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Abstract
The learnware paradigm focuses on leveraging
numerous established high-performing models to
solve machine learning tasks instead of starting
from scratch. As the key concept of this paradigm,
a learnware consists of a well-trained model of any
structure and a specification that characterizes the
model’s capabilities, allowing it to be identified and
reused for future tasks. Given the existence of nu-
merous real-world models trained on diverse la-
bel spaces, effectively identifying and combining
these models to address tasks involving previously
unseen label spaces represents a critical challenge
in this paradigm. In this paper, we make the first
attempt to identify and reuse effective learnware
combinations for tackling learning tasks across dif-
ferent label spaces, extending their applicability
beyond the original purposes of individual learn-
wares. To this end, we introduce a statistical class-
wise specification for establishing similarity rela-
tions between various label spaces. Leveraging
these relations, we model the utility of a learnware
combination as a minimum-cost maximum-flow
problem, and further develop fine-grained learn-
ware identification and assembly methods. Exten-
sive experiments with thousands of heterogeneous
models validate our approach, demonstrating that
reusing identified learnware combinations can out-
perform both training from scratch and fine-tuning
a generic pre-trained model.

1 Introduction
Machine learning has achieved significant success in vari-
ous practical fields, including medicine, robotics, and ecol-
ogy. However, in classic machine learning paradigm, training
a well-performing model from scratch still requires several
challenging conditions, such as sufficient labeled data, ade-
quate computational resources, and proficient training skills.
Additionally, privacy and proprietary concerns obstruct data
sharing among developers, limiting the potential of big mod-
els in many data-sensitive scenarios.

To tackle these issues simultaneously, learnware [Zhou,
2016; Zhou and Tan, 2024] was proposed for solving ma-
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Figure 1: Given the existence of numerous learnwares from diverse
label spaces, a critical challenge is to effectively identify and reuse
helpful learnware combinations to address user tasks involving pre-
viously unseen label spaces.

chine learning tasks in a novel paradigm. In this context, a
learnware consists of a well-performing model of any struc-
ture and a specification which captures the model’s specialty
and utility in a certain representation, such as its statistical
properties. Developers worldwide can submit their models
trained on various tasks into a learnware dock system sponta-
neously, and the system helps generate specifications for each
model to form learnwares. When facing a new user task, the
system can identify and assemble helpful learnwares from all
existing learnwares based on their specifications. The user
can then reuse these learnwares with her own data to address
her task instead of starting from scratch. It is important to
note that the learnware dock system should not access the
raw data of either model developers or users.

To realize the vision depicted above, the critical challenge
of learnware paradigm is to effectively identify and assem-
ble useful learnwares within a learnware dock system for
new user tasks, without accessing raw data. The key to
the solution is specification, the core of this paradigm. Re-
cently, the reduced kernel mean embedding (RKME) spec-
ification [Zhou and Tan, 2024] was proposed, characteriz-



ing model capabilities via distribution information. Based
on this specification, several learnware search and reuse algo-
rithms have been developed, and the efficacy of specification-
based model selection and combination has been empirically
and theoretically verified [Wu et al., 2023; Liu et al., 2024;
Tan et al., 2024a]. However, considering that numerous ex-
isting models and future user tasks come from diverse label
spaces, an important problem in the learnware paradigm is
still unsolved: how to identify and reuse helpful learnware
combinations for user tasks across different label spaces,
which greatly limits the scope of the learnware dock system.
To illustrate, consider a scenario shown in Figure 1, where a
user needs to classify classes such as sheep, deer, horses, and
dogs. Although the system does not possess a single learn-
ware trained specifically for classifying these four classes,
there exists a learnware combination whose label spaces col-
lectively encompass the user’s required label space. If these
relevant learnwares can be identified and combined to address
the user task, it would significantly expand the scope of user
tasks that can be handled, enabling the reuse of the combina-
tion beyond the limits of individual learnwares. With the ini-
tial learnware dock system recently built [Tan et al., 2024b],
tackling this problem has become more crucial.

In practice, the fundamental challenges of this problem
mainly stem from two aspects: the unknown correspondence
between different label spaces of learnwares and the user task,
and the inability of the system to access raw data from model
developers or users. Although accurate semantic information
about each label space would make the problem easier, ob-
taining such information is particularly difficult due to the in-
herent ambiguity of natural language, the enormous number
of learnwares in the system, and the additional complexity
imposed on users in describing their requirements.

In this paper, to overcome these challenges without lever-
aging semantic information, our key insight is to represent
model capabilities with statistical class-wise specifications
and model the utility of a learnware combination to a user
task from a perspective of class matching, thereby establish-
ing relations between label spaces of each learnware and user
tasks. Based on these relations, the system can handle user
tasks involving previously unseen label spaces by identify-
ing and assembling effective learnware combinations without
access to raw user data. These learnwares collectively cover
the required label space, providing an effective solution. The
main contributions are summarized as follows:

• We make the first attempt to identify helpful learnware
combinations across different label spaces to solve user
tasks involving previously unseen label spaces, without
accessing raw data from model developers or users. This
enables the reuse of these combinations beyond the orig-
inal purposes of individual learnwares, significantly ex-
panding the scope of user tasks that can be handled.

• To represent a model’s capabilities on each class, we
extend the RKME specification into a class-wise ver-
sion, capturing the conditional distribution and measur-
ing similarity relations between different label spaces.
Leveraging these relations, we model learnware combi-
nation utility for user tasks as minimum-cost maximum-

flow problems, and further develop practical methods for
identifying and reusing useful learnware combinations.

• Extensive experiments involving thousands of heteroge-
neous models validate the efficacy of our approach. Em-
pirical results also show that reusing identified learnware
combinations can outperform both training from scratch
and fine-tuning a generic pre-trained model.

2 Problem Setup
The learnware paradigm consists of two stages: the submit-
ting and deploying stages.

Submitting Stage. In this stage, N developers submit their
models {fi}Ni=1 to the learnware dock system. Each model fi
is trained on a dataset Di = (Xi,yi) over X × Yi, where Yi
denotes the label space unique to model fi. In settings with
heterogeneous label spaces, each model’s label space Yi can
be distinct. Additionally, along with the well-trained model
fi, each developer also provides a specification Si to the sys-
tem, which is generated with assistance from the system.

Deploying Stage. In this stage, the user possesses an unla-
beled dataset Du = Xu defined over X , and the label space
associated with her task is Yu, which differs from that of all
learnwares, i.e., Yu ̸∈ {Yi}Ni=1. Since there are various la-
bel spaces in the system, the user also has limited m labeled
instances for each class in Yu. To tackle Du, the user sub-
mits task requirements Ru to the system, which then returns
a helpful learnware combination {fi | i ∈ I}with the number
constraint |I| ≤ M based on specifications {Si}Ni=1. Subse-
quently, the user can solve her task by reusing these learn-
wares. The constraint about |I| is natural and practical since
the computing resources and time required for reusing learn-
wares are directly proportional to the number of learnwares.

Note that the learnware dock system cannot access raw
data of either model developers or users. Besides, due to the
decoupling of heterogeneous features and labels, identifying
heterogeneous models typically requires finding a unified fea-
ture space [Tan et al., 2023; Tan et al., 2024a] before address-
ing diverse label spaces. Thus, this study assumes all models
operate in a unified feature space X and can naturally expand
to heterogeneous feature and label spaces in the future.

3 Our Approach
In this section, we first introduce the statistical class-wise
specification, which characterizes model capabilities on dif-
ferent classes. Building on this, we then detail our compre-
hensive solution, focusing on algorithms for learnware iden-
tification and reuse.

