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Abstract

Training with diverse teammates is the key for
learning generalizable agents. Typical approaches
aim to generate diverse teammates by utilizing
techniques like randomization, designing regu-
larization terms, or reducing policy compatibil-
ity, etc. However, such teammates lack seman-
tic information, resulting in inefficient teammate
generation and poor adaptability of the agents.
To tackle these challenges, we propose Semanti-
cally Diverse Teammates Generation (SEMDIV),
a novel framework leveraging the capabilities of
large language models (LLMs) to discover and
learn diverse coordination behaviors at the seman-
tic level. In each iteration, SEMDIV first generates
anovel coordination behavior described in natural
language, then translates it into a reward function
to train a teammate policy. Once the policy is
verified to be meaningful, novel, and aligned with
the behavior, the agents train a policy for coordi-
nation. Through this iterative process, SEMDIV
efficiently generates a diverse set of semantically
grounded teammates, enabling agents to develop
specialized policies, and select the most suitable
ones through language-based reasoning to adapt
to unseen teammates. Experiments across four
MARL environments show that SEMDIV gener-
ates teammates covering a wide range of coordi-
nation behaviors, including those unreachable by
baseline methods. Evaluation across four environ-
ments, each with five unseen representative team-
mates, demonstrates SEMDIV’s superior coordi-
nation and adaptability. Our code is available at
https://github.com/1i1h76/SemDiv.
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1. Introduction

Recently, cooperative multi-agent reinforcement learning
(MARL) has gained significant attention (Oroojlooy & Ha-
jinezhad, 2023), demonstrating promising applications in
various fields such as autonomous driving (Zhang et al.,
2024c), domain calibration (Jiang et al., 2024), and fi-
nancial trading (Huang et al., 2024). Classic MARL ap-
proaches (Lowe et al., 2017; Rashid et al., 2018; Wang et al.,
2021; Yu et al., 2022) primarily focus on training a group of
agents to cooperatively complete specific tasks and evaluate
their performance in the same setting. However, in open
multi-agent environments (Yuan et al., 2023b), agents are
often required to team up with unseen teammates exhibiting
diverse coordination behaviors. For instance, autonomous
driving agents frequently encounter human drivers with a
wide range of driving behaviors. In such scenarios, agents
trained using conventional MARL techniques may strug-
gle to coordinate effectively, as they tend to overfit to the
behaviors of their training teammates.

Training with diverse teammates is the key for learning gen-
eralizable MARL agents. To generate diverse teammates,
recent research in areas such as ad-hoc teamwork (Mirsky
et al., 2022) and zero-shot coordination (Treutlein et al.,
2021) has emerged. FCP (Strouse et al., 2021) trains team-
mates using different random seeds, while TrajeDi (Lupu
et al., 2021) and MEP (Zhao et al., 2023) introduce diver-
sity regularization terms for teammates. Other methods
like LIPO (Charakorn et al., 2023), Macop (Yuan et al.,
2023a), BRDiv (Rahman et al., 2023), and L-BRDiv (Rah-
man et al., 2024) induce diversity by reducing compatibility
among teammates or between teammates and agents. While
achieving some progress, these approaches primarily focus
on policy-level diversity, generating teammates that lack
semantic information and are not grounded into specific
coordination behaviors. This limitation results in two sig-
nificant challenges. First, the exploration of the teammate
policy space is inefficient, as teammates are driven to opti-
mize for differences at the policy-level rather than actively
discovering novel coordination behaviors at the semantic-
level. Second, agents are unable to utilize semantic informa-
tion, and limited to trial-and-error interactions for teammate
adaptation, hindering their deployment in costly tasks.
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Figure 1.An overview of the training and testing processSeEvDIv. Left: During training,SEMDIV proposes novel coordination
behaviors in natural language and transform them into teammate policies for agent learning. Right: DurindSEgting, takes as
input the description of the unseen teammates and selects the optimal learned policy for coordination.

To tackle these challenges, we propose Semantically D2. Problem Formulation
verse Teammates Generati®@e(D1v), a novel framework i i
leveraging the capabilities of large language models (LLMs)" this work, we focus on cooperative MARL tasks where

to discover and learn diverse coordination behaviors at thggents need tohqoordlrtl)?te with ut;\se}en anld ugcontrollablle
semantic level, as illustrated in FigureSEMDIV employs ~ €ammates. This problem can be formulated as a tuple

an iterative process: in each iteration, it rst generates 41 = NN = Nag[N m;SIA;P; O;R; i by extending
novel coordination behavior described in natural languagdl® Pec-POMDP framework (Oliehoek & Amato, 2016).
then translates it into a reward function (Xie et al., 2024; Ma' 1€7€:N s the set of all agents, divided into controllable
et al., 2024a) to train a teammate policy. Once the policy?98NSNag = F1::::: nagg and uncontrollable teammates
is veri ed to be capable of completing the task, distinct \im = fNag+ 1:::2iNagdy Nimg. S isdhe set okf global
from previous teammates, and aligned with the behavioSt21€SA = Aag A m= "oy A “ oy, At isthe
the agents with multi-head architecture (Kessler et al., 20240Int action spaceP : S A'l PV(S) is the transition
Yuan et al., 2024) train a new policy head for coordinafunction, is the set of observation® : S N ! is
tion. Through this procesSEMDIV ef ciently generates a  the observation functio® : S A S!  Risthe reward
diverse set of semantically grounded teammates, enablinfgnction, and 2 [0;1) is the discount factor. At each time
agents to develop specialized policies, and select the mo§tePt, agenti 2 N receives an observatiay = O(st;i) 2
suitable ones through language-based reasoning to adapt to@nd outputs an acticej 2 A" with policy '(jo'). The

