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Abstract

Distributed sparse learning with a cluster of multiple machines has attracted
much attention in machine learning, especially for large-scale applications with
high-dimensional data. One popular way to implement sparse learning is to
use L1 regularization. In this paper, we propose a novel method, called prox-
imal SCOPE (pSCOPE), for distributed sparse learning with L1 regularization.
pSCOPE is based on a cooperative autonomous local learning (CALL) framework.
In the CALL framework of pSCOPE, we find that the data partition affects the
convergence of the learning procedure, and subsequently we define a metric to
measure the goodness of a data partition. Based on the defined metric, we theo-
retically prove that pSCOPE is convergent with a linear convergence rate if the
data partition is good enough. We also prove that better data partition implies
faster convergence rate. Furthermore, pSCOPE is also communication efficient.
Experimental results on real data sets show that pSCOPE can outperform other
state-of-the-art distributed methods for sparse learning.

1 Introduction

Many machine learning models can be formulated as the following regularized empirical risk mini-
mization problem:

min
w∈Rd

P (w) =
1

n

n∑
i=1

fi(w) +R(w), (1)

where w is the parameter to learn, fi(w) is the loss on training instance i, n is the number of
training instances, and R(w) is a regularization term. Recently, sparse learning, which tries to learn
a sparse model for prediction, has become a hot topic in machine learning. There are different
ways to implement sparse learning [28, 30]. One popular way is to use L1 regularization, i.e.,
R(w) = λ‖w‖1. In this paper, we focus on sparse learning with R(w) = λ‖w‖1. Hence, in the
following content of this paper, R(w) = λ‖w‖1 unless otherwise stated.

One traditional method to solve (1) is proximal gradient descent (pGD) [2], which can be written as
follows:

wt+1 = proxR,η(wt − η∇F (wt)), (2)
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where F (w) = 1
n

∑n
i=1 fi(w), wt is the value of w at iteration t, η is the learning rate, prox is the

proximal mapping defined as

proxR,η(u) = argmin
v

(R(v) +
1

2η
‖v − u‖2). (3)

Recently, stochastic learning methods, including stochastic gradient descent (SGD) [18], stochastic
average gradient (SAG) [22], stochastic variance reduced gradient (SVRG) [10], and stochastic dual
coordinate ascent (SDCA) [24], have been proposed to speedup the learning procedure in machine
learning. Inspired by the success of these stochastic learning methods, proximal stochastic methods,
including proximal SGD (pSGD) [11, 6, 26, 4], proximal block coordinate descent (pBCD) [29, 31,
21], proximal SVRG (pSVRG) [32] and proximal SDCA (pSDCA) [25], have also been proposed
for sparse learning in recent years. All these proximal stochastic methods are sequential (serial) and
implemented with one single thread.

The serial proximal stochastic methods may not be efficient enough for solving large-scale sparse
learning problems. Furthermore, the training set might be distributively stored on a cluster of multiple
machines in some applications. Hence, distributed sparse learning [1] with a cluster of multiple
machines has attracted much attention in recent years, especially for large-scale applications with
high-dimensional data. In particular, researchers have recently proposed several distributed proximal
stochastic methods for sparse learning [15, 17, 13, 16, 27]1.

One main branch of the distributed proximal stochastic methods includes distributed
pSGD (dpSGD) [15], distributed pSVRG (dpSVRG) [9, 17] and distributed SVRG (DSVRG) [13].
Both dpSGD and dpSVRG adopt a centralized framework and mini-batch based strategy for dis-
tributed learning. One typical implementation of a centralized framework is based on Parameter
Server [14, 33], which supports both synchronous and asynchronous communication strategies. One
shortcoming of dpSGD and dpSVRG is that the communication cost is high. More specifically, the
communication cost of each epoch is O(n), where n is the number of training instances. DSVRG
adopts a decentralized framework with lower communication cost than dpSGD and dpSVRG. How-
ever, in DSVRG only one worker is updating parameters locally and all other workers are idling at
the same time.

Another branch of the distributed proximal stochastic methods is based on block coordinate descent [3,
20, 7, 16]. Although in each iteration these methods update only a block of coordinates, they usually
have to pass through the whole data set. Due to the partition of data, it also brings high communication
cost in each iteration.