3.1 Characterizing Model Capabilities
To effectively identify and assemble suitable model combi-
nations across heterogeneous label spaces, the first step is to
precisely characterize model capabilities on different classes.
However, the lack of access to raw data from model develop-
ers or users poses a significant challenge.

The cornerstone of our solution is specification. While the
RKME specification [Zhou and Tan, 2024] has shown effi-
cacy in several learnware studies [Liu et al., 2024; Tan et al.,



2024a] by capturing the entire data distribution, the recent
implementation [Wu et al., 2023] falls short in modeling the
conditional data distribution for each class, restricting its ef-
ficacy in heterogeneous label space settings. To address this,
we extend RKME into a class-wise version, the class-wise
RKME specification, incorporating conditional distribution
information and enabling accurate characterization of model
capabilities on each class without exposing raw data.

Let ∆n = {β ∈ Rn | 1⊤β = 1,β ≥ 0} denote the
n-dimensional simplex. For each class c ∈ Y , let Xc =
[xc,1;xc,2; . . . ;xc,mc ] represent the subset of dataset D be-
longing to class c and correctly classified by model f . Then
the class-wise RKME specification S = {(βc ∈ ∆n,Zc ∈
Xn)}c∈Y is generated by solving:

min
{βc,Zc}c∈Y

∑
c∈Y

∥∥∥µ̂c −
∑n

j=1
βc,jk(zc,j , ·)

∥∥∥2
Hk

, (1)

where k : X × X 7→ R is a kernel function with reproducing
kernel Hilbert space Hk, and µ̂c =

1
mc

∑mc

i=1 k(xc,i, ·) is the
empirical KME [Smola et al., 2007] of class c. The reduced
set size n, much smaller than the size of original dataset D, is
empirically set to 10 in experiments. Inspired by [Wu et al.,
2023], we solve Eq. (1) using alternating optimization: βc is
updated via quadratic programming, while Zc is optimized
using gradient descent, as detailed in Algorithm 1.

Since the specification S is an extension of RKME across
different classes, it retains the properties of RKME, such as
protecting original data and providing robust defense against
common inference attacks [Lei et al., 2024]. Furthermore, it
incorporates conditional distribution information, as demon-
strated in the following proposition with proof in Appendix C.
Proposition 1. Assume supx∈X k(x,x) < ∞. Let µ̃c =∑n

j=1 βc,jk(zc,j , ·). Then, ∀c ∈ Y , we have ∥µ̂c − µ̃c∥Hk
=

O(n−1/2), where n is the reduced set size of specification S.
As the empirical KME µ̂c captures the conditional distri-

bution information of data correctly classified as class c by
model f [Smola et al., 2007], Proposition 1 indicates that the
specification S accurately characterizes model capabilities on
different classes, enabling precise learnware identification. In
the submitting stage, each developer generates the class-wise
RKME specification Si with system assistance and submits
the learnware (fi, Si) without disclosing their raw data.

3.2 Identifying Helpful Learnware Combinations
In the deploying stage, the user submits task requirements Ru

to the system, expecting to receive helpful learnwares {fi}i∈I

for her task Du, without leaking raw data. To achieve this, we
first delve into the design of user task requirements and then
present a practical learnware identification method.

User Task Requirements. Similar to model developers,
the user can locally generate the class-wise RKME specifica-
tion Su using her limited m labeled data per class in Yu. To
better capture the task’s statistical properties, we further en-
hance the requirements Ru by estimating class probabilities.

For the user task, let Xu ∈ Xmu be the unlabeled dataset
and {Xc ∈ Xm}c∈Yu

the labeled dataset. Utilizing kernel
mean embedding techniques [Smola et al., 2007], we can es-
timate class probabilities w ∈ ∆|Yu| by solving the following

Algorithm 1 Specification Generation

Input: Local dataset D with label space Y , model f , kernel
function k, specification size n, iteration T .

Output: The class-wise RKME specification S.
1: for c ∈ Y do
2: Obtain the data Xc in D that is correctly classified by

model f as class c. Initialize Zc by running k-means
clustering on Xc with the number of clusters set to n.

3: for t = 1 to T do
4: Update β

(t)
c by using standard quadratic program-

ming tools to minimize Eq. (1).
5: Update Z(t)

c by optimizing Eq. (1) with the gradient
descent method.

6: end for
7: end for
8: S ← {(β(T )

c ,Z
(T )
c )}c∈Y .

Algorithm 2 Multiple Learnware Identification

Input: Learnwares {(fi, Si)}Ni=1, user’s local dataset Xu

and {Xc}c∈Yu
, constants M,K, λ.

Output: Identified models {fi}i∈I .
1: Based on the local dataset, the user generates specifica-

tion Su by solving Eq. (1) and estimates class probabili-
ties w by solving Eq. (2), then submits task requirements
Ru = (Su,w) to the system.

2: Initialize I ← {}, I0 ← {} and U(I0, Ru)← 0.
3: for t = 1 to M do
4: Obtain It by solving Eq. (4) with the successive

shortest path algorithm applied to the minimum-cost
maximum-flow formulation of U(It, Ru).

5: If U(It, Ru) > U(I,Ru) then I ← It; else exit loop.
6: end for
7: The system returns the helpful models {fi}i∈I .

problem via standard quadratic programming tools:

min
w∈∆|Yu|

∥∥∥µ̂−∑
c∈Yu

wc

m

∑m

j=1
k(xc,j , ·)

∥∥∥2
Hk

, (2)

where µ̂ = 1
mu

∑mu

i=1 k(xu,i, ·) is the empirical KME of Xu,
and k is the kernel function from Eq. (1). The specification Su

and the class probabilities w together form the user require-
ments Ru = (Su,w), which describe statistical properties of
the user task without exposing raw data, laying the founda-
tion for establishing the relations between the heterogeneous
label spaces of learnwares and the user task.

Learnware Identification. After receiving the require-
ments, the system is required to identify a useful learnware
combination for the user task. Let U(I,Ru) denote the utility
of a set of learnwares {fi}i∈I to the user requirements Ru,
and the learnware identification process can be formulated as

max
I⊆[N ],|I|≤M

U(I,Ru). (3)

To quantify U(I,Ru), we first measure the class similarity via
the class-wise specification. Let Si = {(βc1 ∈ ∆n,Zc1 ∈
Xn)}c1∈Yi

and Su = {(βc2 ∈ ∆n,Zc2 ∈ Xn)}c2∈Yu
de-

note the specifications for the i-th learnware and the user task.
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Figure 2: An illustration of modeling the utility of a learnware com-
bination to the user task as a minimum-cost maximum-flow problem.

The similarity between class c1 of the learnware and class c2
of the user task, denoted as sim(Si,c1 , Su,c2), is defined as:

λ−
∥∥∥∑n

j=1
βc1,jk(zc1,j , ·)−

∑n

j=1
βc2,jk(zc2,j , ·)

∥∥∥2
Hk

,

where constant λ ensures non-negative similarity, and the lat-
ter term represents the Maximum Mean Discrepancy (MMD)
between two RKMEs in RKHS Hk. According to Proposi-
tion 1, this term quantifies the difference between the condi-
tional distributions of the two classes.