unseen teammates with speci ¢ coordination behaviors. joint actiona, = (af;::;af™ "™) leads to the next state
) . St+1 P(jst;at) and ateam rewar(s;; at; Si+1 ). The
We conduct experiments across four MARL enV'ronmemsobjective of ‘69 controllable agents is to nd a joint policy

including Level-Based Foraging (LBF) (Papoudakis et al., 9 jo%) = i (jo) that maximizes the expected
2021), Predator-Prey (PP) (Lowe et al., 2017), StarCraft : )2 ag mo_ (5 K s
Multi-Agent Challenge-v2 (SMACv2) (Ellis et al., 2023), return ngr;. urtwnlfnown teammat o KN m €.,

and Google Research Football (GRF) (Kurach et al., 20205_; mPC = B e Bsia b o TRSGaG S]]
SEMDIV successfully generates teammates with novel coAs we aim to study teammates generation and agents coordi-
ordination behaviors unreachable by policy-level baselinesation at the semantic-level, we consider scenarios in which
for example, multiple passes in GRF. Teaming up with ve the group of teammatés ™ provides a natural language
unseen teammates with distinct and representative coordindescriptionb prior to the execution phase. This description
tion behaviors in each of the four environmer@sMDIV's  outlines their preferred coordination behaviors, such as a
agents outperform the best baseline by 19% for task succespeci ¢ plan to complete the task, or the occurrence of a
rate and 39% for the success rate of satisfying the teammatgmrticular coordination event, etc. The agents can leverage
preferred coordination behaviors. These results highlight thehis natural language descriptibiio adapt their individual
capability of SEMDIV to train adaptive agents with strong policies 12N =, thereby aligning their actions with the co-

coordination ability in open multi-agent environments. T —
For simplicity, we denote a group of teammates as “a team-

mate” hereafter when no ambiguity arises.
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Figure 2.The overall work ow of SEMDIv. (a) Generating coordination behavi®EmDIvV iteratively generates of semantically diverse
coordination behaviors, enabling ef cient exploration of the teammate policy space. (b) Training aligned teammate policy. For each
coordination behavior described in natural language, a teammate policy is trained to align with that behavior. (c) Training agents. Agents
are continually trained with these teammates, developing strong coordination ability.

ordination preferences of'™, ultimately enhancing overall they need to complete. The instructimst is a simple

team coordination and task performance. sentence like ¢ome up with a possible and concrete coor-
dination behaviot. Whenn > 1, to ensure novelty and
3. Method diversity in each iteration, the prompt also includes previ-

This section introduceSEMDIV (Figure 2), a novel frame- with explicit instructions ininst  for the LLM to avoid
work that leverages LLMs to ef ciently generate semanti-replicating these behaviors while proposing a new one. Fur-
cally diverse teammates, and train agents with strong coordihermore, to ensure meaningful diversity in the generated
nation ability. SEMDIv begins with the iterative generation teammatesSEMDIV incorporates a feedback mechanism to
of semantically diverse coordination behaviors, enablinge ne the behavior generation process. Speci cally, when a
ef cient exploration of the teammate policy space (Secpair of policies I; " . 2 P, i are similar with each
tion 3.1). For each coordination behavior described in natuether, this informatiorinfo _sim is fed back into the LLM

ral language, a teammate policy is trained to align with thaprompt. For example, in a navigation task, different behav-
behavior (Section 3.2). Simultaneously, agents are continuers such as “move to point A” and “move to coordinate
ally trained with these teammates, enabling them to develof8; 4)" might produce similar policies if point A is close to
strong coordination ability and adapt ef ciently to unseen(3; 4). By identifying such redundancies, a process elabo-

teammates during execution (Section 3.3). rated later, the LLM gains a deeper understanding of the
coordination task. This grounding feedback enaSies -
3.1. lterative Generation of Semantically Diverse Div to iteratively generate coordination behavior-policy
Coordination Behaviors pairs that are diverse at both semantic and policy levels,

) ) ) i . enhancing exploration of the policy space. The full prompts
To derive semantically diverse teammates in a cooperativgy, the LM behavior generator are in Appendix F.2.
MARL task, SEMDIv rst leverages an LLM to iteratively

generate a diverse set of plausible coordination behavio§ext, the LLM behavior generator utilizes the prompt
described in natural language. p = [desc ;inst ;B;info _sim], along with its internal
knowledge, to output a new concrete behawgrin nat-

ural language. This behavior is then used to generate a
corresponding policy ™. If ™ demonstrates the intended

Concretely, leP,, 1= f(bn; ™1,)gh_] denote the set
of teammates generated in the previous 1 iterations,
where each tuplém; r%",t|mm) consists of a behavidin,  pehayiot, , is different from previous policies iR, 1, and
its corresponding policy ', and a boolean valuen in-  completes the task, is set toTrue . Otherwise] , is set to
dicating whether the teamhmate is validh(= True ) or  Egise . Then Pn= Py 1[f (By; ™ 1,)g. Thisiterative

—_ t . . . 1 1 1 .
not(m = False ). In then™ iteration, the LLM behavior  ,5cess continues until a suf cient number of valid team-

generator takes a task descriptgsc and an instruction  mates are generated, fostering the development of agents
inst as prompts. The descriptiatesc includes the basic i, strong coordination capabilities.

information about the environment, the agents, and the task
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3.2. Grounded Generation of Each Single Teammate puted as the sum of two components: the task-specic
rewardr; = R(st;at;St+1) and the generated reward
A= Rm(st;ar; St+1 ). For the weighting factors,; = 1,

2 decays from 1 to O over the course of training. This
ecay ensures thatl' learns to complete the task.

