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Abstract

Extracting a stable and compact representation of the environment is crucial for
efficient reinforcement learning in high-dimensional, noisy, and non-stationary
environments. Different categories of information coexist in such environments –
how to effectively extract and disentangle the information remains a challenging
problem. In this paper, we propose IFactor, a general framework to model four
distinct categories of latent state variables that capture various aspects of informa-
tion within the RL system, based on their interactions with actions and rewards.
Our analysis establishes block-wise identifiability of these latent variables, which
not only provides a stable and compact representation but also discloses that all
reward-relevant factors are significant for policy learning. We further present a
practical approach to learning the world model with identifiable blocks, ensuring
the removal of redundancies but retaining minimal and sufficient information for
policy optimization. Experiments in synthetic worlds demonstrate that our method
accurately identifies the ground-truth latent variables, substantiating our theoretical
findings. Moreover, experiments in variants of the DeepMind Control Suite and
RoboDesk showcase the superior performance of our approach over baselines.

1 Introduction

Humans excel at extracting various categories of information from complex environments [1, 2]. By
effectively distinguishing between task-relevant information and noise, humans can learn efficiently
and avoid distractions. Similarly, in the context of reinforcement learning, it’s crucial for an agent to
precisely extract information from high-dimensional, noisy, and non-stationary environments.

World models [3, 4] tackle this challenge by learning compact representations from images and
modeling dynamics using low-dimensional features. Recent research has demonstrated that learning
policies through latent imagination in world models significantly enhances sample efficiency [5, 6,
7, 8]. However, these approaches often treat all information as an undifferentiated whole, leaving
policies susceptible to irrelevant distractions [9] and lacking transparency in decision-making [10].

This paper investigates the extraction and disentanglement of diverse information types within an
environment. To address this, we tackle two fundamental questions: 1) How can we establish a
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Figure 1: (a) An illustrative example of the car-driving task. (b) Four categories of latent state variables
in the car driving task. (c) The structure of our world model. Grey nodes denote observed variables
and other nodes are unobserved. We allow causally-related latent processes for four types of latent
variables and prove that they are respectively identifiable up to block-wise invertible transformations.
We show that both sar

t and sār
t are essential for policy optimization. The inclusion of the gray dashed

line from (sar
t , sār

t ) to at signifies that the action could be determined by reward-relevant variables.
(d) The structure of Denoised MDP [9]. It assumes the latent processes of xt and yt are independent
and uses only xt for policy optimization. The gray dashed line from xt−1 to at−1 shows that the action
could be determined only based on the controllable and reward-relevant latent variables. Further, the
existence of instantaneous causal effect from xt and yt to zt renders the latent process unidentifiable
without extra intervention on latent states [14].

comprehensive classification system for different information categories in diverse decision scenarios?
2) Can the latent state variables, classified according to this system, be accurately identified? Prior
research has made progress in answering the first question. Task Informed Abstractions [11] partition
the state space into reward-relevant and reward-irrelevant features, assuming independent latent
processes for each category. Iso-Dream [12] learns controllable and noncontrollable sources of
spatiotemporal changes on isolated state transition branches. Denoised MDP [9] further decomposes
reward-relevant states into controllable and uncontrollable components, also assuming independent
latent processes. However, the assumption of independent latent processes is overly restrictive and
may lead to decomposition degradation in many scenarios. Moreover, none of these approaches
guarantee the identifiability of representations, potentially leading to inaccurate recovery of the
underlying latent variables. While discussions on the identifiability of representations in reinforcement
learning (RL) exist under linear assumptions [13], the question of identifiability remains unexplored
for general nonlinear cases.

In this paper, we present IFactor, a general framework to model four distinct categories of latent state
variables within the RL system. These variables capture different aspects of information based on
their interactions with actions and rewards, providing transparent representations of the following
aspects: (i) reward-relevant and controllable parts, (ii) reward-irrelevant but uncontrollable parts, (iii)
controllable but reward-irrelevant parts, and (iv) unrelated noise (see Section 2). Diverging from prior
methods, our approach employs a general factorization for the latent state variables, allowing for
causally-related latent processes. We theoretically establish the block-wise identifiability of these
four variable categories in general nonlinear cases under weak and realistic assumptions. Our findings
challenge the conclusion drawn in the Denoised MDP [9] that only controllable and reward-relevant
variables are required for policy optimization. We emphasize the necessity of considering states that
directly or indirectly influence the reward during the decision-making process, irrespective of their
controllability. To learn these four categories of latent variables, we propose a principled approach
that involves optimizing an evidence lower bound and integrating multiple novel mutual information
constraints. Through simulations on synthetic data, we demonstrate the accurate identification of true
latent variables, validating our theoretical findings. Furthermore, our method achieves state-of-the-art
performance on variants of RoboDesk and DeepMind Control Suite.

2 Four Categories of (Latent) State Variables in RL
For generality, we consider tasks in the form of Partially Observed Markov Decision Process
(POMDP) [15], which is described asM ≜ (S,A,Ω,R,T,O, γ), where S is the latent state space,
A is the action space, Ω is the observation space, R : S × A → R defines the reward function,
T : S ×A→ ∆(S ) is the transition dynamics, O : S ×A→ ∆(Ω) is the observation function, γ ∈ [0, 1]
is the discount factor. We use ∆(S ) to denote the set of all distributions over S . The agent can interact
with the environment to get sequences of observations {⟨ot, at, rt⟩}

T
t=1. The objective is to find a policy

acting based on history observations, that maximizes the expected cumulative (discounted) reward.
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In the context of POMDPs, extracting a low-dimensional state representation from high-dimensional
observations is crucial. Considering that action and reward information is fundamental to decision-
making across various scenarios, we disentangle the latent variables in the environment into four
distinct categories, represented as st = {sar

t , s
ār
t , s

ar̄
t , s

ār̄
t }, based on their relationships with action and

reward (see Figure 1(c) as a graphical illustration):

• Type 1: sar
t has an incident edge from at−1, and there is a directed path from sar

t to rt.
• Type 2: sār

t has no incident edge from at−1, and there is a directed path from sār
t to rt.

• Type 3: sar̄
t has an incident edge from at−1, and there is no directed path from sar̄

t to rt.
• Type 4: sār̄

t has no incident edge from at−1, and there is no directed path from sār̄
t to rt.

sar
t represents controllable and reward-relevant state variables that are essential in various scenarios.

Taking the example of a car driving context, sar
t encompasses driving-related states like the current

speed, position, and direction of the car. These latent variables play a critical role in determining the
driving policy since actions such as steering and braking directly influence these states, which, in
turn, have a direct impact on the reward received.

sār
t refers to reward-relevant state variables that are beyond our control. Despite not being directly

controllable, these variables are still necessary for policy learning. In the context of car driving,
sār

t includes factors like surrounding vehicles and weather conditions. Although we cannot directly
control other cars, our car’s status influences their behavior: if we attempt to cut in line unethically,
the surrounding vehicles must decide whether to yield or block our behavior. As a result, we need to
adjust our actions based on their reactions. Similarly, the driver must adapt their driving behavior to
accommodate various weather conditions, even though the weather itself is uncontrollable.

The state variables denoted as sar̄
t consist of controllable but reward-irrelevant factors. Examples of

sar̄
t could be the choice of music being played or the positioning of ornaments within the car. On the

other hand, sār̄
t represents uncontrollable and reward-irrelevant latent variables such as the remote

scenery. Both sar̄
t and sār̄

t do not have any impact on current or future rewards and are unrelated to
policy optimization.

We next build a connection between the graph structure and statistical dependence between the
variables in the RL system, so that the different types of state variables can be characterized from
the data. To simplify symbol notation, we define sr

t := (sar
t , sār

t ), sr̄
t := (sar̄

t , sār̄
t ), sa

t := (sar̄
t , sar̄

t ) and
sā

t := (sār
t , sār̄

t ). Specifically, the following proposition shows that sr
t that has directed paths to rt+τ (for

τ > 0), is minimally sufficient for policy learning that aims to maximize the future reward and can
be characterized by conditional dependence with the cumulative reward variable Rt =

∑
t′=t γ

t′−trt′ ,
which has also been shown in [13].
Proposition 1. Under the assumption that the graphical representation, corresponding to the
environment model, is Markov and faithful to the measured data, sr

t ⊆ st is a minimal subset of state
dimensions that are sufficient for policy learning, and si,t ∈ sr

t if and only if si,t ⊥̸⊥ Rt |at−1:t, sr
t−1.

Moreover, the proposition below shows that sa
t , that has a directed edge from at−1, can be directly

controlled by actions and can be characterized by conditional dependence with the action variable.
Proposition 2. Under the assumption that the graphical representation, corresponding to the
environment model, is Markov and faithful to the measured data, sa

t ⊆ st is a minimal subset of state
dimensions that are sufficient for direct control, and si,t ∈ sa

t if and only if si,t ⊥̸⊥ at−1|st−1.

Furthermore, based on Proposition 1 and Proposition 2, we can further differentiate sar
t , s

ār
t , s

ar̄
t from

sr
t and sa

t , which is given in the following proposition.
Proposition 3. Under the assumption that the graphical representation, corresponding to the
environment model, is Markov and faithful to the measured data, we can build a connection between
the graph structure and statistical independence of causal variables in the RL system, with (1) si,t ∈ sar

t
if and only if si,t ⊥̸⊥ Rt |at−1:t, sr

t−1 and si,t ⊥̸⊥ at−1|st−1, (2) si,t ∈ sār
t if and only if si,t ⊥̸⊥ Rt |at−1:t, sr

t−1 and
si,t ⊥⊥ at−1|st−1, (3) si,t ∈ sar̄

t if and only if si,t ⊥⊥ Rt |at−1:t, sr
t−1 and si,t ⊥̸⊥ at−1|st−1, and (4) si,t ∈ sār̄

t if
and only if si,t ⊥⊥ Rt |at−1:t, sr

t−1 and si,t ⊥⊥ at−1|st−1.