Based on the similarity, we quantify U(I,Ru) from a per-
spective of class matching, aiming to identify learnwares
whose combined label space fully covers the task label space.
Specifically, we construct a bipartite graph with learnware
classes on the left and user task classes on the right. The edge
weight between class c1 of learnware fi and user class c2 is
wc2 ·sim(Si,c1 , Su,c2), where wc2 is the estimated probability
of class c2. Since each user class may have multiple similar
learnware classes, we constrain that each user class can be
matched by at most K learnware classes. Let variable e

(i)
c1,c2

indicate whether class c1 of learnware fi is matched to user
class c2. Then, the quantification of U(I,Ru) is modeled as
the following optimization problem:

max
∑

i∈I,c1∈Yi

∑
c2∈Yu

e(i)c1,c2 · wc2 · sim(Si,c1 , Su,c2)

s.t.
∑

c2∈Yu

e(i)c1,c2 ≤ 1, ∀i ∈ I,∀c1 ∈ Yi,∑
i∈I,c1∈Yi

e(i)c1,c2 ≤ K, ∀c2 ∈ Yu,

e(i)c1,c2 ∈ {0, 1}, ∀i ∈ I,∀c1 ∈ Yi,∀c2 ∈ Yu.

To solve this optimization problem, we transform it into an
equivalent minimum-cost maximum-flow problem by treat-
ing the constraints as edge capacities and the negated edge
weights as costs, as shown in Figure 2. The minimum cost
can then be determined using the successive shortest path
algorithm [Edmonds and Karp, 1972]. By taking the nega-
tive of this value, we obtain the maximum weight matching,
which corresponds to the utility U(I,Ru). Further details of
this modeling are provided in Appendix B.

Even with U(I,Ru) quantified, the problem in Eq. (3) re-
mains NP-hard. To solve it practically, we employ a greedy
algorithm to iteratively optimize Eq. (3). Specifically, at the
t-th iteration, It = It−1 ∪ {i} is obtained by solving:

max
i∈[N ],i/∈It−1

U (It−1 ∪ {i}, Ru) . (4)

The entire process of learnware identification is detailed
in Algorithm 2, and its efficiency is analyzed in the following
theorem, with the proof provided in Appendix C.
Theorem 1. Assume the maximum size of the learnware la-
bel spaces maxi∈[N ] |Yi| ≤ Cf and the size of the user task
label space |Yu| = Cu. The time complexity of our learnware
identification method is O

(
NCfC2u log (Cf + Cu)

)
.

Since Cf and Cu are typically treated as constants, the time
complexity of our method scales linearly with N , the domi-
nant term. In contrast, the existing method [Wu et al., 2023]
for identifying multiple homogeneous learnwares has a time
complexity of Ω(N2), highlighting the efficiency of ours.
Several methods can further accelerate our identification pro-
cess. For instance, in the optimization of Eq. (4), traversing
all indices i ∈ [N ] can be sped up via parallel computing. Ad-
ditionally, techniques such as anchor learnwares [Zhou and
Tan, 2024; Xie et al., 2023] and specification index [Liu et
al., 2024] can substantially reduce the number of candidate
learnwares N , further enhancing identification efficiency.

3.3 Reusing Learnware Combinations
While the identification phase seeks to provide learnwares
whose combined label space covers the task label space, the
reuse phase focuses on aligning and assembling these learn-
wares with the user task in a fine-grained manner. This as-
sembly can be achieved by learning from the user’s local la-
beled data, naturally excluding the need for learnware specifi-
cations during reuse and further protecting developer data pri-
vacy. Since effective reuse methods vary greatly with model
structure, we design practical methods tailored for both non-
deep and deep learning models, ensuring broad applicability.

Let {fi : X 7→ R|Yi|}i∈I be the identified learnwares with
diverse label spaces. For non-deep learning models (e.g., lin-
ear and tree-based), we employ methods inspired by stack-
ing [Wolpert, 1992] and classifier adaptation [Li et al., 2013].
Specifically, we augment the original features with logit vec-
tors predicted by learnwares, which represent class probabil-
ities. For instance, if X is the raw data and I = {1, 2}, the
augmented data are X ′ = [X, f1(X), f2(X)], and a simple
secondary classifier (e.g. logistic regression) is then trained
on X ′. For deep learning models, each learnware is fine-
tuned by freezing all layers except the last. Then an average
ensemble method [Zhou, 2025] is applied, which averages the
outputs of all learnwares for final predictions.

These proposed methods are computationally efficient with
few learnable parameters. Moreover, they remain effective
and robust even with limited labeled data, and improve con-
tinuously with more instances, as validated in Section 4.

4 Experiments
In this section, we develop thousands of models with diverse
label spaces, spanning 22 real-world tabular and image sce-



Scenario #Task Classes #Models Random From-scratch Linear-proxy RKME-task RKME-instance Ours
CJS 6 20 99.23 ± 0.37 97.12 ± 1.20 99.32 ± 0.26 99.15 ± 0.64 99.54 ± 0.40 99.64 ± 0.00

First-Order 6 20 81.43 ± 1.94 89.27 ± 2.88 80.47 ± 5.61 85.45 ± 1.33 96.41 ± 2.23 97.96 ± 1.41
Covertype 7 35 53.45 ± 2.52 38.71 ± 2.81 66.71 ± 13.3 80.85 ± 3.62 90.45 ± 2.16 98.79 ± 0.53

Fabert 7 35 39.78 ± 0.62 11.33 ± 0.00 41.73 ± 2.31 30.29 ± 1.22 61.03 ± 1.44 65.48 ± 1.81
Steel-Fault 7 35 75.50 ± 5.11 83.32 ± 3.27 87.16 ± 2.92 84.50 ± 3.06 95.55 ± 0.92 97.03 ± 1.30

MiceProtein 8 56 92.72 ± 2.04 84.26 ± 2.91 91.48 ± 1.93 92.50 ± 1.93 93.52 ± 0.83 95.65 ± 1.19
Otto-Product 9 84 47.53 ± 3.17 47.71 ± 2.56 51.98 ± 5.37 54.71 ± 7.68 67.97 ± 5.58 84.60 ± 2.83

Volkert 10 120 90.79 ± 2.17 80.00 ± 1.87 91.84 ± 1.35 89.95 ± 1.26 94.90 ± 0.78 96.28 ± 1.16
CTG 10 120 61.22 ± 2.45 64.05 ± 2.74 67.16 ± 4.90 61.07 ± 3.13 71.81 ± 1.53 82.51 ± 1.03
HAR 12 220 92.84 ± 1.50 91.29 ± 1.37 93.12 ± 0.79 93.45 ± 1.78 92.93 ± 2.38 97.64 ± 0.28

Table 1: Average accuracy (%) on user tasks covering all classes in tabular scenarios. Each user task includes 10 labeled instances per class.
The evaluations are repeated five times, and the results are presented as the mean and standard deviation. The best is emphasized in bold.