This section describes ho8EMDIV generates a teammate
policy that aligns with a speci ed coordination behavior and
completes the MARL task, while ensuring that the teammate,
policy is distinct from previously generated ones.

p R dF . Withi hi , Policy Verication After training &', SEMDIV veri-
rompts to Reward Functions  Within each fteration, o jig validity. First, it evaluateg~'; M) for multiple

given a coordination beh_awm, SEMDIV uses an LLM episodes to compute returns fgrandf{", checking issues
to generate a corresponding reward funcfiyp : S A 6:/

S bl Simil he behavi ii) failure to complete the task, and (iii) non-functional re-
' Rasan executable program. Similarto the behavio ards. Forissue (ivSEMDIV extracts the main information

generatqr, the L!‘M reward generatpr takes Fhe task descriﬁ)ﬁ these episodes, transforms it into natural language, and
tion, an instruction, and feedback information as promptsL.Jses an LLM to con rm that ™ demonstrates the intended
m

The task description must include basic callable attribme%oordination behavidy . For issue (v), we assume a joint
and APls to ground the. reward funptlon in the task. enV"agent policy 23that can effectively coordinate with all pre-
ronment. For instance, in a 3D navigation task, attrlbute§,ious teammates, 1= f M2Py, 1j1; = True g

m = i m j - ’

like agentl _position:  np.ndarray[(3,)] and \yhich will be elaborated in the next section. To con rm
APIs like distance calculation functions should be prowdedthat M is distinct from 1, 1, we follow (Charakorn et al.
The instruction is a sentence like “write a reward function2023)m<,ind check whether th,e following condition holds:,
that formats as “def reward(self) oat' and aligns with

the coordination behavidib, g”. However, with only the JC% ™ JC W S - @
task description and instruction, the generated reward may NG ’

not be able to train a valid teammate for several issues: (it)or all ™o under con gurations ; = 1: , = 0
The reward function is not executable, e.g., it calls an undeénd :]0' : 1l’where > Oisa redelned t’hrzeshold
ned attribute. (ii) The teammate fails to complete the task ! ' 2 ' b ’

after training with this reward function. (iii) The return of Ifthis condition is safis ed, r is con rmed to be distinct,
9 ' as 2 cannot effectively coordinate with it. Otherwise,

the reward function remains nearly constant during training,. . . " o .
S i . . Similarity information is recorded and provided as feedback
indicating that it's non-functional. (iv) The teammate does . . . i
. o . to the LLM behavior generator, as described in Section 3.1.

not demonstrate the intended coordination behawyjor(v) . o . . .

o : This veri cation process ensures the quality and diversity of
The teammate is similar to previously generated ones. .

each generated teammate. The prompts used for behavior-

To address these issu€gMDIV incorporates the above policy alignment veri cation are detailed in Appendix F.4.
critical grounding feedback into subsequent prompts to it-
eratively re ne the reward function. This iterative process3.3. Continual Learning and Execution of the
continues until either a valid teammate polic§f" is learned Coordinating Agents
or the maximum number of attempts is reached. A valid

policy is one that satis es all veri cation criteria (described | "€ 90al ofSEMDIV is to derive a joint agent policy 29
below), at which point the tuplén; ™ True ) is added that can effectively coordinate with both self-generated and

to Py, 1. If the maximum number of attempts is reached,UNSeen ttammates based on natural language descriptions
(bm; ™= null ;False ) is added instead. The prompts of the|r coorldmatlon behaviors. As the CO(.)I’d.InatIOI’] be-
for this LLM reward generator are in Appendix F.3. haviors of different teammates may vary signi cantly or
even con ict with each other, it can be challenging to train

a single policy network that coordinates effectively with

all teammates. Additionally, when training with a newly
Igenerated teammate, the agent's policy may lose the ability
to coordinate with previous ones due to network parameter
updates, i.e., catastrophic forgetting.

Reward Functions to Policies Given an executable re-
ward functionR,, , SEMDIV incorporates it into the environ-
ment code and leverages an off-the-shelf cooperative MAR
algorithm to train the teammate policyf". The training
objective is to maximize the self-play return de ned as:
" # To address these challeng€sMDIv adopts a multi-head
Jm X Car+ oA 5 (1) network architecture (Kessler et al., 2Q22; Yuan et al., 2(_)24)
' and empowers the agents with continual learning ability.
For each individual agent 2 =s, the policy network is de-
Where~§{1“ is the complementary policy of i7", which con-  composed into a feature extracfor and multiple policy
trols agentsN,q. It outputs actiongal;::;;a ™), which  headsh g1 , wheren = jf im::::; 'Mgj represents
are combined with the actiorg[ "™ ;:::;a7*" "™ out-  the number of valid teammates generated up tonth-
put by ™ to form the joint actiora;. Rewards are com- eration. For simplicity, we ignore invalid teammates and

t

4
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assume all teammates By, are valid (,, = True) in reasoning, avoiding the need for trial-and-error interactions
this part. For a new generated teammaf@, trained by  and signi cantly improving ef ciency. The prompts for this
rewardf"*1 to demonstrate behavitk., , SEMDIV rst LLM are provided in Appendix F.5.

instantiates a new policy hedd » . for the agent's co-

ordinabo’ n with thisfiew teammate. The joint agent policy4 E ;
. 5(51 . EXperiments
ag = = in +1 IS then trained to P

i2Nag —  i2Ng' !
coordinate wgith tm by niaximizing the objective: In this section, we conduct a series of experiments to ad-
" # dress the following questions: (1) C&MDIv effectively
ag. tm \ _ X nel L coordinate with unseen teammates who provide descriptions
J( % k)= Esia, re+ ofy 7 (3)

of their coordination behaviors (Section 4.2)? (2) How does
SEMDIV operate in detail during a single run (Section 4.3)?
where ; is the same decaying factor with the one used in(3) Can baselines achieve the performanc8eDIv by
Equation (1). Different checkpoints of",, are utilized for increasing the population size (Section 4.4)?

