-
work (Mirsky et al., 2022) and zero-shot coordination (Treut-
lein et al., 2021) has emerged. This line of work includes
training paradigm design (Hu et al., 2020; Strouse et al.,
2021), diverse teammates generation (Lupu et al., 2021;
Zhao et al., 2023; Charakorn et al., 2023; Yuan et al., 2023a;
Rahman et al., 2023; 2024), investigation of human bias (Yu
et al., 2023a), goal deduction (Zhang et al., 2024d), and
policy co-evolution for heterogeneous settings (Xue et al.,
2024). Researchers also develop benchmarks (Wang et al.,
2024a) to evaluate these methods. This paper further delves
into this line of work utilizing the power of LLMs to en-
hance teammates’ semantic diversity.

LLMs have recently gained significant attention in multi-
agent tasks due to their advanced capabilities in natural
language processing and planning (Guo et al., 2024). One
line of work utilize LLMs for language agents communi-
cation (Park et al., 2023; Guan et al., 2024; Zhang et al.,
2024b; Li et al., 2023a; Du et al., 2024; Wang et al., 2024b).
Some other works utilize LLMs as multi-agent task planners,
which can be classified into several key areas, including
MARL subgoal generation (Li et al., 2023b), multi-agent
path finding (Chen et al., 2024a), and multi-robot task plan-
ning (Liu et al., 2024b; Chang et al., 2024). Despite these
advancements, LLMs still face challenges in handling low-
level coordination in multi-agent settings. Rather than di-
rectly deploying LLMs as coordinating agents, we leverage
their capabilities to generate diverse teammates and adapt-
ing policies, thereby combining the strengths of LLMs with
MARL. We discuss more related work in Appendix A.

6. Final Remarks
We propose a novel framework of LLM-assisted Semanti-
cally Diverse Teammates Generation (SEMDIV) for efficient
multi-agent coordination. The framework utilizes LLMs to
discover diverse coordination behaviors described in natural
language, facilitating the training of teammate policies align-
ing with these behaviors. Agents train with these teammates
in a continual learning process, developing policies tailored
to the coordination behaviors and enabling rapid adapta-
tion to testing teammates. Empirical results across various
environments and with unseen teammates provide strong
evidence of SEMDIV’s effectiveness. Looking ahead, as
more advanced MARL techniques and LLMs emerge with
enhanced performance, SEMDIV has the potential to further
improve agent generalization in complex real-world coordi-
nation scenarios, such as embodied multi-agent tasks (Liu
et al., 2024c) for real-world applications.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

Impact Statement
The goal of the work presented in this paper is to advance
the development of cooperative multi-agent reinforcement
learning. The proposed framework is intended to enhance
the generalization of coordinating agents, providing an ef-
fective approach for future research on open multi-agent
systems. Furthermore, the work presented does not raise
any additional ethical concerns, and thus no special discus-
sion on ethical issues is required.

References
Cao, Y., Zhao, H., Cheng, Y., Shu, T., Chen, Y., Liu, G.,

Liang, G., Zhao, J., Yan, J., and Li, Y. Survey on large lan-
guage model-enhanced reinforcement learning: Concept,
taxonomy, and methods. IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–21, 2024.

Carta, T., Oudeyer, P.-Y., Sigaud, O., and sylvain lamprier.
EAGER: Asking and answering questions for automatic
reward shaping in language-guided RL. In NeurIPS,
2022.

Chang, M., Chhablani, G., Clegg, A., Cote, M. D., Desai,
R., Hlavac, M., Karashchuk, V., Krantz, J., Mottaghi,
R., Parashar, P., Patki, S., Prasad, I., Puig, X., Rai, A.,
Ramrakhya, R., Tran, D., Truong, J., Turner, J. M., Un-
dersander, E., and Yang, T.-Y. Partnr: A benchmark for
planning and reasoning in embodied multi-agent tasks.
preprint arXiv:2411.00081, 2024.

Charakorn, R., Manoonpong, P., and Dilokthanakul, N. Gen-
erating diverse cooperative agents by learning incompati-
ble policies. In ICLR, 2023.

Chen, W., Koenig, S., and Dilkina, B. Why solving multi-
agent path finding with large language model has not
succeeded yet. preprint arXiv:2401.03630, 2024a.

Chen, X.-H., Wang, Z., Du, Y., Jiang, S., Fang, M., Yu,
Y., and Wang, J. Policy learning from tutorial books via
understanding, rehearsing and introspecting. In NeurIPS,
2024b.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using RNN encoder-decoder for
statistical machine translation. In ACL, pp. 1724–1734,
2014.

Choi, W., Kim, W. K., Kim, S., and Woo, H. Efficient
policy adaptation with contrastive prompt ensemble for
embodied agents. In NeurIPS, pp. 55442–55453, 2023.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S.,

Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X.,
Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson,
K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V.,
Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E. H., Dean,
J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., and Wei, J.
Scaling instruction-finetuned language models. Journal
of Machine Learning Research, 25(70):1–53, 2024.

DeepSeek-AI. DeepSeek-R1: Incentivizing reasoning ca-
pability in llms via reinforcement learning. preprint
arXiv:2501.12948, 2025.

Dorri, A., Kanhere, S. S., and Jurdak, R. Multi-agent sys-
tems: A survey. IEEE Access, 6:28573–28593, 2018.

Du, Y., Watkins, O., Wang, Z., Colas, C., Darrell, T., Abbeel,
P., Gupta, A., and Andreas, J. Guiding pretraining in re-
inforcement learning with large language models. In
Proceedings of the 40th International Conference on Ma-
chine Learning, pp. 8657–8677, 2023.

Du, Y., Li, S., Torralba, A., Tenenbaum, J. B., and Mordatch,
I. Improving factuality and reasoning in language models
through multiagent debate. In ICML, pp. 11733–11763,
2024.

Ellis, B., Cook, J., Moalla, S., Samvelyan, M., Sun, M.,
Mahajan, A., Foerster, J. N., and Whiteson, S. SMACv2:
An improved benchmark for cooperative multi-agent re-
inforcement learning. In NeurIPS Datasets and Bench-
marks Track, 2023.

Guan, C., Zhang, L., Fan, C., Li, Y.-C., Chen, F., Li, L., Tian,
Y., Yuan, L., and Yu, Y. Efficient human-AI coordination
via preparatory language-based convention. In ICLR
Workshop on Large Language Model Agents, 2024.

Guo, T., Chen, X., Wang, Y., Chang, R., Pei, S., Chawla,
N. V., Wiest, O., and Zhang, X. Large language model
based multi-agents: A survey of progress and challenges.
In IJCAI, pp. 8048–8057, 2024.

Hu, H., Lerer, A., Peysakhovich, A., and Foerster, J. “other-
play” for zero-shot coordination. In ICML, pp. 4399–
4410, 2020.

Huang, Y., Zhou, C., Cui, K., and Lu, X. A multi-agent re-
inforcement learning framework for optimizing financial
trading strategies based on timesnet. Expert Systems with
Applications, 237:121502, 2024.

Jiang, T., Yuan, L., Li, L., Guan, C., Zhang, Z., and Yu, Y.
Multi-agent domain calibration with a handful of offline
data. In Advances in Neural Information Processing
Systems 38, 2024.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

Kessler, S., Parker-Holder, J., Ball, P., Zohren, S., and
Roberts, S. J. Same state, different task: Continual rein-
forcement learning without interference. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pp. 7143–7151, 2022.

Kurach, K., Raichuk, A., Stanczyk, P., Zajac, M., Bachem,
O., Espeholt, L., Riquelme, C., Vincent, D., Michalski,
M., Bousquet, O., and Gelly, S. Google research football:
A novel reinforcement learning environment. In AAAI,
pp. 4501–4510, 2020.

Kwon, M., Xie, S. M., Bullard, K., and Sadigh, D. Reward
design with language models. In ICLR, 2023.

Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., and
Ghanem, B. Camel: Communicative agents for ”mind”
exploration of large language model society. In NeurIPS,
2023a.

Li, W., Qiao, D., Wang, B., Wang, X., Jin, B., and Zha,
H. Semantically aligned task decomposition in multi-
agent reinforcement learning. preprint arXiv:2305.10865,
2023b.

Lin, J., Du, Y., Watkins, O., Hafner, D., Abbeel, P., Klein,
D., and Dragan, A. Learning to model the world with
language. arXiv preprint arXiv:2308.01399, 2024.

Liu, J., Zhong, Y., Hu, S., Fu, H., FU, Q., Chang, X., and
Yang, Y. Maximum entropy heterogeneous-agent rein-
forcement learning. In ICLR, 2024a.

Liu, K., Tang, Z., Wang, D., Wang, Z., Zhao, B., and Li,
X. Coherent: Collaboration of heterogeneous multi-
robot system with large language models. preprint
arXiv:2409.15146, 2024b.