Scenario #Task Classes #Users Random From-scratch Linear-proxy RKME-task RKME-instance Ours
CJS [4, 5] 21 99.42 ± 0.07 90.10 ± 1.76 99.34 ± 0.19 99.47 ± 0.05 99.56 ± 0.03 99.66 ± 0.03

First-Order [4, 5] 21 81.21 ± 2.62 56.26 ± 2.61 83.72 ± 2.60 88.94 ± 1.05 99.55 ± 0.13 98.95 ± 0.33
Covertype [5, 6] 28 63.00 ± 2.22 45.01 ± 1.68 78.19 ± 3.72 82.54 ± 3.28 98.39 ± 0.40 98.10 ± 0.70

Fabert [5, 6] 28 46.01 ± 0.42 17.64 ± 0.00 55.34 ± 1.72 51.85 ± 0.40 68.21 ± 0.95 70.05 ± 1.12
Steel-Fault [5, 6] 28 80.31 ± 1.09 85.65 ± 0.33 90.53 ± 1.24 90.51 ± 0.54 97.03 ± 0.39 97.86 ± 0.25

MiceProtein [6, 7] 36 93.61 ± 1.42 86.02 ± 1.24 93.73 ± 1.55 93.91 ± 1.27 97.29 ± 0.88 97.40 ± 0.53
Otto-Product [7, 8] 45 53.04 ± 0.98 48.94 ± 0.51 59.54 ± 1.20 65.24 ± 1.46 83.27 ± 0.96 88.51 ± 0.62

Volkert [8, 9] 55 90.80 ± 0.40 83.25 ± 0.62 92.40 ± 0.44 92.10 ± 0.22 95.58 ± 0.17 96.56 ± 0.38
CTG [8, 9] 55 64.08 ± 1.48 63.62 ± 1.15 69.80 ± 1.32 66.83 ± 1.76 77.47 ± 1.57 84.59 ± 1.56
HAR [10, 11] 78 93.04 ± 0.51 90.69 ± 0.77 94.96 ± 0.38 94.07 ± 0.58 94.07 ± 0.37 97.67 ± 0.23

Table 2: Average accuracy (%) on user tasks covering partial classes in tabular scenarios, with the number of classes in user tasks varying
within the range specified in the #Task Classes” column. Remaining experimental settings are consistent with Table 1.

narios. We compare with existing methods and conduct abla-
tion studies to validate the efficacy of our approach.

4.1 Experimental Setup
Here we introduce some common experimental setups.

Evaluation. For a scenario with C users, methods are eval-
uated by the average classification accuracy

∑C
i=1 Acci/C,

where Acci is the accuracy on the i-th user’s unlabeled in-
stances, which are unseen by all learnwares in the system.

Contenders. We compare our approach with five methods:
two baselines, Random and From-scratch, and three related
methods, RKME-task [Wu et al., 2023], RKME-instance [Wu
et al., 2023], and Linear-proxy [Guo et al., 2023]. Random
randomly selects a learnware. From-scratch trains a new
model from scratch with user labeled data and the same train-
ing algorithm as learnwares. RKME-task and RKME-instance
identify single and multiple learnwares, respectively, using
basic RKME specifications. Linear-proxy reduces the sub-
mitted model into a linear proxy model for identification.
Since these contenders cannot simultaneously handle tabular
and image scenarios across different label spaces, we enhance
them with the reuse methods proposed in Section 3.3.

Configuration. We set the specification size n to 10 and
use a Gaussian kernel k(x1,x2) = exp(−γ∥x1−x2∥22) with
γ = 0.1. For learnware search, K is chosen from {2, 3, 4} for
different datasets, with constants M = 5 and λ = 100.

4.2 Evaluation on Tabular Scenarios
Scenario Construction. For tabular scenarios, we develop
745 learnwares, each with a unique label space, derived from
10 real-world datasets on the OpenML [Vanschoren et al.,
2013] platform, spanning various domains such as healthcare,
industrial, and biological fields. For each dataset, we select
three classes from all classes, explore all possible combina-
tions, and train models using LightGBM [Ke et al., 2017] on

the corresponding training data. For instance, for a dataset
with 10 classes, we generate

(
10
3

)
= 120 models. This means

most classes in user tasks are unseen by any single learnware.
User Task Covering All Classes. For each dataset, we

test user tasks covering all classes, with each task Du includ-
ing the test set and 10 labeled data per class from the train-
ing set. Table 1 summarizes results from five repeats, show-
ing that our method outperforms all contenders and signifi-
cantly surpasses From-scratch, demonstrating the advantages
of reusing identified learnwares with limited labeled data.

User Task Covering Partial Classes. We further test user
tasks covering subsets of all classes. For a dataset with C
classes, each task includes a subset of C − 1 or C − 2 classes
from the test data. For example, the HAR dataset of 12 classes
yields

(
12
11

)
+
(
12
10

)
= 78 tasks. Table 2 reports an 8/2 win/lose

record, showing our method’s efficacy even when the label
spaces of user tasks and learnwares partially overlap.

User Task with Increasing Labeled Data. To further ex-
plore the benefits of our method, we test cases where labeled
data per class increases from 10 to 5,000, or all available data
if fewer than 5,000. Figure 3 shows that our method outper-
forms From-scratch with thousands of labeled data per class
and even with all labeled data in some scenarios. This sug-
gests that reusing identified learnwares could be more effec-
tive than training from scratch, even with sufficient data.

4.3 Evaluation on Image Scenarios
Scenario Construction. For image scenarios, we develop
300 heterogeneous learnwares from 12 real-world datasets:
EuroSAT [Helber et al., 2019], SVHN [Netzer et al., 2011],
CIFAR10/100 [Krizhevsky and Hinton, 2009], AID [Xia et
al., 2017], Pets [Parkhi et al., 2012], Resisc45 [Cheng et
al., 2017], DTD [Cimpoi et al., 2014], Food [Bossard et al.,
2014], Caltech101 [Li et al., 2004], Flowers [Nilsback and
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Figure 3: Average accuracy (%) on user tasks covering all classes in tabular scenarios, as the amount of labeled data per class increases.

Scenario #Task Classes Random From-scratch Linear-proxy RKME-task RKME-instance ViT-ImageNet Ours
SVHN 10 38.89 ± 0.64 12.72 ± 0.67 41.36 ± 9.88 41.54 ± 2.54 35.87 ± 10.8 20.15 ± 1.71 78.19 ± 2.55

CIFAR10 10 65.54 ± 0.53 30.18 ± 2.91 75.92 ± 2.15 74.87 ± 0.73 82.61 ± 4.70 85.44 ± 1.16 86.20 ± 2.64
EuroSAT 10 75.26 ± 1.74 46.54 ± 2.01 81.20 ± 1.74 80.77 ± 1.37 75.67 ± 4.57 78.50 ± 2.10 87.86 ± 1.34

AID 30 76.83 ± 0.48 60.44 ± 1.53 81.52 ± 0.78 80.83 ± 0.96 85.13 ± 1.21 71.92 ± 1.30 87.18 ± 0.90
Pets 37 86.41 ± 1.02 76.84 ± 2.28 87.23 ± 0.56 87.10 ± 0.81 88.34 ± 1.32 87.32 ± 0.37 89.28 ± 0.75

Resisc45 45 68.62 ± 0.44 40.32 ± 1.77 76.32 ± 0.64 73.45 ± 0.75 77.06 ± 1.01 63.79 ± 1.14 83.42 ± 0.95
DTD 47 55.46 ± 0.88 47.63 ± 1.54 59.03 ± 0.92 56.91 ± 1.13 61.37 ± 0.91 55.05 ± 0.63 62.12 ± 1.02

CIFAR100 100 54.10 ± 0.25 20.25 ± 0.88 58.62 ± 0.83 57.93 ± 0.62 66.80 ± 1.50 63.65 ± 0.53 68.16 ± 0.48
Food 101 53.21 ± 0.50 26.26 ± 0.64 59.00 ± 0.38 58.38 ± 0.29 67.32 ± 2.09 43.64 ± 0.85 68.49 ± 0.80

Caltech101 101 84.91 ± 0.65 82.38 ± 0.60 86.45 ± 1.66 86.52 ± 0.94 88.62 ± 1.03 88.47 ± 0.85 89.38 ± 0.99
Flowers 102 83.12 ± 0.53 69.61 ± 2.39 86.41 ± 0.39 85.36 ± 0.71 91.05 ± 1.86 81.56 ± 0.88 93.83 ± 0.35

CUB2011 200 58.86 ± 0.24 47.48 ± 1.20 64.02 ± 0.27 61.95 ± 0.38 68.76 ± 0.29 55.31 ± 0.45 68.98 ± 0.33

Table 3: Average accuracy (%) on user tasks covering all classes in image scenarios. Remaining details are consistent with Table 1.