sampling to improve generalization. During training, the

policy headsh i g'-; remain xed, and gradients only 4.1. Environments, Teammates, and Baselines

propagate through i and the new heald i» + . Since the
feature extractors i are already well-trained to capture the
common features of the task? can quickly adapt to new
teammates. However,2? may lose the coordinate ability
with previous teammates ff | updates dramatically, i.e.,
catastrophic forgetting. S&EMDIV applies a regulariza-
tion term to constrain the update, forming the nal objective
for training the joint agent policy:

1 X

Nagd i2N o

t

We evaluateSEMDIV and baseline methods across four
classic multi-agent coordination environments. The rstis
Level-Based Foraging (LBF)(Papoudakis et al., 2021), a
grid-world scenario where agents coordinate to collect food
items together. Next, we introduce a modi ed version of
the Predator-Prey (PP)(Lowe et al., 2017) environment,
incorporating two prey types to enhance complexity. We
then conduct experiments using tB&rCraft Multi-Agent
[ ijjp; (4) Challeng_e-vz (SMA_CVZ)(EIIis etal., _2023), which tasks_
agents with controlling StarCraft units to defeat enemies
controlled by the game's built-in Al. SMACv2 improves
whereJ is the objective de ned in Equation (3), isa  Upon SMAC (Samvelyan et al., 2019) by introducing fea-
hyperparameter,i is the Snapshot of parameteﬁsaﬁer tures like randomized start pOSitionS, making it Signi Cantly
training with the last teammatel™, andjj jj, represents Mmore challenging. Finally, we test Boogle Research
thel, norm. This learning framework effectively balances Football (GRF) (Kurach et al., 2020), where agents con-
the need to adapt to new teammates while preserving th@Ol football players aiming to score through diverse tactics.
ability to coordinate with previous ones. It has excellentDetailed introduction are provided in Appendix D.1.
scalability as the number of diverse teammates increasgg each environment, we train ve teammates exhibiting
during training. Once the training process is CompIBEM- gjstinct and representative coordination behaviors. For ex-
Div produces a joint agent policy*d with a set of policy  gmple in GRF, we train teammates that prefer scoring after
headsth i g, each tailored to coordinate with a class of ¢, mpleting one or two passes. These teammates, along
teammates exhibiting a speci ¢ coordination behaliarlt it their behavior descriptions, remain entirely unknown
is worth noting that, the agents are equipped with conting, the tested methods during training, ensuring an unbiased
ual learning ability to adapt to future teammates that may,eformance evaluation. To assess whether agents can effec-
appear after this training process, showcasing potential fdfyely coordinate with these teammates to complete tasks,
online real-world applications. we measure the task success rates, denoted as R1. Addi-
During the execution phase, the agents need to coordinat®nally, we evaluate the success rate of agents in satisfying
with an unseen teammaté™ with coordination behavidp  the teammates' preferred coordination behaviors, denoted
described in natural languag8emMDIV utilizes an LLMto  @s R2. Detailed introduction of the testing teammates are
select the optimal policy head for the agents before rollout!lustrated in Appendix D.2.
This LLM selector takes the task description, learned beha‘Next, we present the implementation detailsS&MDIv
iorsfly j 1; = True g, behaviorb, and an instruction as  anq the baselines for comparison. In our experiments, we
prompts. The instruction is a sentence lilselect the policy employ GPT-40 as the LLRKI For MARL algorithms, we
that can best coordinate with the teamnfatdhen, the | slize MAPPO (Yu et al., 2022) for GRF and VDN (Sune-

LLM outputs the index of the selected hedd i . Finally,  phaq et al., 2018) for other environments. We rst compare
each individual agentuses ' = f i h i to effectively

coordinate with teammate'™. This approach enables the ~ °We use thegpt-40-2024-08-06  model via APIs at
agents to adapt to the teammate through language-basBtps://platform.openai.com/docs/guides/gpt :

max J( % T,

P.oin o +1

i2N o

Ii
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Table 1.Coordination performance (meanstd) with unseen teammates across four environments. “R1” and “R2” represent the success
rates of task completion and agents satisfying the teammates preferred coordination behaviors, respectively. The best result in each
column, excluding performance upper bounds BM®1v (denoted in gray), is highlighted imold.

Methods | LBF PP SMACV2 GRF | Average
R1 R2 R1 R2 R1 R2 R1 R2 | R1 R2
Oracle |  1:00 1:00 091 090 094 093 095 095 | 0:95 095

SEMDIV 0:90 .05 090 o5 072 903 054 10 065 .02 064 o2 067 o3 062 o007 | 0:74 068
SEMDIV-Dist | 045 14 045 g1a 051 00z 028 00s 024 oos 023 o0s 047 020 037 016 | 0:42 (33
SEMDIV-R1 | 091 gos 091 oos 076 001 053 oos 070 000 069 oo1 0:88 005 0:62 003 | 0:81 (69
SEMDIV-R2 | 0:91 .04 091 04 074 go1 058 o0 070 o900 069 01 078 gog 0:73 g5 | 0:78 Q73
Macop-R1 | 0:82 ¢.10 0:81 11 0:58 g.02 0:23 000 0148 .03 0:45 003 059 g5 044 04 | 0:62 (€48
Macop-RZ 0:82 o010 081 g11 054 go1 025 g0 047 go3 045 o3 056 15 045 g3 | 060 049