Liu, Y., Chen, W., Bai, Y., Liang, X., Li, G., Gao, W., and
Lin, L. Aligning cyber space with physical world: A
comprehensive survey on embodied ai. arXiv preprint
arXiv:2407.06886, 2024c.

Lowe, R., Wu, Y., Tamar, A., Abbeel, J. H. P., and Mor-
datch, I. Multi-agent actor-critic for mixed cooperative-
competitive environments. In NIPS, pp. 6379–6390,
2017.

Lupu, A., Cui, B., Hu, H., and Foerster, J. Trajectory diver-
sity for zero-shot coordination. In ICML, pp. 7204–7213,
2021.

Ma, Y. J., Liang, W., Wang, G., Huang, D.-A., Bastani,
O., Jayaraman, D., Zhu, Y., Fan, L., and Anandkumar,
A. Eureka: Human-level reward design via coding large
language models. In ICLR, 2024a.

Ma, Y. J., Liang, W., Wang, H., Zhu, Y., Fan, L., Bastani, O.,
and Jayaraman, D. Dreureka: Language model guided
sim-to-real transfer. In Robotics: Science and Systems,
2024b.

Mirsky, R., Carlucho, I., Rahman, A., Fosong, E., Macke,
W., Sridharan, M., Stone, P., and Albrecht, S. V. A survey
of ad hoc teamwork: Definitions, methods, and open
problems. preprint arXiv:2202.10450, 2022.

Oliehoek, F. A. and Amato, C. A Concise Introduction to
Decentralized POMDPs. Springer, 2016.

OpenAI. Learning to reason with
llms. https://openai.com/index/
learning-to-reason-with-llms/, 2024.
Accessed: 2024-09-19.

Oroojlooy, A. and Hajinezhad, D. A review of coopera-
tive multi-agent deep reinforcement learning. Applied
Intelligence, 53(11):13677–13722, 2023.

Paischer, F., Adler, T., Patil, V., Bitto-Nemling, A., Holzleit-
ner, M., Lehner, S., Eghbal-Zadeh, H., and Hochreiter, S.
History compression via language models in reinforce-
ment learning. In ICML, pp. 17156–17185, 2022.

Pang, J.-C., Yang, X., Yang, S.-H., Chen, X.-H., and Yu, Y.
Natural language instruction-following with task-related
language development and translation. In NeurIPS, pp.
9248–9278, 2023.

Pang, J.-C., Yang, S.-H., Li, K., Zhang, J., Chen, X.-H.,
Tang, N., and Yu, Y. Knowledgeable agents by offline re-
inforcement learning from large language model rollouts.
In NeurIPS, 2024.

Papoudakis, G., Christianos, F., Schäfer, L., and Albrecht,
S. V. Benchmarking multi-agent deep reinforcement
learning algorithms in cooperative tasks. In NeurIPS
Datasets and Benchmarks Track, 2021.

Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In UIST, pp. 2:1–2:22,
2023.

Rahman, A., Fosong, E., Carlucho, I., and Albrecht, S. V.
Generating teammates for training robust ad hoc team-
work agents via best-response diversity. Transactions on
Machine Learning Research, 2023, 2023.

Rahman, M., Cui, J., and Stone, P. Minimum coverage sets
for training robust ad hoc teamwork agents. In AAAI, pp.
17523–17530, 2024.

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G.,
Foerster, J., and Whiteson, S. Qmix: Monotonic value

10

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

function factorisation for deep multi-agent reinforcement
learning. In ICML, pp. 4295–4304, 2018.

Samvelyan, M., Rashid, T., de Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G. J., Hung, C., Torr, P. H. S.,
Foerster, J. N., and Whiteson, S. The Starcraft multi-agent
challenge. In AAMAS, pp. 2186–2188, 2019.

Spiegel, B. A., Yang, Z., Jurayj, W., Bachmann, B., Tellex,
S., and Konidaris, G. Informing reinforcement learn-
ing agents by grounding language to markov decision
processes. In RLC Workshop on Training Agents with
Foundation Models, 2024.

Strouse, D., McKee, K., Botvinick, M., Hughes, E., and
Everett, R. Collaborating with humans without human
data. In NeurIPS, pp. 14502–14515, 2021.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zam-
baldi, V., Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo,
J. Z., Tuyls, K., et al. Value-decomposition networks for
cooperative multi-agent learning based on team reward.
In AAMAS, pp. 2085–2087, 2018.

Treutlein, J., Dennis, M., Oesterheld, C., and Foerster, J.
A new formalism, method and open issues for zero-shot
coordination. In ICML, pp. 10413–10423, 2021.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. The Journal of Machine Learning Research, 9(11),
2008.

Wang, J., Ren, Z., Liu, T., Yu, Y., and Zhang, C. QPLEX:
duplex dueling multi-agent q-learning. In ICLR, 2021.

Wang, X., Wang, S., Liang, X., Zhao, D., Huang, J., Xu,
X., Dai, B., and Miao, Q. Deep reinforcement learning:
a survey. IEEE Transactions on Neural Networks and
Learning Systems, 2022.

Wang, X., Zhang, S., Zhang, W., Dong, W., Chen, J., Wen,
Y., and Zhang, W. Zsc-eval: An evaluation toolkit and
benchmark for multi-agent zero-shot coordination. In
NeurIPS Datasets and Benchmarks Track, 2024a.

Wang, Z., Mao, S., Wu, W., Ge, T., Wei, F., and Ji, H. Un-
leashing the emergent cognitive synergy in large language
models: A task-solving agent through multi-persona self-
collaboration. In NAACL, pp. 257–279, 2024b.

Wen, M., Kuba, J. G., Lin, R., Zhang, W., Wen, Y., Wang,
J., and Yang, Y. Multi-agent reinforcement learning is
a sequence modeling problem. In Advances in Neural
Information Processing Systems, pp. 16509–16521, 2022.

Wu, Y., Fan, Y., Liang, P. P., Azaria, A., Li, Y., and
Mitchell, T. Read and reap the rewards: Learning to
play atari with the help of instruction manuals. In ICLR

Workshop on Reincarnating Reinforcement Learning,
2023. URL https://openreview.net/forum?
id=I_GUngvVNz.

Xie, T., Zhao, S., Wu, C. H., Liu, Y., Luo, Q., Zhong, V.,
Yang, Y., and Yu, T. Text2reward: Reward shaping with
language models for reinforcement learning. In ICLR,
2024.

Xue, K., Wang, Y., Yuan, L., Guan, C., Qian, C., and Yu,
Y. Heterogeneous multi-agent zero-shot coordination by
coevolution. IEEE Transactions on Evolutionary Compu-
tation, 2024.

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen,
A., and Wu, Y. The surprising effectiveness of PPO in
cooperative multi-agent games. In Advances in Neural
Information Processing Systems, volume 35, pp. 24611–
24624, 2022.

Yu, C., Gao, J., Liu, W., Xu, B., Tang, H., Yang, J., Wang, Y.,
and Wu, Y. Learning zero-shot cooperation with humans,
assuming humans are biased. In ICLR, 2023a.

Yu, W., Gileadi, N., Fu, C., Kirmani, S., Lee, K., Arenas,
M. G., Chiang, H. L., Erez, T., Hasenclever, L., Humplik,
J., Ichter, B., Xiao, T., Xu, P., Zeng, A., Zhang, T., Heess,
N., Sadigh, D., Tan, J., Tassa, Y., and Xia, F. Language to
rewards for robotic skill synthesis. In CoRL, pp. 374–404,
2023b.

Yuan, L., Li, L., Zhang, Z., Chen, F., Zhang, T., Guan, C.,
Yu, Y., and Zhou, Z.-H. Learning to coordinate with any-
one. In Proceedings of the Fifth International Conference
on Distributed Artificial Intelligence, 2023a.

Yuan, L., Zhang, Z., Li, L., Guan, C., and Yu, Y. A survey of
progress on cooperative multi-agent reinforcement learn-
ing in open environment. SCIENCE CHINA Information
Sciences, 2023b.

Yuan, L., Li, L., Zhang, Z., Zhang, F., Guan, C., and Yu,
Y. Multi-agent continual coordination via progressive
task contextualization. IEEE Transactions on Neural
Networks and Learning Systems, 2024.

Zhang, A., Nguyen, K., Tuyls, J., Lin, A., and Narasimhan,
K. Language-guided world models: A model-based ap-
proach to ai control. arXiv preprint arXiv:2402.01695,
2024a.

Zhang, H., Du, W., Shan, J., Zhou, Q., Du, Y., Tenenbaum,
J. B., Shu, T., and Gan, C. Building cooperative embodied
agents modularly with large language models. In ICLR,
2024b.