By identifying these four categories of latent state variables, we can achieve interpretable input
for policies, including (i)reward-relevant and directly controllable parts, (ii) reward-relevant but
not controllable parts, (iii) controllable but non-reward-relevant parts, and (iv) unrelated noise.
Furthermore, policy training will become more sample efficient and robust to task-irrelevant changes
by utilizing only sar

t and sār
t for policy learning. We show the block-wise identifiability of the four

categories of variables in the next section.
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3 Identifiability Theory

Identifying causally-related latent variables from observations is particularly challenging, as latent
variables are generally not uniquely recoverable [16, 17]. Previous work in causal representation
learning and nonlinear-ICA has established identifiability conditions for non-parametric temporally
latent causal processes [18, 19]. However, these conditions are often too stringent in reality, and
none of these methods have been applied to complex control tasks. In contrast to component-wise
identifiability, our focus lies on the block-wise identifiability of the four categories of latent state
variables. From a policy optimization standpoint, this is sufficient because we do not need the latent
variables to be recovered up to permutation and component-wise invertible nonlinearities. This
relaxation makes the conditions more likely to hold true and applicable to a wide range of RL tasks.
We provide proof of the block-wise identifiability of the four types of latent variables. To the best of
our knowledge, we are the first to prove the identifiability of disentangled latent state variables in
general nonlinear cases for RL tasks.

According to the causal process in the RL system (as described in Eq.1 in [13]), we can build the
following mapping from latent state variables st to observed variables ot and future cumulative reward
Rt:

[ot,Rt] = f (sr
t , s

r̄
t , ηt), (1)

where
ot = f1(sr

t , s
r̄
t ),

Rt = f2(sr
t , ηt).

(2)

Here, note that to recover sr
t , it is essential to take into account all future rewards rt:T , because any

state dimension si,t ∈ st that has a directed path to the future reward rt+τ, for τ > 0, is involved in
sr

t . Hence, we consider the mapping from sr
t to the future cumulative reward Rt, and ηt represents

residuals, except sr
t , that have an effect to Rt.

Below, we first provide the definition of blockwise identifiability and relevant notations, related to
[20, 21, 22, 23].
Definition 1 (Blockwise Identifiability). A latent variable st is blockwise identifiable if there exists a
one-to-one mapping h(·) between st and the estimated ŝt, i.e., ŝt = h(st).

Notations. We denote by s̃t := (sr
t , s

r̄
t , ηt) and by |s| the dimension of a variable s. We further denote

dsr := |sr
t |, dsr̄ := |sr̄

t |, ds̃ := |s̃t |, do := |ot |, and dR := |Rt |. We denote by F the support of Jacobian
J f (st), by F̂ the support of J f̂ (ŝt), and by T the support of T(st) with J f̂ (ŝt) = J f (st)T(s). We also
denote T as a matrix with the same support as T .

In addition, given a subsetD ⊆ {1, · · · , ds̃}, the subspace Rds̃
D

is defined as Rds̃
D

:= {z ∈ Rds̃ |i < D =⇒
zi = 0}. In other words, Rds̃

D
refers to the subspace of Rds̃ indicated by an index setD.

We next show that the different types of states sar
t , sār

t , sar̄
t , and sār̄

t are blockwise identifiable from
observed image variable ot, reward variable rt, and action variable at, under reasonable and weak
assumptions, which is partly inspired by [20, 21, 22, 23].
Theorem 1. Suppose that the causal process in the RL system and the four categories of latent state
variables can be described as that in Section 2 and illustrated in Figure 1(c). Under the following
assumptions

A1. The mapping f in Eq. 1 is smooth and invertible with smooth inverse.

A2. For all i ∈ {1, . . . , do + dR} and j ∈ Fi,:, there exist {s̃(l)
t }
|Fi,: |

l=1 , so that span{J f (s̃(l)
t )i,:}

|Fi,: |

l=1 =

Rds̃
Fi,:

, and there exists a matrix T with its support identical to that of J−1
f̂

(ˆ̃st)J f (s̃t), so that[
J f (s̃(l)

t )T
]

j,: ∈ R
ds̃

F̂i,:
.

Then, reward-relevant and controllable states sar
t , reward-relevant but not controllable states sār

t ,
reward-irrelevant but controllable states sar̄

t , and noise sār̄
t , are blockwise identifiable.

In the theorem presented above, Assumption A1 only assumes the invertibility of function f , while
functions f1 and f2 are considered general and not necessarily invertible, as that in [23]. Since
the function f is the mapping from all (latent) variables, including noise factors, that influence
the observed variables, the invertibility assumption holds reasonably. However, note that it is not
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reasonable to assume the invertibility of the function f2 since usually, the reward function is not
invertible. Intuitively, Assumption A2 requires that the Jacobian varies “enough” so that it cannot be
contained in a proper subspace of Rds̃

Fi,:
. This requirement is necessary to avoid undesirable situations

where the problem becomes ill-posed and is essential for identifiability. A special case when this
property does not hold is when the function f is linear, as the Jacobian remains constant in such
cases. Some proof techniques of Theorem 1 follow from [20, 22, 23], with the detailed proof given in
Appendix A.4.

4 World Model with Disentangled Latent Dynamics

Based on the four categories of latent state variables, we formulate a world model with disentangled
latent dynamics. Each component of the world model is described as follows:

Observation Model: pθ (ot | st)
Reward Model: pθ

(
rt | sr

t
)

Transition Model: pγ (st | st−1, at−1)
Representation Model: qϕ (st | ot, st−1, at−1)

(3)

Specifically, the world model includes three generative models: an observation model, a reward
function, and a transition model (prior), and a representation model (posterior). The observation
model and reward model are parameterized by θ. The transition model is parameterized by γ and the
representation model is parameterized by ϕ. We assume noises are i.i.d for all models. The action at−1
has a direct effect on the latent states st, but not on the perceived signals ot. The perceived signals, ot,
are generated from the underlying states st, while signals rt are generated only from reward-relevant
latent variables sr

t .

According to the graphical model depicted in Figure 1(c), the transition model and the representation
model can be further decomposed into four distinct sub-models, according to the four categories of
latent state variables, as shown in equation 4.

Disentangled Transition Model: Disentangled Representation Model:
pγ1 (sar

t | s
r
t−1, at−1)

pγ2 (sār
t | s

r
t−1)

pγ3 (sar̄
t | st−1, at−1)

pγ4 (sār̄
t | st−1)


qϕ1 (sar

t | ot, sr
t−1, at−1)

qϕ2 (sār
t | ot, sr

t−1)
qϕ3 (sar̄

t | ot, st−1, at−1)
qϕ4 (sār̄

t | ot, st−1)

(4)

Specifically, we have pγ = pγ1 · pγ2 · pγ3 · pγ4 and qϕ = qϕ1 ·qϕ2 ·qϕ3 ·qϕ4 . Note this factorization differs
from previous works [11, 9] that assume independent latent processes. Instead, we only assume
conditional independence among the four categories of latent variables given st−1, which provides a
more general factorization. In particular, the dynamics of sar

t and sār
t are dependent on sr

t−1, ensuring
that they are unaffected by any reward-irrelevant latent variables present in sr̄

t−1. On the other hand,
sr̄

t may be influenced by all the latent variables from the previous time step. Note that the connections
between st−1 and sr̄

t can be adjusted based on the concrete problem. Since sar
t and sar̄

t are controllable
variables, their determination also relies on at−1.

4.1 World Model Estimation

The optimization of the world model involves joint optimization of its four components to maximize
the variational lower bound [24] or, more generally, the variational information bottleneck [25, 26].
The bound encompasses reconstruction terms for both observations and rewards, along with a KL
regularizer:

J t
O = ln pθ (ot | st) J t

R = ln pθ
(
rt | sr

t
)
J t

D = −KL
(
qϕ∥pγ)

)
. (5)

Further, the KL regularizer J t
D can be decomposed into four components based on our factorization

of the state variables. We introduce additional hyperparameters to regulate the amount of information
contained within each category of variables:

J t
D = −β1 · KL

(
qϕ1∥pγ1

)
− β2 · KL

(
qϕ2∥pγ2

)
− β3 · KL

(
qϕ3∥pγ3

)
− β4 · KL

(
qϕ4∥pγ4

)
. (6)

Additionally, we introduce two supplementary objectives to explicitly capture the distinctive char-
acteristics of the four distinct representation categories. Specifically, we characterize the reward-
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Figure 2: (a) The agent learns the disentangled latent dynamics from prior experiences. The yellow
arrow represents a one-one mapping from h∗t to s∗t with the same superscript. (b) Within the latent
space, state values and actions are forecasted to maximize future value predictions by backpropagating
gradients through imagined trajectories. Only sr

t (reward-relevant) are used for policy optimization.

relevant representations by measuring the dependence between sr
t and Rt, given at−1:t and sr

t−1, that
is I(sr

t ,Rt | at−1:t, sr
t−1). To ensure that sr

t are minimally sufficient for policy training, we maximize
I(sr

t ,Rt | at−1:t, sr
t−1) while minimizing I(sr̄

t ,Rt | at−1:t, sr
t−1) to discourage the inclusion of redundant

information in sr̄
t concerning the rewards:

I(sr
t ; Rt | at−1:t, sr

t−1) − I(sr̄
t ; Rt | at−1:t, sr

t−1). (7)

The conditional mutual information can be expressed as the disparity between two mutual information.

I(sr
t ; Rt | at−1:t, sr

t−1) = I(Rt; sr
t , at−1:t, sr

t−1) − I(Rt; at−1:t, sr
t−1),

I(sr̄
t ; Rt | at−1:t, sr

t−1) = I(Rt; sr̄
t , at−1:t, sr

t−1) − I(Rt; at−1:t, sr
t−1).

(8)

After removing the common term, we leverage mutual information neural estimation [27] to approxi-
mate the value of mutual information. Thus, we reframe the objective in Eq.7 as follows:

J t
RS = λ1 ·

{
Iα1 (Rt; sr

t , at−1:t, sg(sr
t−1)) − Iα2 (Rt; sr̄

t , at−1:t, sg(sr
t−1))

}
. (9)

We employ additional neural networks, parameterized by α, to estimate the mutual information. To
incorporate the conditions from the original objective, we apply the stop_gradient operation sg to
the variable sr

t−1. Similarly, to ensure that the representations sa
t are directly controllable by actions,

while sā
t are not, we maximize the following objective:

J t
AS = λ2 ·

{
Iα3 (at−1; sa

t , sg(st−1)) − Iα4 (at−1; sā
t , sg(st−1))

}
. (10)

Intuitively, these two objective functions ensure that sr
t is predictive of the reward, while sr̄

t is not;
similarly, sa

t can be predicted by the action, whereas sā
t cannot. The total objective for learning the

world model is summarized as:

JTOTAL = Eqϕ

∑
t

(
J t

O +J
t
R +J

t
D +J

t
RS +J

t
AS

) + const . (11)

The expectation is computed over the dataset and the representation model. Throughout the model
learning process, the objectives for estimating mutual information and learning the world model are
alternately optimized. A thorough derivation and discussion of the objective function are given in
Appendix B.