SEMDIV-PBT | 0:64 .02 064 002 070 901 0:31 g1 061 901 061 g1 057 30 039 12 | 0:63 049
Macop-PBT 0:61 .00 0:60 g2 0:72 003 033 go3 056 o4 054 go3 049 gos 035 10 | 0:60 C46

FCP 0:46 022 043 go9 057 g3 021 o915 040 go5 0:37 006 050 g5 0:36 12 | 0:48 034
MEP 0:57 008 056 g8 070 g1 031 901 055 gos 047 go2 050 26 0:35 o114 | 0:58 042
LIPO 0:54 o900 051 g2 069 002 031 g1 045 910 038 g5 051 25 037 12 | 0:55 039

LLM-Agent 0:88 005 088 005 071 g9 053 gog 035 910 035 g10 014 g9 0:12 g9 | 0:52 047
g

SEMDIV with classic two-stage population-based training4.2. Competitive Results

(PBT) methods that induce diversity at the policy level, in- . .
cluding FCP (Strouse et al., 2021), MEP (Zhao et al., 2023)_In this s¢_—3ctlon, we present the overall resultsSaDlv, .
s ablations, and the baseline methods when coordinat-

and LIPO (Charakorn et al., 2023). These methods train . .
g with unseen teammates across four environments. As

opulation of diverse teammates using different technique!’ . .
i$1 {)he st stage, and use them to tra%n agents in theqsecsimwn in Table 1, the classic method FCP demonstrates
ond stage Then’ we compaBemDIV with Macop (Yuan poor performance, due to its limited ability to generate

et al., 2023a), which employs an iterative process simila?Uf C|entl3{[ dlvgtrjs_te_: tealrr(;mate_?. Inb_cort1_trast, me:]hodslv':gz;t
to SEMDIv but generates new teammates by minimizingmcorporal € additional diversity obJectives, such as

compatibility with agents. For a fair comparison, we derive.and LIPO, show improved performance, highlighting the

a total of 6 teammates and extract their three checkpointg.np()rt"’lnce of fostering di;tinct coqrdinatiqn behgviors that
the initial, middle, and nal stages of training (Strouse et al_,cannot be captured by simply training with varied seeds,

2021). This results in 3 checkpoints per teammate and a toté_l| oweyer,'all the.s.e two-stage PBT methods exhibit limited
coordination ability. When we replace the rst-stage team-

f18 t t licies f t traini Il meth- .
© eammale policies for agent raining across all Met, o< with those generated BgmDIv or Macop (*-PBT),

ods. To analyze the quality of the generated teammates ald

the impact of the multi-head architecture, we use the tea jerformance improves signi cantly, suggesting that the two-

mates ofSEMDIV and Macop as the rst-stage teammatesStage framework struggles to generate suf ciently diverse

in PBT methods, denoted 8SEMDIv, Macom-PBT. To in- Leg_lmma:ﬁdeIthOLg congjren%g the ?k?ertl)ts.tAmolr;g these
vestigate the head selection module, we inclu8emDiv, methodsSEMDIV- achieves the best results (see

Macopg-R1 and -R2, which report the results of the headsthe third block of the table), demonstrating ti&8gmMDIv

with the highest R1 or R2 values, serving as upper boundg_r—znerates teammates with superior quality and diversity.
Additionally, we introduceSEMDIV-Dist, an ablation of  Further analysis reveals that a single policy network is insuf-
SEMDIV that selects heads based on the distance betweetient to effectively adapt to all distinct teammates, i.e., the
embeddings of behavior descriptions, computed using a Tonulti-modality issue. The multi-head versionsSEMD v

XL model (Chung et al., 2024). Sin@eMDIv combines  and Macop (second table block) outperform their PBT coun-
the strengths of MARL and LLMs, we also include a base+terparts, indicating that multi-head architecture can address
line LLM-Agent that uses LLM only, to assess the necessitythis issue. NextSEMDIv consistently outperforms all base-
of MARL. All methods are evaluated over three randomlines, demonstrating the effectiveness of its semantically
seeds. Finally, we report the self-play performance of tesdiverse teammate generation. In the multi-head settings,
ing teammates as upper bounds (Oracle). Further details f{@emDI1v leverages an LLM to understand the behaviors
SEMDIV and the baselines are in Appendix B and C. and coordination tasks, thus selecting matched policy heads.
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Figure 3.A case study in the GRF environment. (a) Learning curves of the teammate and the agent in the rst iteratimof .
(b) An episode where the rst generated teammate successfully scores a goal and demonstrates the desired coordination behavior. (c)
Trajectories visualization of the 12 teammates generatec=wD®v and FCP.

Default return, no extra reward in other cases

and -R2, and outperforms the best baseline Macop by 19%  .on o5
for R1 and 39% for R2. In contrasseMDIV-Dist selects

heads based on embedding distances between behavior ¢z generated function correctly utilizes the provided envi-
scriptions, and shows signi cant performance degradation,onment attributes to encourage the teammate to learn the
indicating that language embedding similarity alone is inspeci ed passing tactic. The inclusion of well-documented
suf cient to address the complex task of head selectiongomments enhances the reward's interpretability. This func-
Although SEMDIvV still falls short of the Oracle baseline, tion is then incorporated into the reward wrapper class. Sub-
we can bridge the gap by generating more teammates @gquentlySEMDIV applies the MAPPO (Yu et al., 2022)
incorporating additional diversity objectives. algorithm to train the teammates to maximize both the task