11

https://openreview.net/forum?id=I_GUngvVNz
https://openreview.net/forum?id=I_GUngvVNz

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

Zhang, K., Yang, Z., and Başar, T. Multi-agent reinforce-
ment learning: A selective overview of theories and al-
gorithms. Handbook of Reinforcement Learning and
Control, pp. 321–384, 2021.

Zhang, R., Hou, J., Walter, F., Gu, S., Guan, J., Röhrbein,
F., Du, Y., Cai, P., Chen, G., and Knoll, A. Multi-agent
reinforcement learning for autonomous driving: A survey.
preprint arXiv:2408.09675, 2024c.

Zhang, Z., Zhou, H., Imani, M., Lee, T., and Lan, T. Collab-
orative ai teaming in unknown environments via active
goal deduction. preprint arXiv:2403.15341, 2024d.

Zhao, R., Song, J., Haifeng, H., Gao, Y., Wu, Y., Sun, Z.,
and Wei, Y. Maximum entropy population based training
for zero-shot human-AI coordination. In AAAI, pp. 6145–
6153, 2023.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

A. More related work
Cooperative multi-agent reinforcement learning (MARL) Many real-world problems, particularly those that are large-
scale and complex, are inherently suited to be modeled as multi-agent systems (MASs) rather than single-agent systems
due to their efficiency and practicality in addressing intricate challenges (Dorri et al., 2018). Multi-agent reinforcement
learning (MARL) (Zhang et al., 2021) has emerged as a powerful framework for tackling these problems, leveraging
the problem-solving capabilities of deep reinforcement learning (Wang et al., 2022). When agents within a MAS share
common objectives, the problem falls under the category of cooperative MARL (Oroojlooy & Hajinezhad, 2023), which
has demonstrated significant success across diverse domains such as autonomous driving (Zhang et al., 2024c), domain
calibration (Jiang et al., 2024), and financial trading (Huang et al., 2024). Recent advancements in MARL have introduced
a variety of approaches to improve agent coordination. These include policy-based methods such as MADDPG (Lowe
et al., 2017) and MAPPO (Yu et al., 2022), value-based techniques like VDN (Sunehag et al., 2018) and QMIX (Rashid
et al., 2018), as well as innovative approaches leveraging architectures such as the transformer (Wen et al., 2022). These
methods have demonstrated exceptional coordination capabilities in diverse tasks, including SMAC (Samvelyan et al., 2019)
and GRF (Kurach et al., 2020). In this paper, our method focuses on enhancing the generalization abilities of coordinating
agents, aiming to improve their adaptability and performance across a wider range of potential teammates.

Large language models (LLMs) for RL The integration of large language models (LLMs) into reinforcement learning
(RL) has emerged as a promising research direction (Cao et al., 2024), leveraging the rich semantic understanding and
generalization capabilities of LLMs to enhance decision-making processes. Recent studies have explored the use of LLMs
for tasks such as processing and translating task information (Paischer et al., 2022; Choi et al., 2023; Pang et al., 2023;
Spiegel et al., 2024), to reduce the burden of network updates. Another line of work utilizes LLMs as reward generator (Carta
et al., 2022; Kwon et al., 2023; Wu et al., 2023; Yu et al., 2023b; Du et al., 2023) to guide RL algorithms. Specifically,
some approaches (Xie et al., 2024; Ma et al., 2024a;b) explicitly generate executable codes as reward functions. LLMs
are also utilized as world models (Pang et al., 2024; Chen et al., 2024b; Lin et al., 2024; Zhang et al., 2024a) as they are
trained with rich real-world context, enhancing the sample efficiency of RL. In our work, we mainly utilize LLMs to propose
coordination behaviors described in natural language, reward generation, and behavior-trajectory alignment verification.

B. Implementation details of SEMDIV

In this section, we present the implementation details of SEMDIV. The gpt-4o-2024-08-06 model is utilized as the
LLM. For MARL algorithms, we employ VDN (Sunehag et al., 2018) for the LBF, PP, and SMACv2 environments, and
MAPPO (Yu et al., 2022) for GRF. Specifically, our VDN implementation is based on the PyMARL codebase (Samvelyan
et al., 2019)3. We adopt parameter sharing in the agent network architecture. The feature extractor f iϕ is designed as a 3-layer
MLP followed by a GRU (Cho et al., 2014), while the policy head hψi is a 3-layer MLP. Both the MLP and GRU have a
hidden dimension of 64. The policy head processes the feature extractor’s output to generate Q-values for all actions, which
are subsequently aggregated by summing individual agents’ Q-values to compute the joint Q-value. The architecture for
teammate networks mirrors this design, differing only in having a single policy head. For MAPPO, we build upon the HARL
codebase (Liu et al., 2024a)4. Unlike VDN, parameter sharing is not applied by default settings. For the actor networks, the
final two-layer MLP serves as the policy head, and the remaining components form the feature extractor. The critic networks
are left unmodified. Training is conducted on NVIDIA GeForce RTX 4090 GPUs, requiring approximately 20 hours for the
LBF and PP tasks and 48 hours for SMACv2 and GRF. A single run of SEMDIV incurs a cost of approximately $0.10 for
OpenAI APIs and $300 for the full project.

We use the default hyperparameter settings of PyMARL and HARL, e.g., the learning rates of the algorithms. The selection
of the special hyperparameters introduced in this paper, e.g., the training steps for each teammate, is listed in Table 2.

C. Implementation details of baselines
We first compare SEMDIV with classic two-stage population-based training (PBT) methods, which train a population of
teammates using different techniques in the first stage, and use them to train agents in the second stage. FCP (Strouse et al.,
2021) first trains a population of teammate policies using different random seeds independently. Then, it trains the agents by

3https://github.com/oxwhirl/pymarl
4https://github.com/PKU-MARL/HARL

13

https://github.com/oxwhirl/pymarl
https://github.com/PKU-MARL/HARL

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

Table 2. Hyperparameters in the experiments.

Hyperparameter Value

Training steps for one teammate 105 (LBF), 5× 105 (PP), 106 (SMACv2), 107 (GRF)
Number of teammates trained with agents 6

Training steps for agents with one teammate 3× 105 (LBF), 5× 105 (PP), 106 (SMACv2), 107 (GRF)
Threshold for teammate performance verification 0.3 (LBF, PP), 0.5 (SMACv2, GRF)

Maximum attempts for generating a teammate policy 2
Threshold ϵ for teammate novelty verification in Equation (2) 0.2

Coefficient α for regularizing feature extractors in Equation (4) 500

Enemies

(a) (b) (c) (d)

Allies

Turing

Johnson

Keeper

Figure 5. Environments used in this paper. (a) Level-based Foraging (LBF) (Papoudakis et al., 2021). (b) Predator-Prey (PP) (Lowe et al.,
2017). (c) StarCraft Multi-Agent Challenge-v2 (SMACv2) (Ellis et al., 2023). (d) Google Research Football (GRF) (Kurach et al., 2020).

pairing them with three checkpoints of each teammate: the initial, middle, and final stages of training. In our implementation,
we set the population size as 6, and train the teammates and agents until convergence. Based on FCP, MEP (Zhao et al., 2023)
applies a entropy term H(π̄(· | st)) when training the population, where π̄(aaat | st) = 1

n

∑n
i=1 π

i(at | st). LIPO (Charakorn
et al., 2023) replaces this term with JLIPO = −

∑
i̸=j J(π

i
tm,π

j
tm). We set the weights for these optimization terms as

0.001 across all environments. The rest implementation of MEP and LIPO remains the same as FCP. During execution,
these methods directly deploy the only agent policy for coordination, without explicit adaptation process. While two-stage
methods generate teammates before training agents, another baseline Macop (Yuan et al., 2023a) adopts an agents-centric
paradigm, where it alternatively generates new teammates and trains the multi-head agents, inducing diversity by reducing
the compatibility J(πag,πtm) between the teammates and the current agents. To select the policy heads for execution,
Macop must collect multiple episodes to gather adequate information, hindering its deployment in costly tasks. In our
experiments, we report Macop’s results of the heads that maximize the R1 or R2 values. Since SEMDIV combines the
strengths of MARL and LLMs, we also include a baseline LLM-Agent that directly uses an LLM as the policy, to assess the
necessity of MARL. The prompts for this LLM are provided in Appendix F.6.

D. Experiment details
In this section, we provide more details about the experiments, including the environments and the unseen testing teammates.

D.1. Environments

We use four classic cooperative MARL environments with diverse coordination behaviors, as shown in Figure 5.