It is important to note that our approach to learning world models with identifiable factorization is
independent of the specific policy optimization algorithm employed. In this work, we choose to build
upon the state-of-the-art method Dreamer [6, 7], which iteratively performs exploration, model-fitting,
and policy optimization. As illustrated in Figure 2, the learning process for the dynamics involves the
joint training of the four categories of latent variables. However, only the variables of sr

t are utilized
for policy learning. We provide the pseudocode for the IFactor algorithm in Appendix C.
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5 Experiments

In this section, we begin by evaluating the identifiability of our method using simulated datasets.
Subsequently, we visualize the learned representations of the four categories in a cartpole environ-
ment that includes distractors. Further, we assess the advantages of our factored world model in
policy learning by conducting experiments on variants of Robodesk and DeepMind Control Suite.
The reported results are aggregated over 5 runs for the Robodesk experiments and over 3 runs
for others. A detailed introduction to each environment is provided in Appendix D, while exper-
iment details and hyperparameters can be found in Appendix E. The source code is available at
https://github.com/AlexLiuyuren/IFactor

5.1 Latent State Identification Evaluation

5.1.1 Synthetic environments

Evaluation Metrics and Baselines We generate synthetic datasets that satisfy the identifiability
conditions outlined in the theorems (see Appendix D.1). To evaluate the block-wise identifiability of
the four categories of representations, we follow the experimental methodology of [28] and compute
the coefficient of determination R2 from s∗t to ŝ∗t , as well as from ŝ∗t to s∗t , for ∗ ∈ {ar, ār, ar̄, ār̄}. R2

can be viewed as the identifiability score. R2 = 1 in both directions suggests a one-to-one mapping
between the true latent variables and the recovered ones. We compare our latent representation
learning method with Denoised MDP [9]. We also include baselines along the line of nonlinear ICA:
BetaVAE [29] and FactorVAE [30] which do not consider temporal dependencies; SlowVAE [31]
and PCL[32] which leverage temporal constraints but assume independent sources; and TDRL [19]
which incorporates temporal constraints and non-stationary noise but does not utilize the action and
reward information in the Markov Decision Process.

Results Figure 9 demonstrates the effectiveness of our method in accurately recovering the four
categories of latent state variables, as evidenced by high R2 values (> 0.9). In contrast, the baseline
methods exhibit distortions in the identification results. Particularly, Denoised MDP assumes in-
dependent latent process for xt, yt, and the existence of instantaneous causal effect from xt, yt to zt
(see Figure 1(d)), leading to unidentifiable latent variables without further intervention. BetaVAE,
FactorVAE, SlowVAE, and PCL, which assume independent sources, show subpar performance.
Although TDRL allows for causally-related processes under conditional independence assumptions,
it fails to explicitly leverage the distinct transition structures of the four variable categories. More
results on the identifiability scores of baselines are provided in Appendix E.1.

sar
t sar

t sar
t sar

t

True latents 

sar t
sar t

sar t
sar t

Es
tim

at
ed

 la
te

nt
s 

0.98 0.15 0.01 0.03

0.10 1.00 0.08 0.03

0.03 0.07 0.97 0.03

0.03 0.02 0.03 0.99

R2 = 0.9839

(a)

sar
t sar

t sar
t sar

t

Estimated latents 

sar t
sar t

sar t
sar t

Tr
ue

 la
te

nt
s 

0.99 0.13 0.03 0.06

0.25 1.00 0.07 0.05

0.02 0.08 0.97 0.04

0.02 0.02 0.12 0.99

R2 = 0.9850

(b)

0 1 2 3 4 5 6 7 8
Training Steps 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Average R2: st to st
IFactor (ours)
DenoisedMDP
BetaVAE
FactorVAE
PCL
SlowVAE
TDRL

(c)

0 1 2 3 4 5 6 7 8
Training Steps 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Average R2: st to st

(d)

Figure 3: Simulation results: (a) The coefficient of determination (R2) obtained by using kernel
ridge regression to regress estimated latents on true latents.(b) The R2 obtained by using kernel ridge
regression [33] to regress true latents on estimated latents. (c) The average R2 over four types of
representations during training (True latents→ Estimated latents).(d) The average R2 over four types
of representations during training (Estimated latents→ True latents).

5.1.2 Modified Cartpole with distractors

We have introduced a variant of the original Cartpole environment by incorporating two distractors.
The first distractor is an uncontrollable Cartpole located in the upper portion of the image, which
is irrelevant to the rewards. The second distractor is a controllable but reward-irrelevant green light
positioned below the reward-relevant Cartpole in the lower part of the image.
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After estimating the representation model, we utilize latent traversal to visualize the four categories
of representations in the modified Cartpole environment (see Figure 4). Specifically, the recovered
sar

t corresponds to the position of the cart, while sār
t corresponds to the angle of the pole. This

demonstrates the ability of our method to automatically factorize reward-relevant representations
based on (one-step) controllability: the cart experiences a force at the current time step, whereas the
pole angle is influenced in the subsequent time step. Note that during the latent traversal of sār

t , the
position of the cart remains fixed, even though the pole originally moves with the cart in the video.
Additionally, sar̄

t corresponds to greenness of the light, and sār̄
t corresponds to the uncontrollable

and reward-irrelevant cartpole. These findings highlight the capability of our representation learning
method to disentangle and accurately recover the ground-true latent variables from videos. The
identifiability scores of four categories of representations are provided in Appendix E.2.

Cart position

Pole angle

Greeness
Distractor 

Obs

sar
t

sār

sar̄
t

sār̄
t

Figure 4: Latent traversal for four types of representations in the modified Cartpole environment.

5.2 Policy Optimization Evaluation

To assess the effectiveness of our method in enhancing policy learning by utilizing minimal yet
sufficient representations for control, we conducted experiments on more complex control tasks. One
of these tasks is a variant of Robodesk [34], which includes realistic noise elements such as flickering
lights, shaky cameras, and a dynamic video background. In this task, the objective for the agent is to
change the hue of a TV screen to green using a button press. We also consider variants of DeepMind
Control Suite (DMC) [35, 9], where distractors such as a dynamic video background, noisy sensor
readings, and a jittering camera are introduced to the original DMC environment. These additional
elements aim to challenge the agent’s ability to focus on the relevant aspects of the task while filtering
out irrelevant distractions. Baseline results except for DreamerPro [36] are derived from the Denoised
MDP paper. We have omitted the standard deviation of their performance for clarity.

Evaluation Metrics and Baselines We evaluate the performance of the policy at intervals of every
10,000 environment steps and compare our method with both model-based and model-free approaches.
Among the model-based methods, we include Denoised MDP [9], which is the state-of-the-art method
for variants of Robodesk and DMC. We also include DreamerPro [36], TIA [11] and Dreamer [6] as
additional model-based baselines. For the model-free methods, we include DBC [37], CURL[38],
and PI-SAC [39]. To ensure a fair comparison, we have aligned all common hyperparameters and
neural network structures with those used in the Denoised MDP [9].

5.2.1 RoboDesk with Various Noise Distractors

In Figure 5, the left image demonstrates that our model IFactor achieves comparable performance to
Denoised MDP while outperforming other baselines. The results of baselines except for DreamerPro
are directly copied from the paper of Denoised MDP [9] (its error bar cannot be directly copied),
and the replication of Denoised MDP results is given in Appendix E.3. Furthermore, to investigate
whether sr

t serves as minimal and sufficient representations for policy learning, we retrain policies
using the Soft Actor-Critic algorithm [40] with different combinations of the four learned categories
as input. Remarkably, the policy trained using sr

t exhibits the best performance, while the performance
of other policies degrades due to insufficient information (e.g., sar

t and sr̄
t ) or redundant information
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Figure 5: Results on Robodesk. We have omitted the standard deviation of the performance of
baselines for clarity. The left image shows that our method IFactor achieves comparable performance
with Denoised Mdp, outperforming other baselines. The middle image shows the policy optimization
process by SAC [40] using representations learned by IFactor, where policies that use sr

t as input
achieve the best performance. The right image shows the latent traversal of the representations.

(e.g., sr
t + sar̄

t and st). Moreover, we conduct latent traversal on the learned representations to elucidate
their original meaning in the observation. Interestingly, our model identifies the greenness of the
screen as sar̄

t , which may initially appear counter-intuitive. However, this phenomenon arises from
the robot arm pressing the green button, resulting in the screen turning green. Consequently, the
screen turning green becomes independent of rewards conditioned on the robot arm pressing the
green button, aligning with the definition of sar̄

t . This empirically confirms the minimality of sr
t for

policy optimization.

5.2.2 DeepMind Control Suite (DMC)

Figure 6 demonstrates the consistent superiority of our method over baselines in the Deepmind
Control Suite (DMC) across various distractor scenarios. Our approach exhibits robust performance
in both noiseless and noisy environments, demonstrating the effectiveness of our factored world
model in eliminating distractors while preserving essential information for effective and efficient
control in policy learning. The ablation study of IFactor’s objective function terms is presented in
Appendix B.1 and Appendix E.3, which shows that the inclusion of mutual information constraints is
essential to promote disentanglement and enhance policy performance. The policy performance that
includes the standard error is provided in Appendix E.4. Visualization of the learned representations
is also provided in Appendix E.5.

6 Related Work
World Model Learning in RL. Image reconstruction [41, 42] and contrastive learning [43, 44,
45, 46, 47] are wildly used to learn representations in RL. Dreamer and its subsequent extensions
[5, 6, 7, 8] adopt a world model-based learning approach, where the policy is learned solely through
dreaming in the world model. However, the agents trained by these techniques tend to underperform in
noisy environments [9]. To address this issue, numerous approaches have been introduced to enhance
robustness to distractions. Task Informed Abstractions (TIA) [11] explicitly partition the latent state
space into reward-relevant and reward-irrelevant features. Denoised MDP [9] takes a step further and
decomposes the reward-relevant states into controllable and uncontrollable components. InfoPower
[48] prioritizes information that is correlated with action based on mutual information. Iso-Dream [12]
learns controllable and noncontrollable sources of spatiotemporal changes on isolated state transition
branches. Our method extends these work by accommodating a more general factorization with
block-wise identifiablity. Recent research also explores reconstruction-free representation learning
methods [36, 49, 50, 51]. DreamerPro [36] combines Dreamer with prototypes, which distills
temporal structures from past observations and actions. Temporal Predictive Coding [50] encodes
elements in the environment that can be predicted across time. Contrastively-trained Structured World
Models [51] utilize graph neural networks and a contrastive approach for representation learning in
environments with compositional structure. Latent states learned by these methods are not identifiable
due to the reconstruction-free property, where the mixing function is not invertible anymore. A
detailed comparison between IFactor and related work is also given in Appendix F.