Additionally, while LLM-Agent performs comparably to "€ward and the generated reward, as de ned in Equation (1).
SEMDIV in simpler tasks such as LBF and PP, it experi-1N€ training results are shown in Figure 3(a). Upon com-
ences a severe performance degradation in more compl@4€ting training,SEmDIV veri es the validity of the learned
environments, highlighting the necessity of incorporating!€@mmate policy. First, as shown in the learning curves,
task-speci ¢ reinforcement learning for successful multi-at the early stage of training, the teammate occasionally
agent coordination. More experimental results, includingSc0res goals without completing the desired passing behav-

performance of each testing teammate, are in Appendix EIOT, leading to a discrepancy between the blue and green
curves. As training goes, the teammate successfully learns

4.3. Case Study to score while r_naximizing the generated rgward. Second,
trajectory data is extracted and translated into natural lan-
To illustrate the functionality ofSEMDIV in detail, we guage, producing a summar$in this episode, Johnson
present a case study that demonstrates the teammate gengrassed to Turing, and nally successfully scored a goal. The
tion process, agent training, and evaluation with an unseeplayer who scored the goal is Turing " Based on this
teammate during a single run in the GRF environment.  summary, an LLM con rms that the policy aligns with the

- : intended coordination behavior. Key steps of this episode
At the beginning, the LLM behavior generator takes the re visualized in Figure 3(b). Third, the similarity check

designed prompt as input, and outputs a possible coordin&:® V o . .
tion behavior:execute one pass before taking a shot at theseﬂgsi%?iﬁz E?S'Sc'srtgg (r)sr;t(;[aan;gnaa;;eﬁ;keus gﬁgrda:?:ttlﬁﬂs
goal. Based on this behavior and the context of the football P g policy

game, the LLM reward generator outputs the correspondiné’alldatecj as suitable for fraining the agent.

It achieves results comparable to the upper bounds of ?/1 retum 1000

reward function in Python: Next, SEMDIv creates a new policy head for the agent,
and trains it to coordinate with this teammate, as de ned in
def rewardi(self) -> float: Equation (4). For this initial teammate, the regularization
# Check if the score event happens at this step . . .
it self.score: coefcient is set to0. The agent ef ciently learns to
# Check if there is exactly one pass in the history i H i H
it lon(oelf pass, history) =~ 1 score goals Wlth the teammate yvhlle. executing the mten_ded
# Ch?éﬁ(};smﬁmﬁ?jj ['zrbs;vrv?iﬂ the two players passing tactic, resulting in rapidly rising and overlapping
# .. i ity . . . .
# Large reward to reinforce the desired behavior Iearnlng curves shown in red and orange. This process Is
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impact, we rurSEMDIV, its variantSEMDI1Vv-PBT, and the
baseline FCP with different numbers of training teammates,
and assess the agents' performance with the testing team-
mates. As shown in Figure 4, when training with only one
teammate, these methods degenerate to the same setting,
showing almost identical performance. As the number of
teammates increaseSgMDIV-PBT outperforms FCP with
the same number of training teammates, achieving compa-
rable or even superior results to FCP with a signi cantly
larger number of 48 teammates. This demonstrates that
generating semantically diverse teammates not only enables
more ef cient exploration of the teammate policy space but
also facilitates the discovery of coordination behaviors that

Figure 4.Coordination performance with testing teammates Whe”policy—level exploration alone cannot cover. For instance,

agents train with various numbers of generated teammates. in the GRF environment, we observe that FCP and other

) . ) . . . baselines fail to discover complex tactics that pass multiple
repeated iteratively until the agent is trained with six distinctijqes. Furthermore, with its multi-head architectuem-
valid teammates. Div scales more effectively with the number of teammates,

To assess the impact of the semantic-level exploration teciichieving signi cantly better performance th&mDiv -
nique on enhancing diversity among teammate policies, w&€BT. This highlights the importance of a specialized design
visualize the generated trajectories. Speci cally, we colthat allows for rapid adaptation to unseen teammates.

lect 100 trajectories for each of the six valid teammates,

totaling 600 trajectories. For comparison, we also gathef, Related Work

an equivalent dataset from six teammates generated dur-

ing a run using FCP (Strouse et al., 2021). From thesé open multi-agent environments, the important factors of
trajectories, we extract those that result in a goal, converhe environment or the multi-agent system may change un-
them into vector representations, and apply t-SNE (Van degXpectedly (Yuan et al., 2023b). To handle the change of
Maaten & Hinton, 2008) for visualization. As shown in teammates, recent research in areas such as ad-hoc team-
Figure 3(c), the projection EMDIV exhibits a broader Work (Mirsky et al., 2022) and zero-shot coordination (Treut-
and more dispersed coverage compared to FCP (highlightd@in et al., 2021) has emerged. This line of work includes
in circles). This con rms that semantic-level exploration training paradigm design (Hu et al., 2020; Strouse et al.,

signi cantly enhances the coverage of the teammate policy2021), diverse teammates generation (Lupu et al., 2021;
space, u|t|mate|y enhancing the agent‘s coordination. Zhao et al., 2023; Charakorn et al., 2023; Yuan et al., 2023a;

_ ] ] Rahman et al., 2023; 2024), investigation of human bias (Yu
Finally, the agent is evaluated with an unseen teammate. FQg; 5. 2023a), goal deduction (Zhang et al., 2024d), and
example, a teammate joins the team as Turing, the player &sicy co-evolution for heterogeneous settings (Xue et al.,
the center. Our agent controls the other player, Johnson, anéb24)_ Researchers also develop benchmarks (Wang et al.,

needs to coordinate with Turing. Before the game beginnz4a) to evaluate these methods. This paper further delves
Turing describes his/her desired coordination behavlor: 4 this line of work utilizing the power of LLMs to en-

prefer to score myse_lf."l'he LL_M head se_lector takes th_e hance teammates’ semantic diversity.