Level-based Foraging (LBF) (Papoudakis et al., 2021) is a discrete game where agents of varying levels navigate a grid to
collect foods with corresponding levels. Each agent moves one cell at a time in one of the four cardinal directions: {up,
left, down, right}. Agents are rewarded with 1 when they are positioned one cell away from a food item and the sum of
their levels matches or exceeds the food’s level. In this work, we use a 6 × 6 grid-world setup with four level-2 foods
located at (0, 0), (0, 5), (5, 0), and (5, 5). Two level-1 agents are randomly spawned at cells {(2, 2), (2, 3), (3, 2), (3, 3)}.
An episode terminates when agents collect one food or after nine steps. Coordination is essential as agents must observe
their teammate’s preferences and collaborate to collect the foods.

Predator-Prey (PP) is a widely-used benchmark from the Multiagent Particle Environment (MPE) (Lowe et al., 2017),

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

where predators and prey are represented as circles on a 2D plane. Agents controlling predators can accelerate in one of four
directions {up, left, down, right} to pursue prey, which employ a heuristic policy to evade the nearest predator. We extend
this benchmark to include five prey: two stags, which require both predators to simultaneously capture them, and three
rabbits, which can be captured by a single predator. Capturing a stag rewards the agents with 1, while capturing a rabbit
rewards 0.5. However, if only one predator attempts to capture a stag, the team is penalized with a reward of -0.01. An
episode terminates when predators catch one stag or two rabbits, or after twenty steps. Effective coordination is required for
agents to adapt to their teammate’s strategies and successfully hunt the prey.

StarCraft Multi-Agent Challenge-v2 (SMACv2) (Ellis et al., 2023) is an extended version of SMAC (Samvelyan et al.,
2019). In this environment, ally units (agents) must defeat enemy units controlled by the game’s built-in AI. Agents
receive positive rewards for dealing damage, eliminating enemies, and winning battles, while incurring negative rewards
for receiving damage, losing units, or being defeated. SMACv2 introduces randomized start positions, increasing the
difficulty and variability of scenarios. In our experiments, two ally marine units face four enemy marine units. The
predefined surrounded start position requires agents to move cohesively, focus fire on individual enemies, and adapt to
their teammate’s combat strategies to win battles. Agents are deemed successful if they eliminate at least one enemy.

Google Research Football (GRF) (Kurach et al., 2020) is a physics-based 3D football simulator that closely replicates
the rules and dynamics of real-world football. Agents can perform actions such as passing, defending, and shooting. We
design a scenario where two agents control players, Johnson and Turing, attempting to score from the edge of the penalty
box. Johnson starts with the ball on the wing, while Turing positions centrally, facing the goalkeeper (Meitner). The team
receives a reward of 1 for scoring a goal and small rewards for getting closer to the goal. An episode terminates when a goal
is scored, the goalkeeper gains possession of the ball, the ball goes out of bounds, or after 100 steps. Effective collaboration
between Johnson and Turing is required to win the game.

D.2. Testing teammates

We evaluate the generalization capabilities of different methods by training five manually designed teammates with distinct
and representative coordination behaviors for each environment. These teammates, along with their behavior descriptions,
remain entirely unknown to the tested methods during training, ensuring an unbiased performance evaluation. In LBF,
we train four teammates that specialize in collecting one specific food, with descriptions such as “I prefer to collect food
A/B/C/D”, and one teammate that “collects the food closest to our average position”. In PP, we train five teammates with
preferences for capturing specific prey, described as “I prefer to catch {prey}”. These include teammates that prioritize stag
1, stag 2, rabbit 1&2, rabbit 1&3, and rabbit 2&3. In SMACv2, we design five teammates similar to those in LBF, where the
“foods” are replaced by “enemies”. In GRF, we train teammates with behaviors such as letting Johnson or Turing score, or
scoring after passing 0, 1, or 2 times. Given the slight heterogeneity between the two players, we evaluate scenarios where
the teammate controls either Turing or Johnson and report the average results. The pronoun in the description changes
depending on the player controlled by the teammate. For example, when the teammate trained to let Turing score controls
Turing, the description is I prefer to score myself,” instead of I prefer to let Turing score.”. This imposes a higher requirement
on the methods’ ability to understand teammate behaviors.

E. More experiment results
We present more experiment results, including the coordination performance with each unseen teammate, the impact of
ambiguity in the natural language descriptions of teammates’ behaviors, and the impact of the quality of the LLMs.

E.1. Results with each testing teammates

In Section 4.2, we evaluate the agents from different methods in each environment by testing them with five unseen
teammates and computing the average R1 and R2 values. To minimize randomness, we repeat the experiments across three
random seeds and report the mean ± standard deviation of the average R1 and R2 values, as summarized in Table 1. Here,
we present the performance with each individual testing teammate in Table 3–7. As shown in these tables, certain baselines
exhibit unstable performance, coordinating effectively with some teammates but failing with others. For instance, FCP
achieves R1 and R2 values exceeding 0.7 with Teammates 1 and 5, yet falls below 0.5 with the remaining teammates. This
suggests that the baselines struggle to capture specific coordination behaviors, leading to agents that overfit to teammates
with limited diversity. In contrast, SEMDIV consistently delivers the best overall results across all methods, demonstrating
its robustness and ability to adapt effectively to diverse teammates.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

Table 3. Coordination performance (mean ± std) with five unseen teammates in the LBF environment. “R1” and “R2” represent the
success rates of task completion and agents satisfying the teammates preferred coordination behaviors, respectively. The best result in
each column, excluding performance upper bounds of SEMDIV (denoted in gray), is highlighted in bold.

Methods Teammate 1 Teammate 2 Teammate 3 Teammate 4 Teammate 5 Average

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

Oracle 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SEMDIV 0.91 ±0.07 0.91 ±0.07 0.900.900.90 ±0.030.030.03 0.900.900.90 ±0.030.030.03 0.950.950.95 ±0.040.040.04 0.950.950.95 ±0.040.040.04 0.870.870.87 ±0.020.020.02 0.870.870.87 ±0.020.020.02 0.89 ±0.15 0.89 ±0.15 0.900.900.90 0.900.900.90
SEMDIV-t5 0.29 ±0.41 0.29 ±0.41 0.07 ±0.09 0.07 ±0.09 0.52 ±0.39 0.52 ±0.39 0.45 ±0.35 0.45 ±0.35 0.89 ±0.15 0.89 ±0.15 0.45 0.45
SEMDIV-R1 0.92 ±0.07 0.92 ±0.07 0.93 ±0.06 0.93 ±0.06 0.95 ±0.04 0.95 ±0.04 0.87 ±0.02 0.87 ±0.02 0.94 ±0.08 0.93 ±0.09 0.91 0.91
SEMDIV-R2 0.92 ±0.07 0.92 ±0.07 0.93 ±0.06 0.93 ±0.06 0.95 ±0.04 0.95 ±0.04 0.87 ±0.02 0.87 ±0.02 0.94 ±0.08 0.93 ±0.09 0.91 0.91
Macop-R1 0.970.970.97 ±0.020.020.02 0.970.970.97 ±0.020.020.02 0.81 ±0.09 0.81 ±0.09 0.75 ±0.31 0.75 ±0.31 0.870.870.87 ±0.120.120.12 0.870.870.87 ±0.120.120.12 0.70 ±0.12 0.65 ±0.15 0.82 0.81
Macop-R2 0.970.970.97 ±0.020.020.02 0.970.970.97 ±0.020.020.02 0.81 ±0.09 0.81 ±0.09 0.75 ±0.31 0.75 ±0.31 0.870.870.87 ±0.120.120.12 0.870.870.87 ±0.120.120.12 0.70 ±0.12 0.65 ±0.15 0.82 0.81

SEMDIV-PBT 0.69 ±0.25 0.69 ±0.25 0.51 ±0.13 0.51 ±0.13 0.33 ±0.07 0.33 ±0.07 0.65 ±0.26 0.65 ±0.26 1.001.001.00 ±0.000.000.00 1.001.001.00 ±0.000.000.00 0.64 0.64
Macop-PBT 0.68 ±0.22 0.68 ±0.22 0.51 ±0.08 0.51 ±0.08 0.47 ±0.15 0.47 ±0.15 0.57 ±0.22 0.57 ±0.22 0.83 ±0.08 0.77 ±0.14 0.61 0.60

FCP 0.74 ±0.28 0.74 ±0.28 0.46 ±0.30 0.46 ±0.30 0.37 ±0.26 0.37 ±0.26 0.47 ±0.31 0.47 ±0.31 0.79 ±0.22 0.70 ±0.22 0.57 0.55
MEP 0.57 ±0.40 0.57 ±0.40 0.27 ±0.38 0.27 ±0.38 0.75 ±0.17 0.75 ±0.17 0.41 ±0.18 0.41 ±0.18 0.85 ±0.15 0.79 ±0.15 0.57 0.56
LIPO 0.55 ±0.31 0.55 ±0.31 0.43 ±0.34 0.43 ±0.34 0.49 ±0.27 0.49 ±0.27 0.47 ±0.33 0.47 ±0.33 0.75 ±0.14 0.63 ±0.14 0.54 0.51

LLM-Agent 0.83 ±0.10 0.83 ±0.10 0.82 ±0.02 0.82 ±0.02 0.88 ±0.06 0.88 ±0.06 0.92 ±0.08 0.92 ±0.08 0.95 ±0.04 0.95 ±0.04 0.88 0.88

Table 4. Coordination performance (mean ± std) with five unseen teammates in the PP environment. “R1” and “R2” represent the success
rates of task completion and agents satisfying the teammates preferred coordination behaviors, respectively. The best result in each
column, excluding performance upper bounds of SEMDIV (denoted in gray), is highlighted in bold.