Identifiability in Causal Representation Learning. Temporal structure and nonstationarities were
recently used to achieve identifiability in causal representation learning [52]. Methods such as TCL
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Figure 6: Policy optimization on variants of DMC with various distractors.

[53] and PCL [32] leverage nonstationarity in temporal data through contrastive learning to identify
independent sources. CITRIS [54] and iCITRIS [55] takes advantage of observed intervention targets
to identify causal factors. LEAP [18] introduces identifiability conditions for both parametric and
nonparametric latent processes. TDRL [19] explores identifiability of latent processes under stationary
environments and distribution shifts. ASRs [13] establish the identifiability of the representations in
the linear-gaussian case in the RL setting. Our work extends the theoretical results in ASRs to enable
block-wise identifiability of four categories of latent variables in general nonlinear cases.

7 Conclusion
In this paper, we present a general framework to model four distinct categories of latent state variables
within the RL system, based on their interactions with actions and rewards. We establish the block-
wise identifiability of these latent categories in general nonlinear cases, under weak and realistic
assumptions. Accordingly, we propose IFactor to extract four types of representations from raw
observations and use reward-relevant representations for policy optimization. Experiments verify our
theoretical results and show that our method achieves state-of-the-art performance in variants of the
DeepMind Control Suite and RoboDesk. The basic limitation of this work is that the underlying latent
processes are assumed to have no instantaneous causal relations but only time-delayed influences.
This assumption does not hold true if the resolution of the time series is much lower than the causal
frequency. We leave the identifiability of the latent dynamics in the presence of instantaneous causal
and the extension of our method to heterogeneous environments to future work.
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A Theoretical Proofs

A.1 Proof of Proposition 1

Proposition 1 shows that sr
t , which has directed paths to rt+τ (for τ ≥ 0), is minimally sufficient for

policy learning that aims to maximize the future reward and can be characterized by conditional
dependence with the cumulative reward variable Rt.
Proposition 1. Under the assumption that the graphical representation, corresponding to the
environment model, is Markov and faithful to the measured data, sr

t ⊆ st is a minimal subset of state
dimensions that are sufficient for policy learning, and si,t ∈ sr

t if and only if si,t ⊥̸⊥ Rt |at−1:t, sr
t−1.

We first give the definitions of the Markov condition and the faithfulness assumption [56, 57], which
will be used in the proof.
Definition 1 (Global Markov Condition). The distribution p over a set of variables V satisfies the
global Markov property on graph G if for any partition (A, B,C) such that if B d-separates A from C,
then p(A,C|B) = p(A|B)p(C|B).
Definition 2 (Faithfulness Assumption). There are no independencies between variables that are not
entailed by the Markov Condition in the graph.

Below, we give the proof of Proposition 1.

Proof. The proof contains the following three steps.

• In step 1, we show that a state dimension si,t is in sr
t , that is, it has a directed path to rt+τ, if

and only if si,t ⊥̸⊥ Rt |at−1:t, st−1.

• In step 2, we show that for si,t with si,t ⊥̸⊥ Rt |at−1:t, st−1, if and only if si,t ⊥̸⊥ Rt |at−1:t, sr
t−1.

• In step 3, we show that sr
t are minimally sufficient for policy learning.

Step 1: We first show that if a state dimension si,t is in sr
t , then si,t ⊥̸⊥ Rt |at−1:t, st−1.

We prove it by contradiction. Suppose that si,t is independent of Rt given at−1:t and st−1. Then
according to the faithfulness assumption, we can see from the graph that si,t does not have a directed
path to rt+τ, which contradicts the assumption, because, otherwise, at−1:t and st−1 cannot break the
paths between si,t and Rt which leads to the dependence.

We next show that if si,t ⊥̸⊥ Rt |at−1:t, st−1, then si,t ∈ sr
t .

Similarly, by contradiction suppose that si,t does not have a directed path to rt+τ. From the graph, it is
easy to see that at−1:t and st−1 must d-separate the path between si,t and Rt. According to the Markov
assumption, si,t is independent of Rt given at−1:t and st−1, which contradicts to the assumption. Since
we have a contradiction, it must be that si,t has a directed path to rt+τ, i.e. si,t ∈ sr

t .

Step 2: In step 1, we have shown that si,t ⊥̸⊥ Rt |at−1:t, st−1, if and only if it has a directed path to rt+τ.
From the graph, it is easy to see that for those state dimensions which have a directed path to rt+τ,
at−1:t and st−1 cannot break the path between si,t and Rt. Moreover, for those state dimensions which
do not have a directed path to rt+τ, at−1:t and sr

t−1 are enough to break the path between si,t and Rt.

Therefore, for si,t, si,t ⊥̸⊥ Rt |at−1:t, st−1, if and only if si,t ⊥̸⊥ Rt+1|at−1:t, sr
t−1.

Step 3: In the previous steps, it has been shown that if a state dimension si,t is in sr
t , then si,t ⊥̸⊥

Rt |at−1:t, sr
t−1, and if a state dimension si,t is not in sr

t , then si,t ⊥⊥ Rt |at−1:t, sr
t−1. This implies that sr

t
are minimally sufficient for policy learning to maximize the future reward. □

A.2 Proof of Proposition 2

Moreover, the proposition below shows that sa
t , which receives an edge from at−1, can be directly

controlled by actions and can be characterized by conditional dependence with the action variable.
Proposition 2. Under the assumption that the graphical representation, corresponding to the
environment model, is Markov and faithful to the measured data, sa

t ⊆ st is a minimal subset of state
dimensions that are sufficient for direct control, and si,t ∈ sa

t if and only if si,t ⊥̸⊥ at−1|st−1.
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Below, we give the proof of Proposition 2.

Proof. The proof contains the following two steps.

• In step 1, we show that a state dimension si,t is in sa
t , that is, it receives an edge from at−1, if

and only if si,t ⊥̸⊥ at−1|st−1.

• In step 2, we show that sa
t contains a minimally sufficient subset of state dimensions that can

be directly controlled by actions.

Step 1: We first show that if a state dimension si,t is in sa
t , then si,t ⊥̸⊥ at−1|st−1.

We prove it by contradiction. Suppose that si,t is independent of at−1 given st−1. Then according to
the faithfulness assumption, we can see from the graph that si,t does not receive an edge from at−1,
which contradicts the assumption, because, otherwise, st−1 cannot break the paths between si,t and
at−1 which leads to the dependence.

We next show that if si,t ⊥̸⊥ at−1|st−1, then si,t ∈ sa
t .

Similarly, by contradiction suppose that si,t does not receive an edge from at−1. From the graph,
it is easy to see that st−1 must break the path between si,t and at−1. According to the Markov
assumption, si,t is independent of at−1 given st−1, which contradicts to the assumption. Since we have
a contradiction, it must be that si,t has an edge from at−1.

Step 2: In the previous steps, it has been shown that if a state dimension si,t is in sa
t , then si,t ⊥̸

⊥ at−1|st−1, and if a state dimension si,t is not in sa
t , then si,t ⊥⊥ at−1|st−1. This implies that sa

t is
minimally sufficient for one-step direct control. □

A.3 Proof of Proposition 3

Furthermore, based on Proposition 1 and Proposition 2, we can further differentiate sar
t , s

ār
t , s

ar̄
t from

sr
t and sa

t , which is given in the following proposition.
Proposition 3. Under the assumption that the graphical representation, corresponding to the
environment model, is Markov and faithful to the measured data, we can build a connection between
the graph structure and statistical independence of causal variables in the RL system, with (1) si,t ∈ sar

t
if and only if si,t ⊥̸⊥ Rt |at−1, sr

t−1 and si,t ⊥̸⊥ at−1|st−1, (2) si,t ∈ sār
t if and only if si,t ⊥̸⊥ Rt |at−1, sr

t−1 and
si,t ⊥⊥ at−1|st−1, (3) si,t ∈ sar̄

t if and only if si,t ⊥⊥ Rt |at−1, sr
t−1 and si,t ⊥̸⊥ at−1|st−1, and (4) si,t ∈ sār̄

t if
and only if si,t ⊥⊥ Rt |at−1, sr

t−1 and si,t ⊥⊥ at−1|st−1.

Proof. This proposition can be easily proved by levering the results from Propositions 1 and 2. □

A.4 Proof of Theorem 1

According to the causal process in the RL system (as described in Eq.1 in [13]), we can build the
following mapping from latent state variables st to observed variables ot and future cumulative reward
Rt:

[ot,Rt] = f (sr
t , s

r̄
t , ηt), (12)

where
ot = f1(sr

t , s
r̄
t ),

Rt = f2(sr
t , ηt).

(13)

Here, note that to recover sr
t , it is essential to take into account all future rewards rt:T , because any

state dimension si,t ∈ st that has a directed path to the future reward rt+τ, for τ > 0, is involved in
sr

t . Hence, we consider the mapping from sr
t to the future cumulative reward Rt, and ηt represents

residuals, except sr
t , that have an effect to Rt.

The following theorem shows that the different types of states sar
t , sār

t , sar̄
t , and sār̄

t are blockwise
identifiable from observed image variable ot, reward variable rt, and action variable at, under
reasonable and weak assumptions.
Theorem 1. Suppose that the causal process in the RL system and the four categories of latent state
variables can be described as that in Section 2 and illustrated in Figure 1(c). Under the following
assumptions
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A1. The mapping f in Eq. 12 is smooth and invertible with smooth inverse.

A2. For all i ∈ {1, . . . , do + dR} and j ∈ Fi,:, there exist {s̃(l)
t }
|Fi,: |

l=1 , so that span{J f (s̃(l)
t )i,:}

|Fi,: |

l=1 =

Rds̃
Fi,:

, and there exists a matrix T with its support identical to that of J−1
f̂

(ˆ̃st)J f (s̃t), so that[
J f (s̃(l)

t )T
]

j,: ∈ R
ds̃

F̂i,:
.

Then, reward-relevant and controllable states sar
t , reward-relevant but not controllable states sār

t ,
reward-irrelevant but controllable states sar̄

t , and noise sār̄
t , are blockwise identifiable.