Another branch of the distributed proximal stochastic methods is based on SDCA. One representative
is PROXCOCOA+ [27]. Although PROXCOCOA+ has been theoretically proved to have a linear
convergence rate with low communication cost, we find that it is not efficient enough in experiments.

In this paper, we propose a novel method, called proximal SCOPE (pSCOPE), for distributed sparse
learning with L1 regularization. pSCOPE is a proximal generalization of the scalable composite
optimization for learning (SCOPE) [34]. SCOPE cannot be used for sparse learning, while pSCOPE
can be used for sparse learning. The contributions of pSCOPE are briefly summarized as follows:

• pSCOPE is based on a cooperative autonomous local learning (CALL) framework. In the
CALL framework, each worker in the cluster performs autonomous local learning based on
the data assigned to that worker, and the whole learning task is completed by all workers in
a cooperative way. The CALL framework is communication efficient because there is no
communication during the inner iterations of each epoch.

• pSCOPE is theoretically guaranteed to be convergent with a linear convergence rate if the
data partition is good enough, and better data partition implies faster convergence rate.
Hence, pSCOPE is also computation efficient.

• In pSCOPE, a recovery strategy is proposed to reduce the cost of proximal mapping when
handling high dimensional sparse data.

• Experimental results on real data sets show that pSCOPE can outperform other state-of-the-
art distributed methods for sparse learning.

1In this paper, we mainly focus on distributed sparse learning with L1 regularization. The distributed methods
for non-sparse learning, like those in [19, 5, 12], are not considered.
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2 Preliminary

In this paper, we use ‖ · ‖ to denote the L2 norm ‖ · ‖2, w∗ to denote the optimal solution of (1). For
a vector a, we use a(j) to denote the jth coordinate value of a. [n] denotes the set {1, 2, . . . , n}. For
a function h(a;b), we use∇h(a;b) to denote the gradient of h(a;b) with respect to (w.r.t.) the first
argument a. Furthermore, we give the following definitions.

Definition 1 We call a function h(·) is L-smooth if it is differentiable and there exists a positive
constant L such that ∀a,b : h(b) ≤ h(a) +∇h(a)T (b− a) + L

2 ‖a− b‖2.

Definition 2 We call a function h(·) is convex if there exists a constant µ ≥ 0 such that ∀a,b :
h(b) ≥ h(a)+ ζT (b−a)+ µ

2 ‖a−b‖2, where ζ ∈ ∂h(a) = {c|h(b) ≥ h(a)+ cT (b−a),∀a,b}.
If h(·) is differentiable, then ζ = ∇h(a). If µ > 0, h(·) is called µ-strongly convex.

Throughout this paper, we assume that R(w) is convex, F (w) = 1
n

∑n
i=1 fi(w) is strongly convex

and each fi(w) is smooth. We do not assume that each fi(w) is convex.

3 Proximal SCOPE

In this paper, we focus on distributed learning with one master (server) and p workers in the cluster,
although the algorithm and theory of this paper can also be easily extended to cases with multiple
servers like the Parameter Server framework [14, 33].

The parameter w is stored in the master, and the training set D = {xi, yi}ni=1 are partitioned into
p parts denoted as D1, D2, . . . , Dp. Here, Dk contains a subset of instances from D, and Dk will
be assigned to the kth worker. D =

⋃p
k=1Dk. Based on this data partition scheme, the proximal

SCOPE (pSCOPE) for distributed sparse learning is presented in Algorithm 1. The main task of
master is to add and average vectors received from workers. Specifically, it needs to calculate the full
gradient z = ∇F (wt) =

1
n

∑p
k=1 zk. Then it needs to calculate wt+1 = 1

p

∑p
k=1 uk,M . The main

task of workers is to update the local parameters u1,m,u2,m, . . . ,up,m initialized with uk,0 = wt.
Specifically, for each worker k, after it gets the full gradient z from master, it calculates a stochastic
gradient

vk,m = ∇fik,m
(uk,m)−∇fik,m

(wt) + z, (4)

and then update its local parameter uk,m by a proximal mapping with learning rate η:

uk,m+1 = proxR,η(uk,m − ηvk,m). (5)