Methods Teammate 1 Teammate 2 Teammate 3 Teammate 4 Teammate 5 Average

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

Oracle 0.93 0.96 0.73 0.76 0.93 0.86 0.96 0.92 0.99 0.98 0.91 0.90

SEMDIV 0.71 ±0.12 0.74 ±0.12 0.47 ±0.26 0.41 ±0.30 0.85 ±0.11 0.49 ±0.29 0.81 ±0.06 0.54 ±0.04 0.77 ±0.04 0.51 ±0.17 0.720.720.72 0.540.540.54
SEMDIV-t5 0.63 ±0.16 0.68 ±0.16 0.01 ±0.01 0.00 ±0.00 0.61 ±0.06 0.17 ±0.08 0.63 ±0.11 0.23 ±0.25 0.66 ±0.10 0.33 ±0.20 0.51 0.28
SEMDIV-R1 0.73 ±0.15 0.70 ±0.07 0.50 ±0.23 0.41 ±0.30 0.91 ±0.02 0.52 ±0.26 0.85 ±0.04 0.36 ±0.18 0.82 ±0.03 0.65 ±0.03 0.76 0.53
SEMDIV-R2 0.71 ±0.12 0.74 ±0.12 0.50 ±0.23 0.41 ±0.30 0.86 ±0.09 0.56 ±0.23 0.81 ±0.06 0.54 ±0.04 0.80 ±0.04 0.67 ±0.05 0.74 0.58
Macop-R1 0.28 ±0.04 0.00 ±0.00 0.32 ±0.02 0.00 ±0.00 0.75 ±0.06 0.15 ±0.03 0.82 ±0.03 0.620.620.62 ±0.080.080.08 0.76 ±0.07 0.39 ±0.09 0.58 0.23
Macop-R2 0.11 ±0.01 0.03 ±0.01 0.32 ±0.02 0.00 ±0.00 0.72 ±0.09 0.21 ±0.03 0.82 ±0.03 0.620.620.62 ±0.080.080.08 0.74 ±0.09 0.40 ±0.08 0.54 0.25

SEMDIV-PBT 0.43 ±0.02 0.00 ±0.00 0.47 ±0.02 0.01 ±0.02 0.94 ±0.02 0.88 ±0.03 0.89 ±0.01 0.37 ±0.02 0.77 ±0.04 0.31 ±0.04 0.70 0.31
Macop-PBT 0.45 ±0.05 0.00 ±0.00 0.46 ±0.04 0.00 ±0.00 0.89 ±0.02 0.53 ±0.09 0.920.920.92 ±0.050.050.05 0.59 ±0.13 0.880.880.88 ±0.040.040.04 0.520.520.52 ±0.130.130.13 0.720.720.72 0.33

FCP 0.32 ±0.22 0.00 ±0.00 0.33 ±0.24 0.00 ±0.00 0.74 ±0.21 0.30 ±0.24 0.79 ±0.21 0.52 ±0.39 0.69 ±0.25 0.21 ±0.15 0.57 0.21
MEP 0.45 ±0.03 0.00 ±0.00 0.47 ±0.02 0.00 ±0.00 0.95 ±0.01 0.91 ±0.02 0.88 ±0.04 0.31 ±0.09 0.77 ±0.02 0.32 ±0.05 0.70 0.31
LIPO 0.43 ±0.03 0.00 ±0.00 0.46 ±0.01 0.00 ±0.00 0.960.960.96 ±0.020.020.02 0.920.920.92 ±0.040.040.04 0.87 ±0.03 0.25 ±0.06 0.76 ±0.01 0.41 ±0.02 0.69 0.31

LLM-Agent 0.830.830.83 ±0.150.150.15 0.85 ±0.180.85 ±0.180.85 ±0.18 0.820.820.82 ±0.090.090.09 0.870.870.87 ±0.120.120.12 0.58 ±0.06 0.23 ±0.05 0.73 ±0.04 0.45 ±0.07 0.57 ±0.13 0.25 ±0.04 0.71 0.53

Table 5. Coordination performance (mean ± std) with five unseen teammates in the SMACv2 environment. “R1” and “R2” represent the
success rates of task completion and agents satisfying the teammates preferred coordination behaviors, respectively. The best result in
each column, excluding performance upper bounds of SEMDIV (denoted in gray), is highlighted in bold.

Methods Teammate 1 Teammate 2 Teammate 3 Teammate 4 Teammate 5 Average

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

Oracle 1.00 1.00 0.96 0.96 0.98 0.92 0.82 0.82 0.96 0.96 0.94 0.93

SEMDIV 0.880.880.88 ±0.100.100.10 0.880.880.88 ±0.100.100.10 0.47 ±0.07 0.47 ±0.07 0.66 ±0.24 0.66 ±0.24 0.59 ±0.29 0.59 ±0.29 0.650.650.65 ±0.110.110.11 0.590.590.59 ±0.130.130.13 0.650.650.65 0.640.640.64
SEMDIV-t5 0.45 ±0.33 0.44 ±0.34 0.27 ±0.27 0.27 ±0.27 0.02 ±0.02 0.02 ±0.02 0.44 ±0.44 0.44 ±0.44 0.00 ±0.00 0.00 ±0.00 0.24 0.23
SEMDIV-R1 0.88 ±0.10 0.88 ±0.10 0.63 ±0.33 0.63 ±0.33 0.69 ±0.07 0.61 ±0.11 0.65 ±0.11 0.65 ±0.11 0.66 ±0.24 0.66 ±0.24 0.70 0.69
SEMDIV-R2 0.88 ±0.10 0.88 ±0.10 0.63 ±0.33 0.63 ±0.33 0.69 ±0.07 0.61 ±0.11 0.65 ±0.11 0.65 ±0.11 0.66 ±0.24 0.66 ±0.24 0.70 0.69
Macop-R1 0.81 ±0.14 0.81 ±0.14 0.61 ±0.11 0.58 ±0.16 0.70 ±0.14 0.63 ±0.11 0.22 ±0.06 0.22 ±0.06 0.04 ±0.02 0.01 ±0.02 0.48 0.45
Macop-R2 0.81 ±0.14 0.81 ±0.14 0.61 ±0.11 0.58 ±0.16 0.70 ±0.14 0.63 ±0.11 0.22 ±0.06 0.22 ±0.06 0.03 ±0.02 0.02 ±0.02 0.47 0.45

SEMDIV-PBT 0.74 ±0.22 0.74 ±0.22 0.35 ±0.23 0.35 ±0.23 0.75 ±0.01 0.75 ±0.01 0.800.800.80 ±0.200.200.20 0.800.800.80 ±0.200.200.20 0.42 ±0.22 0.42 ±0.22 0.61 0.61
Macop-PBT 0.71 ±0.19 0.71 ±0.19 0.67 ±0.22 0.67 ±0.22 0.60 ±0.06 0.55 ±0.06 0.65 ±0.28 0.65 ±0.28 0.17 ±0.13 0.13 ±0.15 0.56 0.54

FCP 0.81 ±0.19 0.81 ±0.19 0.15 ±0.05 0.15 ±0.05 0.63 ±0.17 0.63 ±0.17 0.21 ±0.15 0.21 ±0.15 0.19 ±0.11 0.15 ±0.14 0.40 0.37
MEP 0.69 ±0.22 0.69 ±0.22 0.20 ±0.12 0.20 ±0.12 0.810.810.81 ±0.080.080.08 0.800.800.80 ±0.080.080.08 0.51 ±0.25 0.51 ±0.25 0.51 ±0.14 0.16 ±0.23 0.55 0.47
LIPO 0.75 ±0.07 0.75 ±0.07 0.20 ±0.07 0.20 ±0.07 0.53 ±0.09 0.43 ±0.15 0.37 ±0.25 0.37 ±0.25 0.39 ±0.17 0.15 ±0.20 0.45 0.38

LLM-Agent 0.30 ±0.04 0.30 ±0.04 0.830.830.83 ±0.140.140.14 0.830.830.83 ±0.140.140.14 0.37 ±0.17 0.37 ±0.17 0.13 ±0.05 0.13 ±0.05 0.10 ±0.14 0.10 ±0.14 0.35 0.35

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

Table 6. Coordination performance (mean ± std) with five unseen teammates in the GRF environment, where the unseen teammate
coontrols player Turing. “R1” and “R2” represent the success rates of task completion and agents satisfying the teammates preferred
coordination behaviors, respectively. The best result in each column, excluding performance upper bounds of SEMDIV (denoted in gray),
is highlighted in bold.