task description, Turing's desired behavior, and behaviors

the agent have learned, as inputs‘ It inferences‘iH#as LLMs have recently gained Signi cant attention in multi-
po]icy (the one described above) ful lls Turing‘s desire to agent tasks due to their advanced Capabilities in natural
score, as it allows him to set up for a shot after receivinglanguage processing and planning (Guo et al., 2024). One
a pass., and selects the optimal head. Equipped with thdine of work utilize LLMs for language agents communi-
selected head, the team achieve8@¥scoring rate with ~ cation (Park et al., 2023; Guan et al., 2024; Zhang et al.,
the teammate, with all goals scored by Turing. This cas€024b; Li et al., 2023a; Du et al., 2024; Wang et al., 2024b).
study highlights the effectiveness 8EmMDIV in generating Some other works utilize LLMs as multi-agent task planners,
diverse teammate policies, enabling ef cient coordinationwhich can be classi ed into several key areas, including

even with unseen teammates. MARL Subgoal genel’ation (L| etal., 2023b), multi-agent
path nding (Chen et al., 2024a), and multi-robot task plan-
4.4. The Impact of the Number of Teammates ning (Liu et al., 2024b; Chang et al., 2024). Despite these

advancements, LLMs still face challenges in handling low-

One of the key factors affecting performance is the numbefevel coordination in multi-agent settings. Rather than di-
of teammates with whom the agents train. To investigate its

8
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rectly deploying LLMs as coordinating agents, we leverage reward shaping in language-guided RL. NeurlPS
their capabilities to generate diverse teammates and adapt-2022.
ing policies, thereby combining the strengths of LLMs with

MARL. We discuss more related work in Appendix A. Chang, M., Chhablani, G., Clegg, A., Cote, M. D., Desai,
R., Hlavac, M., Karashchuk, V., Krantz, J., Mottaghi,

R., Parashar, P., Patki, S., Prasad, I., Puig, X., Rai, A.,
Ramrakhya, R., Tran, D., Truong, J., Turner, J. M., Un-
We propose a novel framework of LLM-assisted Semanti- dersander, E., and Yang, T.-Y. Partnr: A benchmark for
cally Diverse Teammates Generati@e@D1v) for ef cient planning and reasoning in embodied multi-agent tasks.
multi-agent coordination. The framework utilizes LLMs to ~ preprint arXiv:2411.000812024.

discover diverse coordination behaviors described in natural )

language, facilitating the training of teammate policies alignharakorn, R., Manoonpong, P., and Dilokthanakul, N. Gen-
ing with these behaviors. Agents train with these teammates ©rating diverse cooperative agents by learmning incompati-
in a continual learning process, developing policies tailored Pl€ policies. INICLR, 2023.

to the coordination behaviors and enabling rapid adaptac—:
tion to testing teammates. Empirical results across various
environments and with unseen teammates provide strong
evidence ofSEMDIV's effectiveness. Looking ahead, as
more advanced MARL techniques and LLM§ emerge WithChen, X.-H., Wang, Z., Du, Y., Jiang, S., Fang, M., Yu,
enhanced performanc8emMDIV has the potential to further Y., and Wang, J. Policy learning from tutorial books via

improve agent generalization in complex real-world coordi- understanding, rehearsing and introspectingNéuriPS
nation scenarios, such as embodied multi-agent tasks (Liu 504y

et al., 2024c) for real-world applications.
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A. More Related Work

Cooperative Multi-Agent Reinforcement Learning (MARL) Many real-world problems, particularly those that are
large-scale and complex, are inherently suited to be modeled as multi-agent systems (MASSs) rather than single-agent systems
due to their ef ciency and practicality in addressing intricate challenges (Dorri et al., 2018). Multi-agent reinforcement
learning (MARL) (Zhang et al., 2021) has emerged as a powerful framework for tackling these problems, leveraging
the problem-solving capabilities of deep reinforcement learning (Wang et al., 2022). When agents within a MAS share
common objectives, the problem falls under the category of cooperative MARL (Oroojlooy & Hajinezhad, 2023), which
has demonstrated signi cant success across diverse domains such as autonomous driving (Zhang et al., 2024c), domain
calibration (Jiang et al., 2024), and nancial trading (Huang et al., 2024). Recent advancements in MARL have introduced

a variety of approaches to improve agent coordination. These include policy-based methods such as MADDPG (Lowe
et al., 2017) and MAPPO (Yu et al., 2022), value-based techniques like VDN (Sunehag et al., 2018) and QMIX (Rashid
et al., 2018), as well as innovative approaches leveraging architectures such as the transformer (Wen et al., 2022). These
methods have demonstrated exceptional coordination capabilities in diverse tasks, including SMAC (Samvelyan et al., 2019)
and GRF (Kurach et al., 2020). In this paper, our method focuses on enhancing the generalization abilities of coordinating
agents, aiming to improve their adaptability and performance across a wider range of potential teammates.

Large Language Models (LLMs) for RL  The integration of large language models (LLMSs) into reinforcement learning

(RL) has emerged as a promising research direction (Cao et al., 2024), leveraging the rich semantic understanding and
generalization capabilities of LLMs to enhance decision-making processes. Recent studies have explored the use of LLMs
for tasks such as processing and translating task information (Paischer et al., 2022; Choi et al., 2023; Pang et al., 2023;
Spiegel et al., 2024), to reduce the burden of network updates. Another line of work utilizes LLMs as reward generator (Carta
et al., 2022; Kwon et al., 2023; Wu et al., 2023; Yu et al., 2023b; Du et al., 2023) to guide RL algorithms. Speci cally,
some approaches (Xie et al., 2024; Ma et al., 2024a;b) explicitly generate executable codes as reward functions. LLMs
are also utilized as world models (Pang et al., 2024; Chen et al., 2024b; Lin et al., 2024; Zhang et al., 2024a) as they are
trained with rich real-world context, enhancing the sample ef ciency of RL. In our work, we mainly utilize LLMs to propose
coordination behaviors described in natural language, reward generation, and behavior-trajectory alignment veri cation.