Zisserman, 2008], and CUB2011 [Wah et al., 2011]. These
datasets span diverse domains, including plants, animals, and
objects. For each dataset, we randomly select 20% to 50% of
all classes and develop learnwares using corresponding train-
ing data. We perform 25 random selections per dataset, train-
ing ResNet50 [He et al., 2016] models for 100 epochs using
the SGD optimizer, with the initial learning rate chosen from
{0.1, 0.01, 0.001} and cosine annealing learning rate decay.

For specification generation, we use image features ex-
tracted by a generic pre-trained model, consistent with prior
learnware studies [Wu et al., 2023; Guo et al., 2023]. Specif-
ically, we apply a ViT-L/32 [Dosovitskiy et al., 2021] model
pre-trained on ImageNet [Russakovsky et al., 2015]. For
comparison, we introduce the ViT-ImageNet method, which
fine-tunes the pre-trained model’s last layer with user labeled
data, aligning with our reuse strategy. We also compare with
other fine-tuning methods, including full parameter tuning
and LoRA [Hu et al., 2022], detailed in Appendix D.

User Task Covering All Classes. Consistent with Sec-
tion 4.2, we test user tasks covering all classes of the test set.
Table 3 shows the superiority of our method across all scenar-
ios, suggesting that identifying and reusing small proprietary
models is more effective than training from scratch or fine-
tuning a generic pre-trained model in few-shot settings.

User Task Covering Partial Classes. We further test tasks
covering subsets of all classes. For each dataset, we randomly
select 70% to 90% of all classes, with their test data as the
user task. This process is repeated ten times to generate ten
unique user tasks per dataset. Table 4 shows that our method
consistently outperforms others, even when the user task label
space completely differs from that of existing learnwares.

User Task with Increasing Labeled Data. Consistent
with Section 4.2, we test cases with increasing labeled data

per class. Figure 4 presents the superiority of our method in
most scenarios, even when all labeled data are accessible.

4.4 Ablation Studies
Estimation of Class Probabilities. We compare our method
using estimated probabilities w versus uniform probabilities
on user tasks covering all classes. In class-balanced scenar-
ios like CIFAR100 and Food, our method matches the accu-
racy of uniform probabilities. In class-imbalanced scenarios,
it outperforms uniform probabilities by 6%, and in the most
imbalanced scenario, Covertype, it leads by 45%. These re-
sults show the necessity of our class probability estimation.

Number of Identified Learnwares. We analyze how
varying numbers of identified learnwares affect performance,
as shown in Figure 5. Performance improves with more learn-
wares, but with diminishing returns. Reusing five learnwares
generally yields satisfactory results, though cases like CTG,
Otto-Product, and CIFAR100 could be further improved. In
practice, the number of identified learnwares should depend
on task complexity and available computational resources.

5 Related Work
Learnware. The learnware paradigm [Zhou, 2016; Zhou and
Tan, 2024] proposes to build a large model platform com-
prising numerous high-performing models, enabling users to
leverage existing models for their tasks. Each model is as-
signed a specification that characterizes its capabilities, al-
lowing it to be identified for new tasks. Using the RKME
specification, homogeneous learnwares can be identified by
matching their data distributions with user tasks [Wu et al.,
2023]. This specification is proven to scarcely contain any
original data and possesses robust defense against common



Scenario #Task Classes Random From-scratch Linear-proxy RKME-task RKME-instance ViT-ImageNet Ours
SVHN [7, 9] 42.36 ± 0.71 13.93 ± 0.60 51.64 ± 6.46 54.19 ± 1.15 38.97 ± 5.59 23.41 ± 1.91 73.59 ± 3.29

CIFAR10 [7, 9] 68.43 ± 0.58 36.16 ± 0.82 80.55 ± 1.04 81.61 ± 0.55 81.97 ± 1.59 87.01 ± 1.30 87.41 ± 1.24
EuroSAT [7, 9] 77.52 ± 1.70 54.52 ± 3.39 85.07 ± 1.59 82.62 ± 1.21 80.23 ± 1.96 80.75 ± 2.01 88.97 ± 1.56

AID [21, 27] 78.32 ± 0.46 48.39 ± 0.82 82.27 ± 0.46 81.02 ± 0.63 85.48 ± 0.52 73.93 ± 1.25 87.99 ± 0.55
Pets [25, 33] 88.08 ± 0.71 79.10 ± 1.85 88.64 ± 0.74 88.59 ± 0.78 90.25 ± 0.61 88.96 ± 0.16 90.36 ± 0.74

Resisc45 [31, 40] 71.48 ± 0.43 47.16 ± 0.91 78.75 ± 0.59 76.07 ± 0.60 78.87 ± 0.48 66.59 ± 0.97 85.35 ± 0.30
DTD [32, 42] 58.66 ± 0.90 51.82 ± 0.84 61.75 ± 0.58 60.72 ± 0.84 63.83 ± 1.23 58.45 ± 0.84 65.40 ± 1.06

CIFAR100 [70, 90] 56.97 ± 0.24 21.16 ± 0.74 61.69 ± 0.58 62.14 ± 0.36 68.87 ± 0.70 66.46 ± 0.48 70.85 ± 0.50
Food [70, 90] 55.67 ± 0.48 29.20 ± 0.33 61.51 ± 0.44 61.13 ± 0.42 69.50 ± 0.40 45.81 ± 0.78 70.29 ± 0.36

Caltech101 [70, 90] 86.04 ± 0.76 83.30 ± 0.52 87.85 ± 1.30 87.40 ± 1.13 89.23 ± 1.10 89.31 ± 0.89 90.40 ± 1.00
Flowers [71, 91] 84.33 ± 0.54 71.63 ± 1.17 87.86 ± 0.55 87.24 ± 0.46 91.27 ± 0.58 82.91 ± 0.74 94.48 ± 0.18

CUB2011 [140, 180] 61.84 ± 0.21 49.23 ± 0.61 66.88 ± 0.31 66.31 ± 0.17 70.88 ± 0.39 58.22 ± 0.52 71.43 ± 0.23

Table 4: Average accuracy (%) on user tasks covering partial classes in image scenarios. Remaining details are consistent with Table 2.
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Figure 4: Average accuracy (%) on user tasks covering all classes in image scenarios, as the amount of labeled data per class increases.
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Figure 5: Average accuracy (%) on user tasks covering all classes in
tabular and image scenarios, with 10 labeled instances per class, as
the number of identified learnwares varies among {1, 3, 5, 7, 9}.

inference attacks [Lei et al., 2024]. To support effective iden-
tification from numerous learnwares, an anchor-based mecha-
nism [Xie et al., 2023] enables efficient identification, and an
evolvable learnware specification [Liu et al., 2024] continu-
ously enhances learnware characterization and identification
as the system scales. For heterogeneous feature spaces, al-
gorithms for searching and reusing learnwares are developed
by learning a unified specification space [Tan et al., 2023;
Tan et al., 2024a]. Recently, the first learnware dock system,
Beimingwu [Tan et al., 2024b], was released, providing im-
plementations for the entire process of learnware paradigm.