Methods Teammate 1 Teammate 2 Teammate 3 Teammate 4 Teammate 5 Average

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

Oracle 0.93 0.93 0.92 0.92 0.92 0.92 0.98 0.98 1.00 1.00 0.95 0.95

SEMDIV 0.850.850.85 ±0.170.170.17 0.850.850.85 ±0.170.170.17 0.77 ±0.15 0.77 ±0.15 0.620.620.62 ±0.440.440.44 0.620.620.62 ±0.440.440.44 0.48 ±0.08 0.48 ±0.08 0.380.380.38 ±0.380.380.38 0.350.350.35 ±0.410.410.41 0.620.620.62 0.610.610.61
SEMDIV-t5 0.53 ±0.37 0.53 ±0.37 0.36 ±0.38 0.06 ±0.08 0.30 ±0.41 0.29 ±0.41 0.51 ±0.05 0.51 ±0.05 0.08 ±0.05 0.04 ±0.06 0.36 0.29
SEMDIV-R1 0.85 ±0.17 0.85 ±0.17 0.92 ±0.04 0.59 ±0.42 0.81 ±0.17 0.62 ±0.44 0.93 ±0.06 0.93 ±0.06 0.90 ±0.03 0.31 ±0.43 0.88 0.66
SEMDIV-R2 0.85 ±0.17 0.85 ±0.17 0.88 ±0.00 0.88 ±0.00 0.81 ±0.17 0.62 ±0.44 0.93 ±0.06 0.93 ±0.06 0.66 ±0.37 0.35 ±0.41 0.83 0.73
Macop-R1 0.01 ±0.01 0.01 ±0.01 0.900.900.90 ±0.060.060.06 0.900.900.90 ±0.060.060.06 0.10 ±0.07 0.10 ±0.07 0.960.960.96 ±0.000.000.00 0.960.960.96 ±0.000.000.00 0.21 ±0.04 0.15 ±0.11 0.44 0.42
Macop-R2 0.01 ±0.01 0.01 ±0.01 0.900.900.90 ±0.060.060.06 0.900.900.90 ±0.060.060.06 0.00 ±0.00 0.00 ±0.00 0.960.960.96 ±0.000.000.00 0.960.960.96 ±0.000.000.00 0.19 ±0.06 0.19 ±0.06 0.41 0.41

SEMDIV-PBT 0.02 ±0.03 0.02 ±0.03 0.49 ±0.28 0.49 ±0.28 0.01 ±0.01 0.00 ±0.00 0.81 ±0.15 0.81 ±0.15 0.05 ±0.02 0.05 ±0.02 0.28 0.27
Macop-PBT 0.00 ±0.00 0.00 ±0.00 0.32 ±0.09 0.32 ±0.09 0.00 ±0.00 0.00 ±0.00 0.93 ±0.05 0.93 ±0.05 0.05 ±0.01 0.01 ±0.02 0.26 0.25

FCP 0.07 ±0.07 0.07 ±0.07 0.24 ±0.01 0.24 ±0.01 0.01 ±0.01 0.00 ±0.00 0.80 ±0.04 0.80 ±0.04 0.14 ±0.10 0.12 ±0.12 0.25 0.25
MEP 0.20 ±0.24 0.20 ±0.24 0.24 ±0.19 0.24 ±0.19 0.05 ±0.07 0.00 ±0.00 0.61 ±0.27 0.61 ±0.27 0.12 ±0.09 0.02 ±0.00 0.24 0.21
LIPO 0.02 ±0.00 0.01 ±0.01 0.29 ±0.07 0.29 ±0.07 0.00 ±0.00 0.00 ±0.00 0.91 ±0.02 0.91 ±0.02 0.12 ±0.09 0.07 ±0.09 0.27 0.26

LLM-Agent 0.00 ±0.00 0.00 ±0.00 0.13 ±0.05 0.13 ±0.05 0.03 ±0.05 0.00 ±0.00 0.13 ±0.05 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.06 0.03

Table 7. Coordination performance (mean ± std) with five unseen teammates in the GRF environment, where the unseen teammate
coontrols player Johnson. “R1” and “R2” represent the success rates of task completion and agents satisfying the teammates preferred
coordination behaviors, respectively. The best result in each column, excluding performance upper bounds of SEMDIV (denoted in gray),
is highlighted in bold.

Methods Teammate 1 Teammate 2 Teammate 3 Teammate 4 Teammate 5 Average

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

Oracle 0.93 0.93 0.92 0.92 0.92 0.92 0.98 0.98 1.00 1.00 0.95 0.95

SEMDIV 0.78 ±0.09 0.290.290.29 ±0.410.410.41 0.79 ±0.12 0.79 ±0.12 0.900.900.90 ±0.000.000.00 0.900.900.90 ±0.000.000.00 0.65 ±0.10 0.65 ±0.10 0.52 ±0.13 0.510.510.51 ±0.150.150.15 0.73 0.630.630.63
SEMDIV-t5 0.32 ±0.19 0.16 ±0.23 0.61 ±0.38 0.61 ±0.38 0.87 ±0.03 0.87 ±0.03 0.53 ±0.06 0.53 ±0.06 0.59 ±0.25 0.10 ±0.14 0.58 0.45
SEMDIV-R1 0.85 ±0.05 0.30 ±0.41 0.90 ±0.03 0.90 ±0.03 0.93 ±0.01 0.93 ±0.01 0.81 ±0.03 0.81 ±0.04 0.94 ±0.03 0.00 ±0.00 0.89 0.59
SEMDIV-R2 0.49 ±0.32 0.49 ±0.32 0.90 ±0.03 0.90 ±0.03 0.93 ±0.01 0.93 ±0.01 0.81 ±0.03 0.81 ±0.04 0.58 ±0.04 0.58 ±0.04 0.74 0.74
Macop-R1 0.62 ±0.03 0.01 ±0.01 0.72 ±0.01 0.72 ±0.01 0.85 ±0.02 0.85 ±0.02 0.77 ±0.02 0.77 ±0.02 0.76 ±0.01 0.01 ±0.01 0.74 0.47
Macop-R2 0.46 ±0.10 0.05 ±0.03 0.72 ±0.01 0.72 ±0.01 0.85 ±0.02 0.85 ±0.02 0.77 ±0.02 0.77 ±0.02 0.76 ±0.01 0.04 ±0.04 0.71 0.49

SEMDIV-PBT 0.920.920.92 ±0.040.040.04 0.00 ±0.00 0.870.870.87 ±0.060.060.06 0.870.870.87 ±0.060.060.06 0.85 ±0.04 0.85 ±0.04 0.83 ±0.03 0.83 ±0.03 0.870.870.87 ±0.050.050.05 0.01 ±0.01 0.870.870.87 0.51
Macop-PBT 0.61 ±0.04 0.01 ±0.01 0.68 ±0.06 0.66 ±0.09 0.81 ±0.05 0.80 ±0.07 0.74 ±0.01 0.71 ±0.05 0.74 ±0.02 0.01 ±0.01 0.72 0.44

FCP 0.72 ±0.13 0.00 ±0.00 0.55 ±0.26 0.55 ±0.26 0.89 ±0.01 0.89 ±0.01 0.910.910.91 ±0.070.070.07 0.910.910.91 ±0.070.070.07 0.64 ±0.17 0.00 ±0.00 0.74 0.47
MEP 0.63 ±0.28 0.02 ±0.02 0.79 ±0.03 0.79 ±0.03 0.900.900.90 ±0.010.010.01 0.900.900.90 ±0.010.010.01 0.70 ±0.15 0.70 ±0.15 0.78 ±0.05 0.00 ±0.00 0.76 0.48
LIPO 0.60 ±0.32 0.00 ±0.00 0.72 ±0.12 0.72 ±0.12 0.86 ±0.02 0.86 ±0.02 0.80 ±0.06 0.80 ±0.06 0.75 ±0.07 0.01 ±0.01 0.75 0.48

LLM-Agent 0.07 ±0.09 0.07 ±0.09 0.10 ±0.08 0.10 ±0.08 0.80 ±0.00 0.80 ±0.00 0.10 ±0.08 0.00 ±0.00 0.07 ±0.09 0.07 ±0.09 0.23 0.21

(a) (b) (c)

Figure 6. Experiments on the impact of ambiguity in teammates’ coordination behaviors and the quality of LLMs. (a)(b) The minimum,
median, and maximum R1 values of each teammate’s 10 different behavior descriptions in LBF and SMACv2. (c) The performance of
SEMDIV when using different LLMs in PP and GRF.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

E.2. The impact of ambiguity in teammates’ coordination behaviors

In previous experiments, each testing teammate was described using a single, unambiguous statement for clarity. In this
section, we investigate the impact of introducing ambiguity into these descriptions and evaluate the robustness of SEMDIV.
Specifically, for each testing teammate, we input its original description and the task information into an LLM, prompting
it to generate 9 alternative phrasings of the original description. This process yields a total of 10 descriptions for each
teammate. We then evaluate SEMDIV using all 10 descriptions for each teammate, calculating the minimum, median,
and maximum R1 values across these variations in the LBF and SMACv2 environments. As shown in Figure 6(a)(b),
the performance of SEMDIV remains consistent despite the introduced ambiguity, demonstrating the robustness of its
language-based reasoning process for head selection.