B. Implementation Details of SEMDIv

In this section, we present the implementation detailSENDIv. Thegpt-40-2024-08-06 model is utilized as the

LLM. For MARL algorithms, we employ VDN (Sunehag et al., 2018) for the LBF, PP, and SMACv2 environments, and
MAPPO (Yu et al., 2022) for GRF. Speci cally, our VDN implementation is based on the PyMARL codebase (Samvelyan
et al., 2019). We adopt parameter sharing in the agent network architecture. The feature extrastdesigned as a

3-layer MLP followed by a GRU (Cho et al., 2014), while the policy hbadis a 3-layer MLP. Both the MLP and GRU

have a hidden dimension of 64. The policy head processes the feature extractor's output to generate Q-values for all actions,
which are subsequently aggregated by summing individual agents' Q-values to compute the joint Q-value. The architecture
for teammate networks mirrors this design, differing only in having a single policy head. For MAPPO, we build upon
the HARL codebase (Liu et al., 2024a)nlike VDN, parameter sharing is not applied by default settings. For the actor
networks, the nal two-layer MLP serves as the policy head, and the remaining components form the feature extractor. The
critic networks are left unmodi ed. A single run &EMDIV incurs a cost of approximate§0.10 for OpenAl APIs and

$300 for the full project.

We use the default hyperparameter settings of PYMARL and HARL, e.g., the learning rates of the algorithms. The selection
of the special hyperparameters introduced in this paper, e.g., the training steps for each teammate, is listed in Table 2.

C. Implementation Details of Baselines

We rst compareSEMDIV with classic two-stage population-based training (PBT) methods, which train a population of
teammates using different techniques in the rst stage, and use them to train agents in the secor€CBtégouse et al.,

2021) rst trains a population of teammate policies using different random seeds independently. Then, it trains the agents by
pairing them with three checkpoints of each teammate: the initial, middle, and nal stages of training. In our implementation,

3https://github.com/oxwhirl/pymarl
“https://github.com/PKU-MARL/HARL
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Table 2.Hyperparameters in the experiments.

Hyperparameter \ Value
Training steps for one teammate 10° (LBF),5 10° (PP),10° (SMACV2),10’ (GRF)
Number of teammates trained with agents 6
Training steps for agents with one teammate 3 10° (LBF),5 1C° (PP),10° (SMACV2),10’ (GRF)
Threshold for teammate performance veri cation 0.3 (LBF, PP), 0.5 (SMACV2, GRF)

Maximum attempts for generating a teammate policy 2

Threshold for teammate novelty veri cation in Equation (2 0.2

Coefcient for regularizing feature extractors in Equation (4) 500

Figure 5.Environments used in this paper. (a) Level-based Foraging (LBF) (Papoudakis et al., 2021). (b) Predator-Prey (PP) (Lowe et al.,
2017). (c) StarCraft Multi-Agent Challenge-v2 (SMACV2) (Ellis et al., 2023). (d) Google Research Football (GRF) (Kurach et al., 2020).

we set the population size as 6, and train the teammates and agents until converqgnce BasedBR FRyo et al., 2023)

applies aentropy tertd ( ( j s¢)) when trammg&he populatlon wherda; j st) = . '(aj st). LIPO (Charakorn

et al., 2023) replaces this term widhpo = i6 J( tm) We set the we|ghts for these optimization terms as
0.001 across all environments. The rest implementatlon of MEP and LIPO remains the same as FCP. During execution,
these methods directly deploy the only agent policy for coordination, without explicit adaptation process. While two-stage
methods generate teammates before training agents, another bt (Yuan et al., 2023a) adopts an agents-centric
paradigm, where it alternatively generates new teammates and trains the multi-head agents, inducing diversity by reducing
the compatibilityJ ( a5 ) between the teammates and the current agents. To select the policy heads for execution,
Macop must collect multiple episodes to gather adequate information, hindering its deployment in costly tasks. In our
experiments, we report Macop's results of the heads that maximize the R1 or R2 valuesSi8inzes combines the
strengths of MARL and LLMs, we also include a baseline LLM-Agent that directly uses an LLM as the policy, to assess the
necessity of MARL. The prompts for this LLM are provided in Appendix F.6.

D. Experiment Details

In this section, we provide more details about the experiments, including the environments and the unseen testing teammates.

D.1. Environments
We use four classic cooperative MARL environments with diverse coordination behaviors, as shown in Figure 5.

Level-based Foraging (LBF)(Papoudakis et al., 2021) is a discrete game where agents of varying levels navigate a grid to
collect foods with corresponding levels. Each agent moves one cell at a time in one of the four cardinal difagtions:

left, down, right). Agents are rewarded with 1 when they are positioned one cell away from a food item and the sum of
their levels matches or exceeds the food's level. In this work, we @se & grid-world setup with four level-2 foods

located a{0; 0), (0; 5), (5;0), and(5; 5). Two level-1 agents are randomly spawned at d€is 2), (2, 3), (3, 2), (3, 3.

An episode terminates when agents collect one food or after nine steps. Coordination is essential as agents must observe
their teammate's preferences and collaborate to collect the foods.

Predator-Prey (PP)is a widely-used benchmark from the Multiagent Particle Environment (MPE) (Lowe et al., 2017),
where predators and prey are represented as circles on a 2D plane. Agents controlling predators can accelerate in one of four
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