For heterogeneous label spaces, prior work [Guo et al.,
2023] focuses on identifying a single learnware and requires a
powerful public feature extractor, limiting its applicability es-
pecially in tabular scenarios. In contrast, our work makes the
first attempt to identify and reuse effective learnware combi-
nations across different label spaces, enabling broader appli-
cations of learnwares beyond their original purposes.

Utilizing Given Source Task(s) or Model(s). Domain
adaptation [Ben-David et al., 2006], transfer learning [Pan
and Yang, 2010], and model reuse [Zhao et al., 2020] fo-
cus on solving target tasks using given source task(s) or

model(s). Several studies also explore heterogeneous label
spaces, including disjoint label space transfer learning [Luo
et al., 2017], open set domain adaptation [Saito et al., 2018],
and partial domain adaptation [Cao et al., 2019]. While these
fields assume the given models are helpful for the target task
or require access to raw source data, the learnware paradigm
differs significantly, as it aims to identify and assemble useful
models from numerous ones in a data-preserving way.

Model Pools. Model pools and hubs, like Hugging Face,
have rapidly grown, hosting over a million models managed
with only semantic descriptions. Some works, such as Hug-
gingGPT [Shen et al., 2023] and ToolLLM [Qin et al., 2024],
attempt to identify models or tools via these descriptions.
However, since machine learning models are functions map-
ping inputs to outputs, statistical specifications in the learn-
ware paradigm are essential for capturing their implicit ca-
pabilities and enabling effective identification and reuse be-
yond their original purposes. Some studies also focus on as-
sessing the reusability or transferability of pre-trained mod-
els without fine-tuning [You et al., 2021; Ding et al., 2022;
Zhang et al., 2023], but these often require running all mod-
els on user data without considering data privacy, which is
impractical in real-world scenarios with numerous models.

6 Conclusion
This paper presents the first attempt to identify and assemble
helpful learnware combinations for user tasks across differ-
ent label spaces without leaking raw data. To achieve this,
we characterize model capabilities across classes and estab-
lish relationships between diverse label spaces, proposing a
practical identification and reuse method to solve user tasks
involving previously unseen label spaces. Extensive empiri-
cal evaluations validate the effectiveness of our approach.
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A Notations
The major notations used in this work are summarized in Table 5.

Category Notation Description

Developer

Di := (Xi,yi) The local dataset of the i-th developer, defined over X × Yi.
X ,Yi The feature and label space unique to model fi, respectively.

(fi, Si) The i-th learnware, where fi is the model and Si is the class-wise RKME specification.
N The number of learnwares in the learnware dock system.

User

Du := Xu The unlabeled user dataset defined over the feature space X .
Yu The label space of the user task, where Yu /∈ {Yi}Ni=1.
m The number of limited user labeled data for each class in Yu.

Ru := (Su,w) User’s task requirements, where Su and w denote specification and estimated class probabilities.

Specification

n, k The specification size and kernel function with reproducing kernel Hilbert space Hk, respectively.
µ̂c, µ̃c The empirical KME and RKME of class c, respectively.

S := {(βc,Zc)}c∈Y The class-wise RKME specification, where βc ∈ ∆n and Zc ∈ Xn.

Learnware
Identification

{fi | i ∈ I} The helpful learnware combination returned by the learnware dock system for tackling the user task.

M The constraint for the size of learnware combinations, i.e., |I| ≤ M .

sim(Si,c1 , Su,c2) The similarity between class c1 of the i-th learnware and class c2 of the user task.
λ The constant which ensures non-negative similarity.

U(I, Ru) The utility of a set of learnwares {fi}i∈I to the user requirements Ru.

Table 5: Major notations used in this work.

B More Details of Our Approach
In this section, we provide more detailed explanation of the learnware identification method proposed in Section 3.2. Specifi-
cally, we first introduce the minimum-cost maximum-flow problem and then describe how the utility of a learnware combination
to a user task is modeled as this problem.

B.1 Minimum-cost Maximum-flow Problem
The minimum-cost maximum-flow (MCMF) problem is a fundamental and classic problem in graph theory and network opti-
mization. It serves as an extension of the maximum flow problem by incorporating an economic aspect, namely a cost associated
with routing flow through each edge in the network. The goal is to achieve the maximum possible flow from a source to a sink,
and among all possible ways to achieve this maximum flow, to select the one that incurs the minimum total cost.



Formally, we define a flow network as a directed graph G = (V,E), where V is the set of vertices (or nodes) and E is the set
of edges (or arcs). Within this network, two special vertices are designated: a source vertex s ∈ V , from which flow originates,
and a sink vertex t ∈ V , where flow terminates. Each edge (v, w) ∈ E is characterized by three attributes:

• Capacity u(v, w) > 0: The maximum amount of flow that can pass through the edge.
• Cost c(v, w): The cost incurred per unit of flow sent along the edge. This cost can be positive, negative, or zero, though

it’s often non-negative in many practical applications.
• Flow f(v, w): The actual amount of flow traversing the edge.
A valid flow f in the network must satisfy the following constraints: (1) For every edge (v, w) ∈ E, the flow must be

non-negative and not exceed its capacity, i.e., 0 ≤ f(v, w) ≤ u(v, w); (2) For every vertex v ∈ V \ {s, t} (i.e., any vertex other
than the source or sink), the total flow entering the vertex must equal the total flow leaving it, i.e.,∑

(u,v)∈E
f(u, v) =

∑
(v,w)∈E

f(v, w).

The total cost of a given flow f is calculated by summing the costs incurred on all edges: C(f) =
∑

(v,w)∈E f(v, w)·c(v, w).
The problem then is to find a flow f that first maximizes the total flow F =

∑
(s,v)∈E f(s, v)−

∑
(v,s)∈E f(v, s) (the net flow

out of the source), and second, among all such maximum flows, minimizes the total cost C(f).
To further illustrate this problem, consider the following typical example [Winston, 2004]. The objective in this example is

to maximize the number of cars passing through a network of roads (defined by nodes and arcs) between two points, namely
the start and finish nodes. Each road (arc) within this network has a designated maximum capacity and a specific traversal time.
The problem is to determine the maximum number of cars that can travel between these two points while minimizing the total
traversal time taken. In this context, time is seen as the cost.

B.2 Discussion on the Modeling for the Utility of Learnware Combinations
As detailed in Section 3.2, we identify beneficial learnware combinations {fi}i∈I for user tasks across heterogeneous label
spaces. A core part is quantifying the utility U(I,Ru) of a combination I given user requirements Ru = (Su,w), where Su is
the user’s class-wise RKME specification and w are estimated user class probabilities.

This utility is conceptualized as finding a maximum weight matching between learnware classes in I and user task classes
in Yu. As defined in Section 3.2, the edge weight between a learnware class c1 ∈ Yi (from fi ∈ I) with user class c2 ∈ Yu is
wc2 · sim(Si,c1 , Su,c2). The similarity sim(Si,c1 , Su,c2) is formally defined as:

sim(Si,c1 , Su,c2) = λ−
∥∥∥∑n

j=1
βc1,jk(zc1,j , ·)−

∑n

j=1
βc2,jk(zc2,j , ·)

∥∥∥2
Hk

,

where the latter term represents the MMD between class-wise RKME specifications Si,c1 and Su,c2 in the RKHSHk, and λ is
a constant ensuring non-negative similarity. The matching is subject to two key constraints from Section 3.2:

1. Each class c1 from a learnware fi can be matched to at most one user class c2 (i.e.,
∑

c2∈Yu
e
(i)
c1,c2 ≤ 1).