From Algorithm 1, we can find that pSCOPE is based on a cooperative autonomous local
learning (CALL) framework. In the CALL framework, each worker in the cluster performs au-
tonomous local learning based on the data assigned to that worker, and the whole learning task is
completed by all workers in a cooperative way. The cooperative operation is mainly adding and
averaging in the master. During the autonomous local learning procedure in each outer iteration which
contains M inner iterations (see Algorithm 1), there is no communication. Hence, the communication
cost for each epoch of pSCOPE is constant, which is much less than the mini-batch based strategy
with O(n) communication cost for each epoch [15, 9, 17].

pSCOPE is a proximal generalization of SCOPE [34]. Although pSCOPE is mainly motivated by
sparse learning with L1 regularization, the algorithm and theory of pSCOPE can also be used for
smooth regularization like L2 regularization. Furthermore, when the data partition is good enough,
pSCOPE can avoid the extra term c(uk,m −wt) in the update rule of SCOPE, which is necessary for
convergence guarantee of SCOPE.

4 Effect of Data Partition

In our experiment, we find that the data partition affects the convergence of the learning procedure.
Hence, in this section we propose a metric to measure the goodness of a data partition, based on
which the convergence of pSCOPE can be theoretically proved. Due to space limitation, the detailed
proof of Lemmas and Theorems are moved to the long version [35].
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Algorithm 1 Proximal SCOPE
1: Initialize w0 and the learning rate η;
2: Task of master:
3: for t = 0, 1, 2, ...T − 1 do
4: Send wt to each worker;
5: Wait until receiving z1, z2, . . . , zp from all workers;
6: Calculate the full gradient z = 1

n

∑p
k=1 zk and send z to each worker;

7: Wait until receiving u1,M ,u2,M , . . . ,up,M from all workers and calculate wt+1 =
1
p

∑p
k=1 uk,M ;

8: end for
9: Task of the kth worker:

10: for t = 0, 1, 2, ...T − 1 do
11: Wait until receiving wt from master;
12: Let uk,0 = wt, calculate zk =

∑
i∈Dk

fi(wt) and send zk to master;
13: Wait until receiving z from master;
14: for m = 0, 1, 2, ...M − 1 do
15: Randomly choose an instance xik,m

∈ Dk;
16: Calculate vk,m = ∇fik,m

(uk,m)−∇fik,m
(wt) + z;

17: Update uk,m+1 = proxR,η(uk,m − ηvk,m);
18: end for
19: Send uk,M to master
20: end for

4.1 Partition

First, we give the following definition:

Definition 3 Define π = [φ1(·), . . . , φp(·)]. We call π a partition w.r.t. P (·), if F (w) =
1
p

∑p
k=1 φk(w) and each φk(·) (k = 1, . . . , p) is µk-strongly convex and Lk-smooth (µk, Lk > 0).

Here, P (·) is defined in (1) and F (·) is defined in (2). We denote A(P ) = {π|π is a partition w.r.t.
P (·)}.

Remark 1 Here, π is an ordered sequence of functions. In particular, if we construct another
partition π′ by permuting φi(·) of π, we consider them to be two different partitions. Furthermore,
two functions φi(·), φj(·) (i 6= j) in π can be the same. Two partitions π1 = [φ1(·), . . . , φp(·)],
π2 = [ψ1(·), . . . , ψp(·)] are considered to be equal, i.e., π1 = π2, if and only if φk(w) = ψk(w)(k =
1, . . . , p),∀w.

For any partition π = [φ1(·), . . . , φp(·)] w.r.t. P (·), we construct new functions Pk(·; ·) as follows:

Pk(w;a) = φk(w;a) +R(w), k = 1, . . . , p (6)

where φk(w;a) = φk(w) +Gk(a)
Tw, Gk(a) = ∇F (a)−∇φk(a), and w,a ∈ Rd.

In particular, given a data partition D1, D2, . . . , Dp of the training set D, let Fk(w) =
1
|Dk|

∑
i∈Dk

fi(w) which is also called the local loss function. Assume each Fk(·) is strongly
convex and smooth, and F (w) = 1

p

∑p
k=1 Fk(w). Then, we can find that π = [F1(·), . . . , Fp(·)]

is a partition w.r.t. P (·). By taking expectation on vk,m defined in Algorithm 1, we obtain
E[vk,m|uk,m] = ∇Fk(uk,m) + Gk(wt). According to the theory in [32], in the inner iterations
of pSCOPE, each worker tries to optimize the local objective function Pk(w;wt) using proximal
SVRG with initialization w = wt and training data Dk, rather than optimizing Fk(w) + R(w).
Then we call such a Pk(w;a) the local objective function w.r.t. π. Compared to the subproblem of
PROXCOCOA+ (equation (2) in [27]), Pk(w;a) is more simple and there is no hyperparameter in it.