In the theorem presented above, Assumption A1 only assumes the invertibility of function f , while
functions f1 and f2 are considered general and not necessarily invertible, as that in [23]. Since
the function f is the mapping from all (latent) variables, including noise factors, that influence
the observed variables, the invertibility assumption holds reasonably. However, note that it is not
reasonable to assume the invertibility of the function f2 since usually, the reward function is not
invertible. Assumption A2, which is also given in [20, 22, 23], aims to establish a more generic
condition that rules out certain sets of parameters to prevent ill-posed conditions. Specifically, it
ensures that the Jacobian is not partially constant. This condition is typically satisfied asymptotically,
and it is necessary to avoid undesirable situations where the problem becomes ill-posed.

Proof. The proof consists of four steps.

1. In step 1, we show that sa
t = sar

t ∪ sar̄
t is blockwise identifiable, by using the characterization

that the action variable at only directly influences sar
t and sar̄

t .

2. In step 2, we show that sr
t = sar

t ∪ sār
t is blockwise identifiable, by using the characterization

that the future cumulative reward Rt is only influenced by sar
t and sār

t .

3. In step 3, we show that sar
t is blockwise identifiable, by using the identifiability of sar

t ∪ sar̄
t

and sar
t ∪ sār

t .

4. In step 4, we further show the blockwise identifiability of sār
t , sar̄

t , and sār̄
t .

Step 1: prove the block identifiability of sa
t .

For simplicity of notation, below, we omit the subscript t.

Let h := f −1 ◦ f̂ . We have
ŝ = h(s), (14)

where h = f −1 ◦ f̂ is the transformation between the true latent variable and the estimated one, and
f̂ : S → X denotes the estimated invertible generating function. Note that as both f −1 and f̂ are
smooth and invertible, h and h−1 is smooth and invertible.

Since h(·) is smooth over S, its Jocobian can be written as follows:

Jh−1 =

[
A := ∂sā

∂ŝā B := ∂sā

∂ŝa

C := ∂sa

∂ŝā D := ∂sa

∂ŝa

]
(15)

The invertibility of h−1 implies that Jh−1 is full rank. Since sa has changing distributions over the
action variable a while sā has invariant distributions over different values of a, we can derive that
C = 0. Furthermore, because Jh−1 is full rank and C is a zero matrix, D must be of full rank, which
implies h

′−1
a is invertible, where h

′−1
a denotes the first derivative of h−1

a . Therefore, sa is blockwise
identifiable up to invertible transformations.

Step 2: prove the blockwise identifiability of sr
t .

Recall that we have the following mapping:

[ot,Rt] = f (sr
t , s

r̄
t , ηt),

where
ot = f1(sr

t , s
r̄
t ),

Rt = f2(sr
t , ηt).
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Note that here to recover sr
t , we need to take into account all future rewards, because sr

t contains
all those state dimensions that have a directed path to future rewards rt+1:T . ηt represents all other
factors, except sr

t , that influence Rt at time instance t. Further note here we assume the invertibility of
f , while f1 and f2 are general functions not necessarily invertible.

We denote by s̃ = (sr, sr̄, η). We further denote by the dimension of sr by dsr , the dimension of sr̄ by
dsr̄ , the dimension of s̃ by ds̃, the dimension of o by do, and the dimension of Rt by dR.

We denote by F the support of J f (s), by F̂ the support of J f̂ (ŝ), and by T the support of T(s). We
also denote T as a matrix with the same support as T . The proof technique mainly follows [23], as
well as the required assumptions, and is also related to [20, 22].

Since h := f̂ −1 ◦ f , we have f̂ = f ◦ h−1(s̃). By applying the chain rule repeatedly, we have

J f̂ (ˆ̃s) = J f (s̃) · Jh−1 (h(s̃)). (16)

With Assumption A2, for any i ∈ {1, . . . , do + dR}, there exists {s̃(l)}
|Fi,: |

l=1 , s.t. span({J f (s̃(l))i,:}
|Fi,: |

l=1 ) = Rds̃
Fi,:

.

Since {J f (s̃(l))i,:}
|Fi,: |

l=1 forms a basis of Rds̃
Fi,:

, for any j0 ∈ Fi,:, we can write canonical basis vector

e j0 ∈ R
ds̃
Fi,:

as:

e j0 =
∑
l∈Fi,:

αl · Jg(s̃(l))i,:, (17)

where αl ∈ R is a coefficient.

Then, following Assumption A2, there exists a deterministic matrix T such that

T j0,: = e⊤j0 T =
∑
l∈Fi,:

αl · Jg(s̃(l))i,:T ∈ R
ds̃

F̂i,:
, (18)

where ∈ is due to that each element in the summation belongs to Rds̃

F̂i,:
.

Therefore,

∀ j ∈ Fi,:,T j,: ∈ R
ds̃

F̂i,:
.

Equivalently, we have:

∀(i, j) ∈ F , {i} × T j,: ⊂ F̂ . (19)

We would like to show that ŝr does not depend on sr̄ and η, that is, Ti, j = 0 for i ∈ {1, . . . , dsr } and
j ∈ {dsr + 1, . . . , ds̃}.

We prove it by contradiction. Suppose that ŝr had dependence on sr̄, that is, ∃( jsr , jsr̄ ) ∈ T with
jsr ∈ {1, . . . , dsr } and jsr̄ ∈ {dsr + 1, . . . , dsr + dsr̄ }.

Hence, there must exist ir ∈ {do + 1, . . . , do + dR}, such that, (ir, jsr̄ ) ∈ F .

It follows from Equation 19 that:

{ir} × T jsr̄ ,: ∈ F̂ =⇒ (ir, jsr̄ ) ∈ F̂ . (20)

However, due to the structure of f̂2, [J f̂2 ]ir , jsr̄ = 0, which results in a contradiction. Therefore,
such (ir, jsr̄ ) does not exist and ŝr does not depend on sr̄. The same reasoning implies that ŝr does
not dependent on η. Thus, ŝr does not depend on (sr̄, η). In conclusion, ŝr does not contain extra
information beyond sr.

Similarly, we can show that (ŝr̄, η̂) does not contain information of sr.

Therefore, there is a one-to-one mapping between sr and ŝr.

Step 3: prove the blockwise identifiability of sar
t .
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In Step 1 and Step 2, we have shown that both sa and sr are blockwise identifiable. That is,

ŝr = hr(sr),
ŝa = ha(sa), (21)

where ha and hr are invertible functions.

According to the invariance relation of sar, We have the following relations:

ŝar = hr(sr)1:dsar = ha(sa)1:dsar . (22)

It remains to show that both h̃r := hr(·)1:dsar and h̃a := ha(·)1:dsar do not depend on sār and sar̄ in their
arguments.

We will prove this by contradiction, following the proof technique in [58]. Without loss of generality,
we suppose ∃l ∈ {1, · · · , dsār }, sr∗ ∈ Sr, s.t., ∂h̃r

∂sār
l

(sr∗) , 0. As h is smooth, it has continuous partial

derivatives. Thus, ∂h̃r
∂sār

l
, 0 holds true in a neighbourhood of sr∗, i.e.,

∃η > 0, s.t., sār
l → h̃r(sar∗, (sār

−l
∗
, sār

l
∗)) is strictly monotonic on (sār

l
∗
− η, sār

l
∗
+ η), (23)

where sār
−l denotes variable sār excluding the dimension l.

We further define an auxiliary function ψ : Sar × Sār × Sar̄ → R≥0 as follows:

ψ(sar, sār, sar̄) := |h̃r(sr) − h̃a(sa)|. (24)

To obtain the contradiction to the invariance, it remains to show that ψ > 0 with a probability greater
than zero w.r.t. the true generating process.

There are two situations at (sar∗, sār∗, sar̄∗) where sār∗ is an arbitrary point in Sār:

• situation 1: ψ(sar∗, sār∗, sar̄∗) > 0;

• situation 2: ψ(sar∗, sār∗, sar̄∗) = 0.

In situation 1, we have identified a specific point ψ(sar∗, sār∗, sar̄∗) that makes ψ > 0.

In situation 2, Eq. 23 implies that ∀sār
l ∈ (sar

l
∗, sar

l
∗ + η), ψ(sar∗, (sār

−l
∗
, sār

l ), sar̄∗) > 0.

Thus, in both situations, we can locate a point (sar∗, sār∗′ , sar̄∗) such that ψ(sar∗, sār∗′ , sar̄∗) > 0, where
sār∗′ = sār∗ in situation 1 and sār

l
∗′

∈ (sar
l
∗, sar

l
∗ + η), sar

−l
∗′ = sar

−l
∗ in situation 2.

Since ψ is a composition of continuous functions, it is continuous. As pre-image of open sets are
always open for continuous functions, the open set R>0 has an open setU ∈ Sar × Sār × Sar̄ as its
preimage. Due to (sar∗, sār∗′ , sar̄∗) ∈ U,U is nonempty. Further, asU is nonempty and open,U has
a Lebesgue measure of greater than zero.

As we assume that psar ,sār ,sar̄ is fully supported over the entire domain Sar ×Sār ×Sar̄, we can deduce
that Pp[U] > 0. That is, ψ > 0 with a probability greater than zero, which contradicts the invariance
condition, Therefore, we can show that ĥr(sr) does not depend on sār.

Similarly, we can show that ĥa(sa) does not depend on sar̄.

Finally, the smoothness and invertibility of ĥr and ĥa follow from the smoothness and invertibility of
hr and ha over the entire domain.

Therefore, hr(ha) is a smooth invertible mapping between sar and ŝar. That is, sar is blockwise
invertible.

Step 4: prove the blockwise identifiability of sār
t , sar̄

t , and sār̄
t .

We can use the same technique in Step 3 to show the identifiability of sār and sar̄. Specifically,
since sr and sar are identifiable, we can show that sār is identifiable. Similarly, since sa and sar are
identifiable, we can show that sar̄ is identifiable. Furthermore, since sar, sār, and sar̄ are identifiable,
we can show that sār̄ is identifiable □
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B Derivation of the Objective Function

We start by defining the components of the world mode as follows:
Observation Model: pθ(ot | st)
Reward Model: pθ(rt | sr

t )
Transition Model: pγ(st | st−1, at−1)
Representation Model: qϕ(st | ot, st−1, at−1)

(25)

The latent dynamics can be disentangled into four catogories:

Disentangled Transition Model: Disentangled Representation Model:
pγ1 (sar

t | s
r
t−1, at−1)

pγ2 (sār
t | s

r
t−1)

pγ3 (sar̄
t | st−1, at−1)

pγ4 (sār̄
t | st−1)


qϕ1 (sar

t | ot, sr
t−1, at−1)

qϕ2 (sār
t | ot, sr

t−1)
qϕ3 (sar̄

t | ot, st−1, at−1)
qϕ4 (sār̄

t | ot, st−1)

(26)

We follow the derivation framework in Dreamer [6] and define the information bottleneck objective
for latent dynamics models [25]

max I (s1:T; (o1:T , r1:T ) | a1:T ) − β · I (s1:T, i1:T | a1:T ) , (27)

where β is scalar and it are dataset indices that determine the observations p(ot | it) = δ(ot − ōt) as in
[26]. Maximizing the objective leads to model states that can predict the sequence of observations
and rewards while limiting the amount of information extracted at each time step. We derive the
lower bound of the first term in Equation 27:

I (s1:T; (o1:T , r1:T ) | a1:T )

=Eq(o1:T ,r1:T ,s1:T,a1:T )

∑
t

ln p (o1:T , r1:T | s1:T, a1:T ) − ln p (o1:T , r1:T | a1:T )}
const


+
=E

∑
t

ln p (o1:T , r1:T | s1:T, a1:T )


≥E

∑
t

ln p (o1:T , r1:T | s1:T, a1:T )

 − KL

p (o1:T , r1:T | s1:T, a1:T ) ∥
∏

t

pθ (ot | st) pθ
(
rt | sr

t
)

=E

∑
t

ln pθ (ot | st) + ln pθ
(
rt | sr

t
) .