2. Each user class c2 can be matched by at most K learnware classes, acknowledging that each user class may have multiple
similar or relevant learnware classes (i.e.,

∑
i∈I,c1∈Yi

e
(i)
c1,c2 ≤ K).

Here, e(i)c1,c2 ∈ {0, 1} is a binary variable indicating whether class c1 of learnware fi is matched to user class c2. To find the max-
imum weight matching, we transform this maximum weight matching problem into an equivalent minimum-cost maximum-
flow (MCMF) problem. Explicitly, the MCMF network illustrated in Figure 2 is constructed as:

• A global source node (s) and a global sink node (t) are introduced.
• For each learnware fi in the considered combination I , and for each of its classes c1 ∈ Yi, a learnware class node

representing (i, c1) is created. An edge is added from s to each such node (i, c1) with a capacity of 1 and a cost of 0. This
ensures that each specific class from a learnware is used at most once in the matching.

• For each class c2 ∈ Yu in the user’s task, a user class node c2 is created. An edge is added from each user class node c2 to
the sink node t with a capacity of K and a cost of 0. This enforces the constraint that each user class can be matched by,
or receive flow from, at most K learnware classes.

• For each pair consisting of a learnware class node (i, c1) and a user class node c2, an edge is added from (i, c1) to c2.
This edge has a capacity of 1 (meaning this specific pairing can contribute at most one unit of flow) and a cost equal to the
negated similarity weight: −wc2 ·sim(Si,c1 , Su,c2). Using negated weights allows us to employ a minimum-cost algorithm
to achieve a maximum-weight matching.

Once this network is constructed, this problem can be effectively solved with the successive shortest path algorithm [Edmonds
and Karp, 1972]. The utility U(I,Ru) of the learnware combination I is then precisely the negative of this calculated minimum
cost. This MCMF formulation provides an effective way to quantify the utility of a given set of learnwares for the user’s task,
facilitating the identification of beneficial learnware combinations across heterogeneous label spaces.



C Proofs
C.1 Proof of Proposition 1
Proof of Proposition 1. For all c ∈ Y , let µ̂c = 1

mc

∑mc

i=1 k(xc,i, ·) denote the empirical KME of class c and µ̃c =∑n
j=1 βc,jk(zc,j , ·) denote the RKME of class c. To analyze the convergence rate of µ̃c to µ̂c, we use the kernel herding

method [Bach et al., 2012], which generates a weighted mimic dataset {(βmic
c,j , z

mic
c,j )}

n

j=1
, where βmic

c ∈ ∆n, to approximate
µ̂c. According to [Bach et al., 2012], assuming supx∈X k(x,x) ≤ BH, we have:

∥µ̂c − µ̃mic
c ∥Hk

≤ 2

√
2BH

n
,

where µ̃mic
c =

∑n
j=1 β

mic
c,j k(z

mic
c,j , ·). Since the mimic dataset generated by the kernel herding algorithm is a suboptimal solution

to the optimization problem for generating the RKME specification, as shown in Eq. (1), the convergence rate of µ̃c to µ̂c can
be bounded as follows:

∥µ̂c − µ̃c∥Hk
≤ ∥µ̂c − µ̃mic

c ∥Hk
≤ 2

√
2BH

n
,

which completes the proof.

C.2 Proof of Theorem 1
Proof of Theorem 1. The analysis of time complexity for learnware identification in our approach can be divided into two parts:
the first involves calculating the utility U(I,Ru), and the second optimizes Eq. (3) to determine the learnware combination.

We begin by analyzing the time complexity of the utility calculation. In Section 3.2, we model the utility of a learnware
combination to a user task as a minimum-cost maximum-flow problem. To compute the utility, we employ the successive
shortest path algorithm [Edmonds and Karp, 1972], which iteratively finds the augmenting path with the minimum cost per
unit flow in a graph G = (V,E) until no augmenting paths remain, resulting in a time complexity of O (F |E| log |V |), where
F denotes the maximum flow value. Without loss of generality, we assume that the maximum size of the learnware label
spaces maxi∈[N ] |Yi| ≤ Cf , the size of the user task label space |Yu| = Cu, and the learnware combination is denoted by
I . In our modeling of the utility shown in Figure 2, the graph G consists of no more than |V | = |I|Cf + Cu + 2 nodes and
|E| = |I|CfCu + |I|Cf + Cu edges. The maximum flow F is less than KCu. Thus, the time complexity of computing the utility
U(I,Ru) is O

(
K|I|CfC2u log (|I|Cf + Cu)

)
. In Section 2, the size of the learnware combination I is constrained by M , such

that |I| ≤M . Given that both M and K are constants and are typically small (less than or equal to 5 in experiments), the time
complexity can be restated as O

(
CfC2u log (Cf + Cu)

)
.

Since a greedy algorithm is employed to iteratively optimize Eq. (3), at the t-th iteration, the learnware combination It =
It−1 ∪{i} is derived by solving Eq. (4). The time complexity for each iteration isO

(
NCfC2u log (Cf + Cu)

)
, where N denotes

the number of available learnwares. According to Algorithm 2, the maximum iteration number is M , which is a constant and
is typically small (less than or equal to 5 in experiments). Thus, the time complexity of our learnware identification method is
O
(
NCfC2u log (Cf + Cu)

)
, which completes the proof.

D Additional Details and Results for Experiments
In this section, we first provide omitted details of the experimental setup. Then, we conduct additional experiments, including
comparing our method with full parameter tuning and LoRA [Hu et al., 2022], exploring the relationship between the amount
of labeled data and learnware combinations, and analyzing the parameter stability and robustness of our approach.

D.1 Omitted Details about Experimental Setup
Tabular Datasets. The tabular scenarios presented in experiments are derived from 10 real-world datasets: Cover-
type [Blackard and Dean, 1999], HAR [Anguita et al., 2013], Otto-Product [Vanschoren et al., 2013], MiceProtein [Higuera
et al., 2015], CJS [Camacho and Arron, 1995], Steel-Fault [Vanschoren et al., 2013], First-Order [Bridge et al., 2014],
CTG [Ayres-de Campos et al., 2000], Fabert [Guyon et al., 2015], and Volkert [Guyon et al., 2015]. These datasets are
accessible on the OpenML platform [Vanschoren et al., 2013] and cover a wide range of domains such as healthcare, ecology,
business, informatics, industry, and biology. For each tabular dataset, details including its OpenML ID and the number of
classes are provided in Table 6.

Image Datasets. The image scenarios presented in experiments are derived from 12 real-world datasets: SVHN [Netzer et
al., 2011], CIFAR10 [Krizhevsky and Hinton, 2009], EuroSAT [Helber et al., 2019], AID [Xia et al., 2017], Pets [Parkhi et al.,
2012], Resisc45 [Cheng et al., 2017], DTD [Cimpoi et al., 2014], CIFAR100 [Krizhevsky and Hinton, 2009], Food [Bossard
et al., 2014], Caltech101 [Li et al., 2004], Flowers [Nilsback and Zisserman, 2008], and CUB2011 [Wah et al., 2011]. These
public datasets encompass a variety of domains, including plants, animals, food, remote sensing, and objects, ensuring broad
applicability across various areas. For each image dataset, details about the number of classes are presented in Table 7. Example
instances from these datasets are illustrated in Figure 6.