4.2 Good Partition

In general, the data distribution on each worker is different from the distribution of the whole
training set. Hence, there exists a gap between each local optimal value and the global optimal value.
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Intuitively, the whole learning algorithm has slow convergence rate or cannot even converge if this
gap is too large.

Definition 4 For any partition π w.r.t. P (·), we define the Local-Global Gap as

lπ(a) = P (w∗)− 1

p

p∑
k=1

Pk(w
∗
k(a);a),

where w∗k(a) = argminw Pk(w;a).

We have the following properties of Local-Global Gap:

Lemma 1 ∀π ∈ A(P ), lπ(a) = P (w∗) + 1
p

∑p
k=1H

∗
k(−Gk(a)) ≥ lπ(w

∗) = 0,∀a, where H∗k(·)
is the conjugate function of φk(·) +R(·).

Theorem 1 Let R(w) = ‖w‖1. ∀π ∈ A(P ), there exists a constant γ < ∞ such that lπ(a) ≤
γ‖a−w∗‖2,∀a.

The result in Theorem 1 can be easily extended to smooth regularization which can be found in the
long version [35].

According to Theorem 1, the local-global gap can be bounded by γ‖a−w∗‖2. Given a specific a,
the smaller γ is, the smaller the local-global gap will be. Since the constant γ only depends on the
partition π, intuitively γ can be used to evaluate the goodness of a partition π. We define a good
partition as follows:

Definition 5 We call π a (ε, ξ)-good partition w.r.t. P (·) if π ∈ A(P ) and

γ(π; ε)
4
= sup
‖a−w∗‖2≥ε

lπ(a)

‖a−w∗‖2
≤ ξ. (7)

In the following, we give the bound of γ(π; ε).

Lemma 2 Assume π = [F1(·), . . . , Fp(·)] is a partition w.r.t. P (·), where Fk(w) =
1
|Dk|

∑
i∈Dk

fi(w) is the local loss function, each fi(·) is Lipschitz continuous with bounded domain
and sampled from some unknown distribution P. If we assign these {fi(·)} uniformly to each worker,
then with high probability, γ(π; ε) ≤ 1

p

∑p
k=1O(1/(ε

√
|Dk|)). Moreover, if lπ(a) is convex w.r.t. a,

then γ(π; ε) ≤ 1
p

∑p
k=1O(1/

√
ε|Dk|). Here we ignore the log term and dimensionality d.

For example, in Lasso regression, it is easy to get that the corresponding local-global gap lπ(a) is
convex according to Lemma 1 and the fact that Gk(a) is an affine function in this case.

Lemma 2 implies that as long as the size of training data is large enough, γ(π; ε) will be small and
π will be a good partition. Please note that the uniformly here means each fi(·) will be assigned to
one of the p workers and each worker has the equal probability to be assigned. We call the partition
resulted from uniform assignment uniform partition in this paper. With uniform partition, each worker
will have almost the same number of instances. As long as the size of training data is large enough,
uniform partition is a good partition.

5 Convergence of Proximal SCOPE

In this section, we will prove the convergence of Algorithm 1 for proximal SCOPE (pSCOPE) using
the results in Section 4.

Theorem 2 Assume π = [F1(·), . . . , Fp(·)] is a (ε, ξ)-good partition w.r.t. P (·). For convenience,
we set µk = µ,Lk = L, k = 1, 2 . . . , p. If ‖wt −w∗‖2 ≥ ε, then

E‖wt+1 −w∗‖2 ≤ [(1− µη + 2L2η2)M +
2L2η + 2ξ

µ− 2L2η
]‖wt −w∗‖2.

5



Because smaller ξ means better partition and the partition π corresponds to data partition in Algo-
rithm 1, we can see that better data partition implies faster convergence rate.

Corollary 1 Assume π = [F1(·), . . . , Fp(·)] is a (ε, µ8 )-good partition w.r.t. P (·). For convenience,
we set µk = µ,Lk = L, k = 1, 2 . . . , p. If ‖wt −w∗‖2 ≥ ε, taking η = µ

12L2 , M = 20κ2, where
κ = L

µ is the conditional number, then we have E‖wt+1 − w∗‖2 ≤ 3
4‖wt − w∗‖2. To get the

ε-suboptimal solution, the computation complexity of each worker is O((n/p+ κ2) log(1ε )).