(28)

Thus, we obtain the objective function:

J t
O = ln pθ (ot | st) J t

R = ln pθ
(
rt | sr

t
)

(29)

For the second term in Equation 27, we use the non-negativity of the KL divergence to obtain an
upper bound,

I (s1:T; i1:T | a1:T )

=Eq(o1:T ,r1:T ,s1:T,a1:T ,i1:T )

∑
t

ln q (st | st−1, at−1, it) − ln p (st | st−1, at−1)


=E

∑
t

ln qϕ (st | st−1, at−1, ot) − ln p (st | st−1, at−1)


≤E

∑
t

ln qϕ (st | st−1, at−1, ot) − ln pγ (st | st−1, at−1)


=E

∑
t

KL
(
qϕ (st | st−1, at−1, ot) ∥ pγ (st | st−1, at−1)

) .

(30)
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According to equation 26, we have pγ = pγ1 · pγ2 · pγ3 · pγ4 and qϕ = qϕ1 · qϕ2 · qϕ3 · qϕ4 .

KL(qϕ ∥ pγ) = KL(qϕ1 · qϕ2 · qϕ3 · qϕ4 ∥ pγ1 · pγ2 · pγ3 · pγ4 )

= Eqϕ

(
ln

qϕ1

pγ1

+ ln
qϕ2

pγ2

+ ln
qϕ3

pγ3

+ ln
qϕ4

pγ4

)
= KL(qϕ1 ∥ pγ1 ) + KL(qϕ2 ∥ pγ2 ) + KL(qϕ3 ∥ pγ3 ) + KL(qϕ4 ∥ pγ4 )

(31)

We introduce additional hyperparameters to regulate the amount of information contained within
each category of variables:

J t
D = −β1 · KL

(
qϕ1 ∥ pγ1

)
− β2 · KL

(
qϕ2 ∥ pγ2

)
− β3 · KL

(
qϕ3 ∥ pγ3

)
− β4 · KL

(
qϕ4 ∥ pγ4

)
. (32)

Additionally, we introduce two supplementary objectives to explicitly capture the distinctive char-
acteristics of the four distinct representation categories. Specifically, we characterize the reward-
relevant representations by measuring the dependence between sr

t and Rt, given at−1:t and sr
t−1, that is

I(sr
t ,Rt | at−1:t, sr

t−1) (see Figure 15(a). Note that if the action at is not dependent on sr
t , such as when

it is randomly chosed. at does not need to be conditioned. In this case, the mutual information turns
into I(sr

t ,Rt | at−1, sr
t−1). To ensure that sr

t are minimally sufficient for policy training, we maximize
I(sr

t ,Rt | at−1:t, sr
t−1) while minimizing I(sr̄

t ,Rt | at−1:t, sr
t−1) to discourage the inclusion of redundant

information in sr̄
t concerning the rewards:

I(sr
t ; Rt | at−1:t, sr

t−1) − I(sr̄
t ; Rt | at−1:t, sr

t−1). (33)

The conditional mutual information can be expressed as the disparity between two mutual information
values.

I(sr
t ; Rt | at−1:t, sr

t−1) = I(Rt; sr
t , at−1:t, sr

t−1) − I(Rt; at−1:t, sr
t−1),

I(sr̄
t ; Rt | at−1:t, sr

t−1) = I(Rt; sr̄
t , at−1:t, sr

t−1) − I(Rt; at−1:t, sr
t−1).

(34)

Combining the above two equations, we eliminated the identical terms, ultimately yielding the
following formula

I(Rt; sr
t , at−1:t, sr

t−1) − I(Rt; sr̄
t , at−1:t, sr

t−1). (35)

We use the Donsker-Varadhan representation to express mutual information as a supremum over
functions,

I(X; Y) = DKL(p(x, y) ∥ p(x)p(y))

= sup
T∈T
Ep(x,y)[T (x, y)] − logEp(x)p(y)[eT (x,y)]. (36)

We employ mutual information neural estimation [27] to approximate the mutual information value.
We represent the function T using a neural network that accepts variables (x, y) as inputs and is
parameterized by α. The neural network is optimized through stochastic gradient ascent to find the
supremum. Substituting x and y with variables defined in Equation 35, our objective is reformulated
as follows:

J t
RS = λ1 ·

{
Iα1 (Rt; sr

t , at−1:t, sg(sr
t−1)) − Iα2 (Rt; sr̄

t , at−1:t, sg(sr
t−1))

}
. (37)

To incorporate the conditions from the original objective, we apply the stop_gradient operation to
the variable sr

t−1. Similarly, to ensure that the representations sa
t are directly controllable by actions,

while sā
t are not, we maximize the following objective:

I(sa
t ; at−1 | st−1) − I(sā

t , at−1 | st−1), (38)

By splitting the conditional mutual information and eliminating identical terms, we obtain the
following objective function:

J t
AS = λ2 ·

{
Iα3 (at−1; sa

t , sg(st−1)) − Iα4 (at−1; sā
t , sg(st−1))

}
. (39)

where α1, α2, α3, α4 can be obtained by maximizing Equation 36. Intuitively, these two objective
functions ensure that sr

t is predictive of the reward, while sr̄
t is not; similarly, sa

t can be predicted by
the action, whereas sā

t cannot.
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Combine the equation 29, equation 32, equation 37 and equation 39, the total objective function is:

JTOTAL = max
ϕ,θ,γ,α1,α3

min
α2α4

Eqϕ

∑
t

(
J t

O +J
t
R +J

t
D +J

t
RS +J

t
AS

) + const

= max
ϕ,θ,γ,α1,α3

min
α2,α4
Eqϕ

{
log pθ(ot | st) + log pθ(rt | sr

t )

−

4∑
i=1

βi · KL
(
qϕi ∥ pγi

)
+ λ1 · (Iα1 − Iα2 ) + λ2 · (Iα3 − Iα4 )

}
+ const .

(40)

The expectation is computed over the dataset and the representation model. Throughout the model
learning process, the objectives for estimating mutual information and learning the world model are
alternately optimized.

B.1 Discussions

In this subsection, we examine the mutual information constraints in equation 37 and equation 39 and
their relationship with other objectives. Our findings reveal that while other objectives partially fulfill
the desired functionality of the mutual information constraints, incorporating both mutual information
objectives is essential for certain environments.

The objective functions can be summarized as follows::

J t
O = ln pθ (ot | st) , J t

R = ln pθ
(
rt | sr

t
)
, J t

D = −KL
(
qϕ ∥ pγ)

)
,

J t
RS = λ1 ·

{
Iα1 (Rt; sr

t , at−1:t, sg(sr
t−1)) − Iα2 (Rt; sr̄

t , at−1:t, sg(sr
t−1))

}
,

J t
AS = λ2 ·

{
Iα3 (at−1; sa

t , sg(st−1)) − Iα4 (at−1; sā
t , sg(st−1))

}
,

(41)

and the KL divergence term can be further decomposed into 4 components:

J t
D1
= −β1 · KL(qϕ1

(
sar

t | ot, sr
t−1, at−1

)
∥ pγ1

(
sar

t | s
r
t−1, at−1

)
)

J t
D2
= −β2 · KL(qϕ2

(
sār

t | ot, sr
t−1

)
∥ pγ2

(
sār

t | s
r
t−1

)
)

J t
D3
= −β3 · KL(qϕ3

(
sar̄

t | ot, st−1, at−1

)
∥ pγ3

(
sar̄

t | st−1, at−1

)
)

J t
D4
= −β4 · KL(qϕ4

(
sār̄

t | ot, st−1
)
∥ pγ4

(
sār̄

t | st−1
)
).

(42)

Specifically, maximizing Iα1 in J t
RS enhances the predictability of Rt based on the current state sr

t−1
conditioning on (sr

t−1, at−1:t). However, notice that this objective can be partially accomplished by
optimizing J t

R. When learning the world model, both the transition function and the reward function
are trained: the reward function predicts the current reward rt using sr

t , while the transition model
predicts the next state. These combined predictions contribute to the overall prediction of Rt.

Minimizing Iα2 in J t
RS eliminates extraneous reward-related information present in sr̄

t . According to
our formulation, sr̄

t can still be predictive of Rt as long as it does not introduce additional predictability
beyond what is already captured by (sr

t−1, at−1:t). This is because we only assume that sr̄
t is condition-

ally independent from Rt when conditioning on (sr
t−1, at−1:t). If we don’t condition on (sr

t−1, at−1:t), it
introduces sr

t−1 as the confounding factor between sr̄
t and Rt, establishing association between sr̄

t and
Rt (refer to Figure 15(a)). Note that the KL divergence constraints govern the information amount
within each state category. By amplifying the weight of the KL constraints on sr̄

t , the value of Iα2 can
indirectly be diminished.

By maximizing Iα3 and minimizing Iα4 inJ t
AS , we ensure that sa

t can be predicted based on (at−1, st−1)
while sā

t cannot. The KL constraints on sar
t and sar̄

t incorporate the action at−1 into the prior and
posterior, implicitly requiring that sa

t should be predictable given at−1. Conversely, the KL constraints
on sār

t and sār̄
t do not include the action at−1 in the prior and posterior, implicitly requiring that

sa
t should not be predictable based on at−1. However, relying solely on indirect constraints can

sometimes be ineffective, as it may lead to entangled representations that negatively impact policy
performance (see Figure 13).