Dataset #Classes OpenML ID Dataset #Classes OpenML ID

HAR [Anguita et al., 2013] 12 1478 Covertype [Blackard and Dean, 1999] 7 150
Volkert [Guyon et al., 2015] 10 41166 MiceProtein [Higuera et al., 2015] 8 40966

CJS [Camacho and Arron, 1995] 6 23380 Steel-Fault [Vanschoren et al., 2013] 7 40982
First-Order [Bridge et al., 2014] 6 1475 CTG [Ayres-de Campos et al., 2000] 10 1466

Fabert [Guyon et al., 2015] 7 41164 Otto-Product [Vanschoren et al., 2013] 9 45548

Table 6: The number of classes and OpenML ID for each tabular dataset.

Dataset #Classes Dataset #Classes

SVHN [Netzer et al., 2011] 10 DTD [Cimpoi et al., 2014] 47
CIFAR10 [Krizhevsky and Hinton, 2009] 10 CIFAR100 [Krizhevsky and Hinton, 2009] 100

EuroSAT [Helber et al., 2019] 10 Food [Bossard et al., 2014] 101
AID [Xia et al., 2017] 30 Caltech101 [Li et al., 2004] 101

Pets [Parkhi et al., 2012] 37 Flowers [Nilsback and Zisserman, 2008] 102
Resisc45 [Cheng et al., 2017] 45 CUB2011 [Wah et al., 2011] 200

Table 7: The number of classes for each image dataset.

For each dataset, the training and test data are partitioned according to their original configurations; if none are available, they
are randomly divided in a 4:1 ratio. In the experiments, the training data are employed to train models that form the learnwares,
while the test data are regarded as unlabeled user data for subsequent evaluation.

Model Configurations. In our experiments, models derived from tabular scenarios are trained using the LightGBM [Ke et
al., 2017] algorithm. We select the hyperparameter combinations of (learning rate, number of leaves, maximum depth) from
the set {(0.015, 224, 66), (0.005, 300, 50), (0.01, 128, 80), (0.15, 224, 80), (0.01, 300, 66)}. For image scenarios, models are
trained with the ResNet50 [He et al., 2016] model for 100 epochs using the SGD optimizer. The initial learning rate is selected
from the set {0.1, 0.01, 0.001}. During the training process, a cosine annealing strategy is applied for managing the learning
rate decay, facilitating the model to converge to a better solution.

D.2 Comparison with More Fine-Tuning Methods
In our work, we compare our method with fine-tuning the last linear layer (ViT Linear Probing) of the medium-to-large-scale
model ViT-L/32 [Dosovitskiy et al., 2021], which has 307 million parameters and is pretrained on ImageNet [Russakovsky et
al., 2015]. To further evaluate our method, we compare it with fine-tuning all model parameters (ViT Fine-Tuning) and fine-
tuning using LoRA [Hu et al., 2022] (ViT LoRA), an efficient parameter fine-tuning method. Specifically, we conduct additional
experiments on user tasks covering all classes in image scenarios, where each user task includes 10 labeled instances per class.
The results presented in Table 8 show that our method significantly outperforms these contenders.

Besides, since ViT Linear Probing and ViT Fine-Tuning perform better than ViT LoRA, we further compare our method with
these two as the labeled data per class increases from 10 to 5,000. If the available data per class is less than 5,000, we include
all of it. As shown in Figure 7, our method’s performance improves as the labeled data increase, and in most scenarios, it is
superior to both ViT Linear Probing and ViT Fine-Tuning, even when all labeled data are accessible. This implies that reusing
helpful learnware combinations could be more effective even when sufficient labeled data are available.

D.3 Relationship between the Amount of Labeled Data and Learnware Combinations
To determine whether using 10 examples per class is accurate enough to measure the similarity between models and user tasks,
we explore the relationship between the amount of labeled data and learnware combinations. Since more labeled data leads
to better model reuse performance, to ensure precise comparisons, we fix the reuse data at 10 examples per class and varied
the data for generating specifications with 10, 50, and 200 examples per class. The results in Table 9 show that more data has
slightly improved search performance, with 10 examples being sufficient to measure the similarity between models and tasks.

D.4 Analysis of the Parameter Stability and Robustness
We further evaluate the parameter stability and robustness of our approach. In Section 3.2, since each user class may have
multiple similar learnware classes, we impose a constraint that each user class can be matched by at most K learnware classes,
as illustrated in Figure 2. In our experiments, only the hyperparameter K is adjusted during the learnware identification process.
This raises questions regarding the parameter stability of our approach as the hyperparameter K varies.

To investigate the robustness of our approach, we present results for both tabular and image scenarios with the hyperparameter
K varying among the set {1, 2, 3, 4}. To better illustrate the results, we select the From-scratch method as the baseline, as shown
in Figures 8 and 9. The empirical results indicate that as the hyperparameter K changes, the performance of our approach does
not fluctuate significantly, highlighting the parameter stability of our method. Additionally, for all K ∈ {1, 2, 3, 4}, our
approach consistently outperforms the baseline From-scratch, further demonstrating the robustness of our method.



SVHN CIFAR10 EuroSAT AID Pets Resisc45

DTD CIFAR100 Food Caltech101 CUB2011 Flowers

Figure 6: Example instances from each image dataset.

Method CIFAR10 AID Pets EuroSAT Resisc45 DTD SVHN CIFAR100 Food Caltech101 Flowers CUB2011
ViT Lora 74.92 78.67 19.65 71.25 81.66 59.02 48.30 45.77 84.62 26.91 72.28 28.03

ViT Linear Probing 85.44 78.50 20.15 71.92 87.32 63.79 55.05 63.65 88.47 43.64 81.56 55.31
ViT Fine-Tuning 84.43 78.15 20.24 72.30 86.02 64.79 53.88 59.15 86.98 43.68 83.70 51.93

Our Method 86.20 87.86 78.19 87.18 89.28 83.42 62.12 68.16 89.38 68.49 93.83 68.98

Table 8: Average accuracy (%) on user tasks covering all classes across 12 image scenarios. Each user task includes 10 labeled instances per
class. The best results are emphasized in bold.
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Figure 7: Average accuracy (%) on user tasks covering all classes in 12 image scenarios as the labeled data per class increase from 10 to
5,000. If the available data per class is less than 5,000, we include all of it. The remaining experimental setup is consistent with Figure 4.



Data per Class CIFAR10 AID Pets EuroSAT Resisc45 DTD SVHN CIFAR100 Food Caltech101 Flowers CUB2011
10 86.20 87.18 89.28 87.86 83.42 62.12 78.19 68.16 68.49 89.38 93.83 68.98
50 88.07 87.90 89.28 88.00 83.42 62.12 82.21 68.16 69.36 89.57 93.83 68.98

200 89.27 87.10 89.28 87.59 83.42 62.12 76.61 68.16 68.91 89.00 93.83 68.98

Table 9: Average accuracy (%) on user tasks covering all classes across 12 image scenarios, with the amount of labeled data for generating
specifications increasing and the data for reusing models fixed at 10 instances per class.
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Figure 8: The average classification accuracy (%) on user tasks covering all classes in tabular scenarios, as the hyperparameter K varies
among the set {1, 2, 3, 4}. Each user task includes 10 labeled instances per class.
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Figure 9: The average classification accuracy (%) on user tasks covering all classes in image scenarios, as the hyperparameter K varies
among the set {1, 2, 3, 4}. Each user task includes 10 labeled instances per class.
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