Corollary 2 When p = 1, which means we only use one worker, pSCOPE degenerates to proximal
SVRG [32]. Assume F (·) is µ-strongly convex (µ > 0) and L-smooth. Taking η = µ

6L2 , M = 13κ2,
we have E‖wt+1−w∗‖2 ≤ 3

4‖wt−w∗‖2. To get the ε-optimal solution, the computation complexity
is O((n+ κ2) log(1ε )).

We can find that pSCOPE has a linear convergence rate if the partition is (ε, ξ)-good, which implies
pSCOPE is computation efficient and we need T = O(log( 1ε )) outer iterations to get a ε-optimal
solution. For all inner iterations, each worker updates uk,m without any communication. Hence, the
communication cost is O(log( 1ε )), which is much smaller than the mini-batch based strategy with
O(n) communication cost for each epoch [15, 9, 17].

Furthermore, in the above theorems and corollaries, we only assume that the local loss function Fk(·)
is strongly convex. We do not need each fi(·) to be convex. Hence, M = O(κ2) and it is weaker
than the assumption in proximal SVRG [32] whose computation complexity is O((n+ κ) log(1ε ))
when p = 1. In addition, without convexity assumption for each fi(·), our result for the degenerate
case p = 1 is consistent with that in [23].

6 Handle High Dimensional Sparse Data

For the cases with high dimensional sparse data, we propose recovery strategy to reduce the cost of
proximal mapping so that it can accelerate the training procedure. Here, we adopt the widely used
linear model with elastic net [36] as an example for illustration, which can be formulated as follows:
minw P (w) := 1

n

∑n
i=1 hi(x

T
i w) + λ1

2 ‖w‖
2 + λ2‖w‖1, where hi : R → R is the loss function.

We assume many instances in {xi ∈ Rd|i ∈ [n]} are sparse vectors and let Ci = {j|x(j)i 6= 0}.
Proximal mapping is unacceptable when the data dimensionality d is too large, since we need to
execute the conditional statements O(Md) times which is time consuming. Other methods, like
proximal SGD and proximal SVRG, also suffer from this problem.

Since z(j) is a constant during the update of local parameter uk,m, we will design a recovery strategy
to recover it when necessary. More specifically, in each inner iteration, with the random index
s = ik,m, we only recover u(j) to calculate the inner product xTs uk,m and update u(j)k,m for j ∈ Cs.
For those j /∈ Cs, we do not immediately update u(j)k,m. The basic idea of these recovery rules is: for

some coordinate j, we can calculate u(j)k,m2
directly from u

(j)
k,m1

, rather than doing iterations from
m = m1 tom2. Here, 0 ≤ m1 < m2 ≤M . At the same time, the new algorithm is totally equivalent
to Algorithm 1. It will save about O(d(m2 −m1)(1− ρ)) times of conditional statements, where ρ
is the sparsity of {xi ∈ Rd|i ∈ [n]}. This reduction of computation is significant especially for high
dimensional sparse training data. Due to space limitation, the complete rules are moved to the long
version [35]. Here we only give one case of our recovery rules in Lemma 3.

Lemma 3 (Recovery Rule) We define the sequence {αq} as: α0 = 0 and for q = 1, 2, . . ., αq =∑q
i=1(1 − λ1η)i−1/(1 − λ1η)q. For the coordinate j and constants m1,m2, if j /∈ Cik,m

for any

m ∈ [m1,m2 − 1]. If |z(j)| < λ2, u
(j)
k,m1

> 0, then the relation between u(j)k,m1
and u(j)k,m2

can be

summarized as follows: define q0 which satisfies αq0η(z
(j) + λ2) ≤ u(j)k,m1

< αq0+1η(z
(j) + λ2),

1. If m2 −m1 ≤ q0, then u(j)k,m2
= (1− λ1η)m2−m1 [u

(j)
k,m1

− αm2−m1
η(z(j) + λ2)].