Ablation of the mutual information constraints. The inclusion of both J t
RS and J t

AS is essential
in certain environments to promote disentanglement and enhance policy performance, despite sharing
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Figure 7: Ablation of the mutual information constraints in the Reacher environment with video
background and jittering camera. The dashed brown line illustrates the policy performance of
Denoised MDP after 1 million environment steps.

some common objectives. We have observed improved training stability in the variant of Robodesk
environment (see Figure 12) and significant performance gains in the Reacher environment with video
background and camera jittering (see Figure 7). When two mutual information objectives are removed,
we notice that entangled representations emerged in these environments, as depicted in Figure 13.
We assign values of 0.1 to λ1 and λ2 in the environment of modified Cartpole, variant of Robodesk
and Reacher with video background and jittering camera. Empirically, a value of 0.1 has been found
to be preferable for both λ1 and λ2. Using a higher value for regularization might negatively impact
the learning of representation and transition model. In other DMC environments, the ELBO loss
alone has proven effective due to the inherent structure of our disentangled latent dynamics. The
choice of hyperparameters (β1, β2, β3, β4) depends on the specific goals of representation learning and
the extent of noise interference in the task. If the objective is to accurately recover the true latent
variables for understanding the environment, it is often effective to assign equal weights to the four
KL divergence terms (for experiments on synthetic data and modified cartpole). When the aim is
to enhance policy training stability by mitigating noise, it is recommended to set the values of β1
and β2 higher than β3 and β4 (for experiments on variants of Robodesk and DMC). Moreover, in
environments with higher levels of noise, it is advisable to increase the discrepancy in values between
the hyperparameters.

C Algorithm
Algorithm 1: IFactor

Input: Representation model: qϕ(st | st-1, at-1, ot) = qϕ1 · qϕ2 · qϕ3 · qϕ4 ;
Transition model: pγ(st | st-1, at-1) = pγ1 · pγ2 · pγ3 · pγ4 ;
Observation Model: pθ (ot | st); Reward model: pθ(rt | sr

t );
Policy Model: πψ(at | sr

t ); Value model: vψ(sr
t );

Mutual information estimator: Iα1 , Iα2 , Iα3 , Iα4 ;
Policy optimization algorithm Pi-Opt, which is in default the same as that used in Dreamer.

Output: Transition Model pγ. Representation Model qϕ. Policy Model πψ.
1: while training do
2: // Exploration
3: Collect new trajectories D′ = {(ot, at, rt)}t with π acting on qϕ encoded outputs
4: Add experience to the replay buffer D = D ∪ D′
5: //Model learning
6: Sample a batch of data sequences {(ot, at, rt)}t from the reply buffer D
7: Obtain st by the representation model and estimate mutual information terms Iα1 , Iα2 , Iα3 , Iα4
8: for i = 1 to n do
9: Train mutual information neural estimators by maximizing Iα1 , Iα2 , Iα3 , Iα4

10: end for
11: Freeze the parameters in Iα1 , Iα2 , Iα3 , Iα4 and Train qϕ, pγ and pθ with Equation 11
12: // Policy learning by dreaming
13: Imagine trajectories of sr

t using the learned world model.
14: Train πψ and vψ by running Pi-Opt
15: end while
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D Environment Descriptions

D.1 Synthetic Data

For the sake of simplicity, we consider one lag for the latent processes in Section 4. Our identifiability
proof can actually be applied for arbitrary lags directly because the identifiability does not rely on the
number of previous states. We extend the latent dynamics of the synthetic environment to incorporate
a general time-delayed causal effect with τ ≥ 1 in the synthetic environment. When τ = 1, it reduces
to a common MDP. The ground-truth generative model of the environment is as follows::

 Observation Model: pθ (ot | st)
Reward Model: pθ

(
rt | sr

t
)

Transition Model: pγ (st | st−τ:t−1, at−τ:t−1)
Transition :


pγ1

(
sar

t | s
r
t−τ:t−1, at−τ:t−1

)
pγ2

(
sār

t | s
r
t−τ:t−1

)
pγ3

(
sar̄

t | st−τ:t−1, at−τ:t−1
)

pγ4

(
sār̄

t | st−τ:t−1
)

(43)

Data Generation We generate synthetic datasets with 100, 000 data points according to the
generating process in Equation 43, which satisfies the identifiability conditions stated in Theorem
1. The latent variables st have 8 dimensions, where sar

t = sār
t = sar̄

t = sār̄
t = 2. At each timestep,

a one-hot action of dimension 5, denoted as at, is taken. The lag number of the process is set to
τ = 2. The observation model pθ (ot, | st) is implemented using a random three-layer MLPs with
LeakyReLU units. The reward model pθ

(
rt, | sr

t
)

is represented by a random one-layer MLP. It’s worth
noting that the reward model is not invertible due to the scalar nature of rt. Four distinct transition
functions, namely pγ1 , pγ2 , pγ3 , and pγ4 , are employed and modeled using random one-layer MLP
with LeakyReLU units. The process noise is sampled from an i.i.d. Gaussian distribution with a
standard deviation of σ = 0.1. To simulate nonstationary noise for various latent variables in RL, the
process noise terms are coupled with the historical information by multiplying them with the average
value of all the time-lagged latent variables, as suggested in [19].

D.2 Modified Cartpole

We have modified the original Cartpole environment by introducing two distractors. The first distractor
is an uncontrollable Cartpole located in the upper portion of the image, which does not affect the
rewards. The second distractor is a controllable green light positioned below the reward-relevant
Cartpole in the lower part of the image, but it is not associated with any rewards. The task-irrelevant
cartpole undergoes random actions at each time step and stops moving when its angle exceeds 45
degrees or goes beyond the screen boundaries. The action space consists of three independent degrees
of freedom: direction (left or right), force magnitude (10N or 20N), and green light intensity (lighter
or darker). This results in an 8-dimensional one-hot vector. The objective of this variant is to maintain
balance for the reward-relevant cartpole by applying suitable forces.

D.3 Variant of Robodesk
The RoboDesk environment with noise distractors [9] is a control task designed to simulate realistic
sources of noise, such as flickering lights and shaky cameras. Within the environment, there is a large
TV that displays natural RGB videos. On the desk, there is a green button that controls both the hue
of the TV and a light. The agent’s objective is to manipulate this button in order to change the TV’s
hue to green. The agent’s reward is determined based on the greenness of the TV image. In this
environment, all four types of information are present (see Table 1).

Reacher Easy Cheetah Run Walker WalkModified Cartpole Robodesk

Figure 8: Visualization of the environments used in our experiments.
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Ctrl + Rew Ctrl + Rew Ctrl + Rew Ctrl + Rew

Modified Cartpole Agent Agent Green Light Distractor cartpole

Robodesk
Agent, Button,
Light on desk

TV content,
Button sensor

noise

Blocks on desk,
Handle on desk,

Other movable objects
(Green hue of TV)

Jittering and
flickering

environment
lighting,

Jittering camera

DMC

Noiseless Agent (Agent) — —

Video Background Agent (Agent) — Background

Video Background
+ Noisy Sensor Agent

(Agent)
Background — —

Video Background
+ Camera Jittering Agent (Agent) —

Background
Jittering camera

Table 1: Categorization of various types of information in the environments we evaluated. We use the
red color to emphasize the categorization difference between IFactor and Denoised MDP. Unlike De-
noised MDP that assumes independent latent processes, IFactor allows for causally-related processes.
Therefore, in this paper, the term "controllable" refers specifically to one-step controllability, while
"reward-relevant" is characterized by the conditional dependence between s∗t and the cumulative
reward variable Rt when conditioning on (st−1, at−1:t). Following this categorization, certain agent
information can be classified as (one-step) uncontrollable (including indirectly controllable and
uncontrollable factors) but reward-relevant factors, such as some position information determined
by the position and velocity in the previous time-step rather than the action. On the other hand,
the green hue of TV in Robodesk is classified as controllable but reward-irrelevant factors, as they
are independent of the reward given the state of the robot arm and green button, aligning with the
definition of sar̄

t .

D.4 Variants of DeepMind Control Suite
Four variants [9] are introduced for each DMC task:

• Noiseless: Original environment without distractors.

• Video Background: Replacing noiseless background with natural videos [37] (Ctrl+Rew).

• Video Background+ Sensor Noise: Imperfect sensors sensitive to intensity of a background
patch (Ctrl + Rew).

• Video Background + Camera Jittering: Shifting the observation by a smooth random
walk (Ctrl + Rew).

The video background in the environment incorporates grayscale videos from Kinetics-400, where
pixels with high blue channel values are replaced. Camera jittering is introduced through a smooth
random walk shift using Gaussian-perturbing acceleration, velocity decay, and pulling force. Sensor
noise is added by perturbing a specific sensor based on the intensity of a patch in the background
video. The perturbation involves adding the average patch value minus 0.5. Different sensors
are perturbed for different environments. These sensor values undergo non-linear transformations,
primarily piece-wise linear, to compute rewards. While the additive reward noise model may not
capture sensor behavior perfectly, it is generally sufficient as long as the values remain within
moderate ranges and stay within one linear region. (Note: the variants of Robodesk and DMC are not
the contributions of this paper. We kindly refer readers to the paper of Denoised MDP [9] for a more
detailed introduction.)
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E Experimental Details
Computing Hardware We used a machine with the following CPU specifications: Intel(R) Xeon(R)
Silver 4110 CPU @ 2.10GHz; 32 CPUs, eight physical cores per CPU, a total of 256 logical CPU
units. The machine has two GeForce RTX 2080 Ti GPUs with 11GB GPU memory.

Reproducibility We’ve included the code for the framework and all experiments in the supplement.
We plan to release our code under the MIT License after the paper review period.

E.1 Synthetic Dataset
Hyperparameter Selection and Network Structure We adopt a similar experimental setup to
TDRL [19], while extending it by decomposing the dynamics into four causally related latent
processes proposed in this paper (refer to Equation 43). For all experiments, we assign β1 = β2 =
β3 = β4 = 0.003 as the weights for the KL divergence terms. In this particular experiment, we set λ1
and λ2 to 0 because the utilization of the ELBO loss alone has effectively maximized Jt

RS and Jt
AS,

as illustrated in Figure 10. Here, Jt
RS represents Iα1 − Iα2 , and Jt

AS represents Iα3 − Iα4 . The network
structure employed in this experiment is presented in Table 2.

Training Details The models are implemented in PyTorch 1.13.1. The VAE network is trained
using AdamW optimizer for 100 epochs. A learning rate of 0.001 and a mini-batch size of 64 are
used. We have used three random seeds in each experiment and reported the mean performance with
standard deviation averaged across random seeds.