E.3. The impact of the quality of LLMs

LLMs play a critical role in the design of SEMDIV. To assess their impact, we replace the gpt-4o-2024-08-06 model
with gpt-4o-mini and conduct experiments in the PP and GRF environments. As illustrated in Figure 6(c), the use
of GPT-4o-mini results in a modest performance decline, demonstrating that even a smaller LLM can effectively support
SEMDIV ’s functionality. With the ongoing development of more advanced LLMs offering enhanced capabilities (OpenAI,
2024; DeepSeek-AI, 2025), SEMDIV holds the potential for further performance improvements.

F. Prompt engineering
In this section, we provide the prompts for LLMs used in this paper.

F.1. Task information

We first provide the prompts about task information across all four environments, as they are frequently reused in prompts
for different purposes in SEMDIV.

LBF:

You are an expert in cooperative multi-agent reinforcement learning (MARL) and code generation. We are going to
train a team of two players in the Level-Based Foraging (LBF) game. The game is a 2D square grid-world with two
agents, and four foods (denoted as food “A”, “B”, “C”, and “D”) are scattered in four different corners. Each player
controls an agent. They need to choose a same food and move towards it, and be at adjacent grids of it together to
collect the food. When agents successfully collect the first food, like food “B”, they get reward 1 and the game ends.

Here’s a part of the original code:

class ForagingEnv(Env):
self.agents_position : {"1": np.ndarray[(2,)], "2": np.ndarray[(2,)]}
self.foods_position : {"A": np.array([0, 0]), "B": np.array([0, 7]), "C": np.array([7, 0]), "D": np.array([7, 7])}
self.collected_food : str # record the food ("A" / "B" / "C" / "D" / "") collected by the team, and "" means no food has

been collected yet.↪→
other attributes and functions

def agent_food_distance(self, agent_idx: str, food_idx: str):
agent_pos = self.agents_position[agent_idx]
food_pos = self.foods_position[food_idx]
distance = np.linalg.norm(agent_pos - food_pos)
return distance

def step(self):
other codes
reward = 0
process collectings: if agents successfully collect one food, reward = 1
for food, (food_row, food_col) in self.foods_position.items():

2 agents be at adjacent grids of it together to collect the food
n_adj_players = self.adjacent_player_number(food_row, food_col)
if n_adj_players == 2:

self.collected_food = food
reward = 1
break

when agents successfully collect a food, they get reward = 1 and the game ends.
done = (reward == 1) or (self.current_step >= self._max_episode_steps)
reward += self.additional_reward()
return new state, reward, done, and other step info

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

PP:

You are an expert in cooperative multi-agent reinforcement learning (MARL) and code generation. We are going to
train a team of two players in the Predator-Prey (PP) game. The game is a 2D world with two predators and five prey
(two stags S1 S2 and three rabbits R1 R2 R3). Each player controls a predator. They need to choose the prey to catch
(like S1 or R2+R3), then chase the chosen prey to catch them. Stags require two predators to catch at the same time. If
only one predator is near them, both players will be punished. Rabbits only require one predator to catch them. When
players successfully catch a stag, they get reward 1. When players successfully catch a rabbit, they get reward 0.5.

Here’s a part of the original code:

class Game:
self.predators_position : {"1": np.ndarray[(2,)], "2": np.ndarray[(2,)]} # Initialization: both np.random.uniform(-0.1,

+0.1, 2)↪→
self.prey_position : {"S1": np.ndarray[(2,)], "S2": np.ndarray[(2,)], "R1": np.ndarray[(2,)], "R2": np.ndarray[(2,)], "R3":

np.ndarray[(2,)]} # Initialization: "S1": [1., 0.], "S2": [-1., 0.], "R1": [0.8, 0.6], "R2": [-0.8, 0.6], "R3": [0.,
-1.]

↪→
↪→
self.caught_prey_set = set() # record the prey caught by the team, like {"S1"} or {"R2", "R3"}, and an empty set means no

prey has been caught yet.↪→
def entity_distance(self, entity1 : str, entity2 : str) -> float:

return the distance between the input entities, like "1" and "2", "1" and "S1", "R1" and "R2", etc.
def get_prey_level(self, prey : str) -> int:

return 2 for "S1" and "S2", return 1 for "R1" and "R2" and "R3"
def get_num_predator_nearby(self, prey : str) -> int:

return the number of predators near / catching the prey (distance <= 0.25), can be 0 or 1 or 2
def step(self):

other codes that change positions
reward = 0.0
for prey in self.prey_position.keys():

prey_level = self.get_prey_level(prey)
num_predator_nearby = self.get_num_predator_nearby(prey)
if num_predator_nearby == 0:

continue
elif 0 < num_predator_nearby < prey_level:

reward -= 0.01
if num_predator_nearby >= prey_level:

reward += prey_level / 2
self.caught_prey_set.add(prey)

reward += self.additional_reward()
other codes

SMACv2:

You are an expert in cooperative multi-agent reinforcement learning (MARL) and code generation. We are going to train
a team of two players in the Starcraft Multi-Agent Challenge (SMAC) game, which involves unit micromanagement
tasks. In this game, ally units need to beat enemy units controlled by the built-in AI. Specifically, each player controlls
a marine agent (”1” and ”2”) to beat four enemy marines (”A”, ”B”, ”C”, and ”D”). The two marine agents are
spawned at the center of the field, and four enemies are scattered in four different corners. Agents need to choose a
same enemy, move towards it, and fire at it together to kill it. When agents successfully kill the first enemy, like enemy
”B”, they get a reward about 10 and the game ends. If both agents are killed, they lose.

Here’s a part of the original code:

class Game:
self.agents_position : {"1": np.ndarray[(2,)], "2": np.ndarray[(2,)]}
self.enemies_position : {"A": np.ndarray[(2,)], "B": np.ndarray[(2,)], "C": np.ndarray[(2,)], "D": np.ndarray[(2,)]}
these 2D positions are calculated as [(x - self.center_x) / self.max_distance_x, (y - self.center_y) /

self.max_distance_y]↪→
initial positions: agents near [0., 0.], "A" lower left, "B" upper left, "C" upper right, "D" bottom right
for agents and enemies that are killed, their postions will be set to [0., 0.]
self.killed_enemy : str # record the enemy ("A" / "B" / "C" / "D" / "") killed by the team, and "" means no enemy has been

killed yet.↪→
other attributes and functions

def agent_enemy_distance(self, agent_idx: str, enemy_idx: str):
agent_pos = self.agents_position[agent_idx]
enemy_pos = self.enemies_position[enemy_idx]
distance = np.linalg.norm(agent_pos - enemy_pos)
return distance

def step(self):
reward = 0.0
other codes that change the battle state the above attributes, and calculate the original reward
reward += self.additional_reward()
other codes

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

GRF:

You are an expert in cooperative multi-agent reinforcement learning (MARL) and code generation. We are going to
train a team of two football players (Turing and Johnson) in the Google Research Football (GRF) game. They try to
score from the edge of the box, Johnson is on the side with the ball, Turing is at the center and facing the goalkeeper
(Meitner). Our team gets reward 1 when scoring a goal. An episode ends when our team scores a goal, or Meitner
owns the ball, or the ball is out of bounds.