2. If m2 −m1 > q0, then u(j)k,m2
= 0.

6



7 Experiment

We use two sparse learning models for evaluation. One is logistic regression (LR) with elastic net [36]:
P (w) = 1

n

∑n
i=1 log(1 + e−yix

T
i w) + λ1

2 ‖w‖
2 + λ2‖w‖1. The other is Lasso regression [28]:

P (w) = 1
2n

∑n
i=1(x

T
i w − yi)2 + λ2‖w‖1. All experiments are conducted on a cluster of multiple

machines. The CPU for each machine has 12 Intel E5-2620 cores, and the memory of each machine
is 96GB. The machines are connected by 10GB Ethernet. Evaluation is based on four datasets in
Table 1: cov, rcv1, avazu, kdd2012. All of them can be downloaded from LibSVM website 2.

Table 1: Datasets

#instances #features λ1 λ2

cov 581,012 54 10−5 10−5

rcv1 677,399 47,236 10−5 10−5

avazu 23,567,843 1,000,000 10−7 10−5

kdd2012 119,705,032 54,686,452 10−8 10−5

7.1 Baselines

We compare our pSCOPE with six representative baselines: proximal gradient descent based method
FISTA [2], ADMM type method DFAL [1], newton type method mOWL-QN [8], proximal SVRG
based method AsyProx-SVRG [17], proximal SDCA based method PROXCOCOA+ [27], and
distributed block coordinate descent DBCD [16]. FISTA and mOWL-QN are serial. We design
distributed versions of them, in which workers distributively compute the gradients and then master
gathers the gradients from workers for parameter update.

All methods use 8 workers. One master will be used if necessary. Unless otherwise stated, all methods
except DBCD and PROXCOCOA+ use the same data partition, which is got by uniformly assigning
each instance to each worker (uniform partition). Hence, different workers will have almost the same
number of instances. This uniform partition strategy satisfies the condition in Lemma 2. Hence, it is
a good partition. DBCD and PROXCOCOA+ adopt a coordinate distributed strategy to partition the
data.

7.2 Results

The convergence results of LR with elastic net and Lasso regression are shown in Figure 1. DBCD
is too slow, and hence we will separately report the time of it and pSCOPE when they get 10−3-
suboptimal solution in Table 2. AsyProx-SVRG is slow on the two large datasets avazu and kdd2012,
and hence we only present the results of it on the datasets cov and rcv1. From Figure 1 and Table 2,
we can find that pSCOPE outperforms all the other baselines on all datasets.

Table 2: Time comparison (in second) between pSCOPE and DBCD.

pSCOPE DBCD
cov 0.32 822

LR rcv1 3.78 > 1000
cov 0.06 81.9

Lasso rcv1 3.09 > 1000

7.3 Speedup

We also evaluate the speedup of pSCOPE on the four datasets for LR. We run pSCOPE and
stop it when the gap P (w) − P (w∗) ≤ 10−6. The speedup is defined as: Speedup =
(Time using one worker)/(Time using p workers). We set p = 1, 2, 4, 8. The speedup results are in
Figure 2 (a). We can find that pSCOPE gets promising speedup.

7.4 Effect of Data Partition

We evaluate pSCOPE under different data partitions. We use two datasets cov and rcv1 for illustration,
since they are balanced datasets which means the number of positive instances is almost the same as

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 1: Evaluation with baselines on two models.
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Figure 2: Speedup and effect of data partition

that of negative instances. For each dataset, we construct four data partitions: π∗ (each worker has
the whole data), π1 (uniform partition); π2 (75% positive instances and 25% negative instances are
on the first 4 workers, and other instances are on the last 4 workers), π3 (all positive instances are on
the first 4 workers, and all negative instances are on the last 4 workers).

The convergence results are shown in Figure 2 (b). We can see that data partition does affect the
convergence of pSCOPE. The best partition π∗ achieves the best performance3. The performance of
uniform partition π1 is similar to that of the best partition π∗, and is better than the other two data
partitions. In real applications with large-scale dataset, it is impractical to assign each worker the
whole dataset. Hence, we prefer to choose uniform partition π1 in real applications, which is also
adopted in above experiments of this paper.

8 Conclusion

In this paper, we propose a novel method, called pSCOPE, for distributed sparse learning. Further-
more, we theoretically analyze how the data partition affects the convergence of pSCOPE. pSCOPE
is both communication and computation efficient. Experiments on real data show that pSCOPE can
outperform other state-of-the-art methods to achieve the best performance.
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