Here’s a part of the original code:

class Game:
1. Location information
The closer to the opponent's goal, the larger the x-coordinate. The y-coordinate of the left half of the field is < 0,

and the y-coordinate of the right half is > zero.↪→
self.ball_position : np.ndarray[(2,)] # ball's (x, y) coordinate, (0.7, -0.28) at the beginning
self.Turing_position : np.ndarray[(2,)] # Turing's (x, y) coordinate, (0.7, 0.0) at the beginning
self.Johnson_position : np.ndarray[(2,)] # Johnson's (x, y) coordinate, (0.7, -0.3) at the beginning
self.Meitner_position : np.ndarray[(2,)] # Meitner' (x, y) coordinate, (1.0, 0.0) at the beginning
Coordinates of the lower left and right corners of the goal are about (1.0, -0.04) and (1.0, 0.04)
2. Critical game-level information
self.pass_history : list # List to store the history of passes as tuples, with the first element as the player who made the

pass and the second element as the player who received it, for example, [("Johnson", "Turing"), ("Turing", "Johnson")]↪→
self.score : bool # True if the team scores a goal at this step and False otherwise
self.score_Turing : bool # True if Turing scores a goal at this step and False otherwise
self.score_Johnson : bool # True if Johnson scores a goal at this step and False otherwise
def step(self):

other codes that change the above attributes
reward = 0.0
if self.score:

reward += 1
reward += self.additional_reward()
other codes

F.2. Behavior generator

We provide the prompt for the LLM behavior generator.

{Task information}

Human player teams may have specific cooperation preferences to play the game. They have their own addi-
tional reward shown in the code. A new player outside a team needs to learn and adapt these preferences to cooperate
well after joining the team.

Here are some behavior examples:

- Example 1: {A previous valid coordination behavior}

Based on the information above, think step by step to come up with another possible cooperation preference. The
preference should be deterministic and concrete. It should be as simple as possible. Avoid conditional terms like if,
unless, when, etc. Avoid sequential behaviors like “first X, then Y”. It should be easily implemented in python codes
using the provided code snippet. It should not conflict with the original task objective.

Finally, output the preference in the format: “Human players may prefer to {preference}”.

F.3. Reward generator

We provide the prompt for the LLM reward generator.

{Task information}

Now we want to train a team with this specific cooperation behavior: {A natural language coordination behavior}

According to this cooperation preference, write an operational and executable reward function that formats as “def
additional reward(self) → float” and returns the “reward : float” only.

1. Please think step by step and tell us what this code means. 2. The code function must align with the cooperation

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

preference. 3. It can be a dense reward that guides the team to learn the cooperation preference. 4. Short and simple
code is better.

We have tried some reward function code before, but they are not good enough:

Attempt 1: {Information of the previous attempt}

Based on these information, You may consider change or rewrite the function.

F.4. Alignment verification

We provide the prompt for the alignment examination between behaviors and policies.

{Task information}

We tried to train a team with this specific cooperation behavior: {A natural language coordination behavior}

After training the team with this reward function, we ran it for multiple episodes: {episode information}

Based on the information above, please review if the running behavior of the team aligns with the desired behavior or
not. Think step by step, and tell us your answer. Make sure your output contains a string “::1::” if your answer is “Yes”
and contains a string “::0::” if your answer is “No”.

F.5. Policy selector

We provide the prompt for the head selection process before testing with an unseen teammate in GRF as an example.

You are an expert in football. We are going to build a team of two football players (Turing and Johnson, no other
teammates). They need to score from the edge of the box. When the game starts, Johnson is on the left side controlling
the ball, Turing is at the center and facing the goalkeeper.

Johnson was trained under the same situation, but with different teammates other than Turing to achieve the following
cooperation preferences, and learned corresponding policies:

1: {learned behavior 1}, ... ,
6: {learned behavior 6}

Now, Turing says that: “{testing teammates’ coordination behavior}” Based on the information above, please carefully
analyze the game, the ball, the policies, etc. Think step by step to select the policy (1∼6) for Johnson that can best
coordinate with Turing and satisfy his preferences. Output your answer in the format “[n]”. For example, if your
answer is policy 3, output “[3]”.

F.6. The LLM-Agent baseline

Here we provide the prompts for the LLM-Agent baseline in all four environments.

LBF:

You are an expert in the Level-Based Foraging (LBF) game. We are going to build a team of two players 1 and 2 in the
LBF game. They need to collect a food together. There are four foods (A, B, C, D) in the field. foods position : A =
[0, 0], B = [0, 7], C = [7, 0], D = [7, 7] Before the game starts, player 2 said that: ”I prefer to collect food A.” Now,
player 1 is at [4. 3.], player 2 is at [3. 4.]. Based on the information above, select an action (0∼4) for player 1 that can
best coordinate with player 2 and satisfy his preferences Output your answer in the format ”[n]”. For example, if your
answer is action 3, output ”[3]”.

Actions: 0 (no-op), 1 (x coordinate minus one), 2 (x coordinate plus one), 3 (y coordinate minus one), 4 (y coordinate
plus one).

Output:

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

LLM-Assisted Semantically Diverse Teammate Generation for Efficient Multi-agent Coordination

PP:

You are an expert in the predator-prey (PP) game. We are going to build a team of two players 1 and 2 controlling two
predators in the PP game. They need to chase and catch the prey. There are five prey including two stags (S1, S2) and
three rabbits (R1, R2, R3). Stags require two predators to catch at the same time. If only one predator is near them,
both players will be punished. Rabbits only require one predator to catch them. Before the game starts, player 2 said
that: ”I prefer to catch stag S1.” Now, player 1 is at (0.06, 0.02), player 2 is at (-0.09, -0.02), S1 is at (1.00, 0.00), S2 is
at (-1.00, 0.00), R1 is at (0.80, 0.60), R2 is at (-0.80, 0.60), R3 is at (0.00, -1.00). Based on the information above,
select an action (0∼4) for player 1 that can best coordinate with player 2 and satisfy his preferences. Output your
answer in the format ”[n]”. For example, if your answer is action 3, output ”[3]”.

Actions: 0 (no-op), 1 (accelerate towards +x direction), 2 (accelerate towards -x direction), 3 (accelerate towards +y
direction), 4 (accelerate towards -y direction).

Output:

SMACv2:

You are an expert in the Starcraft Multi-Agent Challenge (SMAC) game. We are going to build a team of two players 1
and 2 controlling two marines in the SMAC game. They need to beat enemy units controlled by the built-in AI. There
are four enemy marines (A, B, C, and D) scattered in four different corners. Initial positions: agents near the map
center [16., 16.], enemy A at the lower left corner, B at the upper left corner, C at the upper right corner, D at the
bottom right corner. Agents need to choose a same enemy, move towards it, and fire at it together to kill it. When
agents successfully kill the first enemy, like enemy B, they win. If both agents are killed, they lose. Before the game
starts, player 2 said that: ”I prefer to kill enemy C.” Now, player 1 is at [16.95, 22.19], with health value 1.00 (1 is full
health, 0 is dead). Player 2 is at [17.15, 21.50], with distance 0.72 and health value 0.60. Enemy A is out of sight
or dead, so cannot be observed and attacked. Enemy B is out of sight or dead, so cannot be observed and attacked.
Enemy C is out of sight or dead, so cannot be observed and attacked. Enemy D is out of sight or dead, so cannot
be observed and attacked. Based on the information above, please select an action (1∼9) for player 1 that can best
coordinate with player 2 and satisfy his preferences. Output your answer in the format ”[n]”. For example, if your
answer is action 3, output ”[3]”.

Actions: 1 (stop the current action), 2 (move north), 3 (move south), 4 (move east), 5 (move west), 6 (shoot enemy A),
7 (shoot enemy B), 8 (shoot enemy C), 9 (shoot enemy D).

Available actions: [1, 2, 3, 4, 5, 8].

Output:

GRF:

You are an expert in football. A team of two football players (Turing and Johnson) need to score from the edge of the
box. When the game starts, Johnson is on the side controlling the ball, Turing is at the center and facing the goalkeeper
Meitner. Before the game, Turing said that: ”I prefer Johnson to score.” Now, the ball is at [0.70 -0.28] with direction
[0.00 -0.00], Turing is at [0.70 -0.01], Johnson is at [0.70 -0.29], Meitner is at [0.99 -0.02]. The center point of the
goal is at [1.0, 0.0]. For [x, y] coordinates, -x direction is on the left, +x direction is on the right, -y direction is on the
top, +y direction is on the bottom. The pass history of our team is []. Based on the information above, please select an
action (1∼18) for Johnson that can best coordinate with Turing and satisfy his preferences. Output your answer in the
format ”[n]”. For example, if your answer is action 3, output ”[3]”.

Actions: 1 (run to the left), 2 (run to the top-left), 3 (run to the top), 4 (run to the top-right), 5 (run to the right), 6 (run
to the bottom-right), 7 (run to the bottom), 8 (run to the bottom-left), 9 (perform a long pass), 10 (perform a high pass),
11 (perform a short pass), 12 (perform a shot), 13 (start sprinting), 14 (reset current movement direction), 15 (stop
sprinting), 16 (perform a slide), 17 (start dribbling), 18 (stop dribbling),

Output:

22