E.1.1 The identifiability socres for baselines
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Figure 9: The identifiability socres for baselines in the experiments on synthetic data set. It can be
observed that all baselines do not enjoy the property of block-wise identifiability.
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Table 2: Architecture details. BS: batch size, T: length of time series, o_dim: observation dimension,
s_dim: latent dimension, sar

t _dim: latent dimension for sar
t , sār

t _dim: latent dimension for sār
t , sar̄

t _dim:
latent dimension for sar̄

t , sār̄
t _dim: latent dimension for sar

t ( s_dim = sar
t _dim + sār

t _dim + sar̄
t _dim +

sār̄
t _dim ), LeakyReLU: Leaky Rectified Linear Unit.

Configuration Description Output

1. MLP-Obs-Encoder Observation Encoder for Synthetic Data
Input: o1:T Observed time series BS × T × o_dim
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense Temporal embeddings BS × T × s_dim

2. MLP-Obs-Decoder Observation Decoder for Synthetic Data

Input: ŝ1:T Sampled latent variables BS × T × s_dim
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense o_dim neurons, reconstructed ô1:T BS × T × o_dim

3. MLP-Reward-Decoder Reward Decoder for Synthetic Data
Input: ŝ1:T Sampled latent variables BS × T × s_dim
Dense 1 neurons, LeakyReLU BS × T × 1

4. Disentangled Prior for sar
t Nonlinear Transition Prior Network

Input Sampled latents and actionssr
1:T , a1:T BS × T ×( sr

t _dim + a_dim)
Dense sar

t _dim neurons, prior output BS × T × sar
t _dim

5. Disentangled Prior for sār
t Nonlinear Transition Prior Network

Input Sampled latent variable sequence sr
1:T BS × T × sr

t _dim
Dense sār

t _dim neurons, prior output BS × T × sār
t _dim

6. Disentangled Prior for sar̄
t Nonlinear Transition Prior Network

Input Sampled latents and actions s1:T, a1:T BS × T × (s_dim + a_dim)
Dense sar̄

t _dim neurons, prior output BS × T × sar̄
t _dim

7. Disentangled Prior for sār̄
t Nonlinear Transition Prior Network

Input Sampled latent variable sequence s1:T BS × T × s_dim
Dense sār̄

t _dim neurons, prior output BS × T × sār̄
t _dim

E.1.2 Extra Results.

During the training process, we record the estimation value of four mutual information (MI) terms.
The corresponding results are presented in Figure 10. Despite not being explicitly incorporated into
the objective function, the terms Iα1 − Iα2 and Iα3 − Iα4 exhibit significant maximization. Furthermore,
the estimation values of Iα2 and Iα4 are found to be close to 0. These findings indicate that the state
variable sr̄

t contains little information about the reward, and the predictability of sā
t by the action is

also low.

E.2 Modified Cartpole

In the modified Cartpole environment, we configure the values as follows: β1 = β2 = β3 = β4 = 0.1
and λ1 = λ2 = 0.1. Recurrent State Space Model (RSSM) uses a deterministic part and a stochastic
part to represent latent variables. The deterministic state size for four dynamics are set to be (15, 15,
15, 15), and the stochastic state size are set to be (2, 2, 1, 4). The architecture of the encoder and
decoder for observation is shown in Table 3 and Table 4 (64 × 64 resolution). Reward model uses
3-layer MLPs with hidden size to be 100 and four mutual information neural estimators are 4-layer
MLPs with hidden size to be 128. Unlike the synthetic dataset, where there are clear categories
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Figure 10: Estimation of the value of four mutual information terms and their differences in experi-
ments on synthetic data.

.

for latent state variables, real-world situations pose a challenge due to the potential ambiguity in
categorizing true variables. In our modified Cartpole environment, we defined the ground-truth sar

t
as the cart’s position, sār

t as the pole’s angle, sar̄
t as the light’s greenness, and sār̄

t as the distractor
Cartpole’s state (including cart position and pole angle). The disentanglement scores for individual
sar

t and sār
t , as well as the combined sr

t , are shown in Figure 11. We can obviously see that the true
latent variables can be clearly identified.

Operator
Input
Shape

Kernel
Size Stride Padding

Input [3, 96, 96] — — —
Conv. + ReLU [32, 47, 47] 4 2 0
Conv. + ReLU [64, 22, 22] 4 2 0
Conv. + ReLU [128, 10, 10] 4 2 0
Conv. + ReLU [256, 4, 4] 4 2 0

Conv. + ReLU * [256, 2, 2] 3 1 0
Reshape + FC [1024] — — —

Table 3: The encoder architecture designed for observation resolution of (96 × 96). Its output is then
fed into other networks for posterior inference. The default activation function used in the network is
RELU. For observations with a resolution of (64 × 64), the last convolutional layer(*) is removed.
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Figure 11: The identifiability socres for IFactor in the experiments on cartpole.
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Operator
Input
Shape

Kernel
Size Stride Padding

Input [input_size] — — —
FC + ReLU + Reshape [1024, 1, 1] — — —

Conv. Transpose + ReLU * [128, 3, 3] 3 1 0
Conv. Transpose + ReLU [128, 9, 9] 5 2 0
Conv. Transpose + ReLU [64, 21, 21] 5 2 0
Conv. Transpose + ReLU [32, 46, 46] 6 2 0
Conv. Transpose + ReLU [3, 96, 96] 6 2 0

Table 4: The decoder architecture designed for (96 × 96)-resolution observation. For (64 × 64)-
resolution observation, the first transpose convolutional layer(*) is removed.

E.3 Variant of Robodesk

In the variant of Robodesk, we conduct experiments with the following hyperparameter settings:
β1 = β2 = 2, β3 = β4 = 0.25, and λ1 = λ2 = 0.1. For the four dynamics, we set the deterministic
state sizes to (120, 40, 40, 40), and the stochastic state sizes to (30, 10, 10, 10). Denoised MDP
utilizes two latent processes with deterministic state sizes [120, 120] and stochastic state sizes [20,
10]. For the mutual information neural estimators, we employ 4-layer MLPs with a hidden size of
128. To ensure a fair comparison, we align the remaining hyperparameters and network structure
with those in the Denoised MDP. We reproduce the results of the Denoised MDP using their released
code, maintaining consistency with their paper by employing the default hyperparameters. In order to
evaluate the impact of the Mutual Information (MI) constraints, we conduct an ablation study. The
results are shown is Figure 12. The constraints J t

RS and J t
AS are observed to stabilize the training

process of IFactor. The results of IFactor are areaveraged over 5 runs, while the results of Denoised
MDP and IFactor without MI are averaged over three runs.
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Figure 12: Comparison between IFactor and Denoised MDP in the variant of Robodesk environment.

Policy learning based on the learned representations by IFactor We retrain policies using the
Soft Actor-Critic algorithm [40] with various combinations of the four learned latent categories
as input. We wrap the original environment with visual output using our representation model to
obtain compact features. In this process, both deterministic states and stochastic states are utilized
to form the feature. For instance, when referring to sr

t , we use both the deterministic states and
stochastic states of sr

t . The implementation of SAC algorithm is based on Stableb-Baselines3[59],
with a learning rate of 0.0002. Both the policy network and Q network consist of 4-layer MLPs
with a hidden size of 256. We use the default hyperparameter settings in Stable-Baselines3 for other
parameters.
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E.4 Variants of Deep Mind Control Suite

In the noiseless DMC environments, we set β1 = β2 = β3 = β4 = 1. For the DMC environments
with video background, we set β1 = β2 = 1 and β3 = β4 = 0.25. In the DMC environments with
video background and noisy sensor, we set β1 = β2 = 2 and β3 = β4 = 0.25. Lastly, for the DMC
environments with video background and jittering camera, we set β1 = β2 = 1 and β3 = β4 = 0.25.
Regarding the Reacher environment with video background and jittering camera, we set λ1 = λ2 = 0.1
for our experiments. For the other environments, we set λ1 = λ2 = 0. The deterministic state sizes for
the four dynamics are set to (120, 120, 60, 60), while the stochastic state sizes are set to (20, 20, 10,
10). The four mutual information neural estimators utilize a 4-layer MLPs with a hidden size of 128.
We align the other hyperparameters and network structure with those used in the Denoised MDP for
a fair comparison.

Environment
Steps

Action
Repeat

Train
Every

Collection
Intervals

Batch
Size

Sequence
Length Horizon

Modified Cartpole 200,000 1 5 5 20 30 8

Robodesk 1,000,000 2 1000 100 50 50 15

DMC 1,000,000 2 1000 100 25 50 12

Table 5: Some hyperparameters of our method in the environment of Modified Cartpole, Robodesk
and DMC. Environment Steps represents the number of interactions between the agent and the
environment. Action Repeat determines how many times an agent repeats an action in a step. Train
Every specifies the environment step between adjacent training iterations. Collection Intervals defines
the number of times the model is trained in each training iteration (including world models, policy
networks and value networks). Batch Size refers to the number of trajectories in each mini-batch.
Sequence Length denotes the length of the chuck used in training the world models. Horizon
determines the length of dreaming when training the policy using the world model. Hyperparameters
are aligned with those used in the Denoised MDP for fair comparison.

E.4.1 Policy optimization results on variants of DMC
We present detailed evaluation results in Table 6, showcasing both the mean values and the corre-
sponding standard deviations for the final policy performance across each task. Results are averaged
across three seeds. Denoised MDP performs well across all four variants with distinct noise types.

E.4.2 Mutual information
Figure 7 demonstrates the notable improvement in policy performance in the Reacher environment
with video background and jittering camera due to the inclusion of the constraints Jt

RS and Jt
AS . To

further investigate how they affects the model learning, we record the estimation values of four Mutual
Information terms throughout the training process, as depicted in Figure 13. The results indicate that
both Iα1 − Iα2 and Iα3 − Iα4 are maximized for both IFactor and IFactor without MI. However, IFactor
exhibits a significantly higher rate of maximizing Iα3 − Iα4 compared to IFactor without MI. This
increased maximization leads to greater predictability of sa

t by the action, ultimately contributing to
the observed performance gain.

E.5 Visualization for DMC

In this experiment, we investigate five types of representations, which can be derived from the
combination of four original disentangled representation categories. Specifically, sa

t is the controllable
and reward relevant representation. sr

t = (sar
t , s

ār
t ) is the reward-relevant representation. sār̄

t is the
controllable but reward-irrelevant representation. sār̄

t is the uncontrollable and reward-irrelevant
representation (noise). sr̄

t = (sar̄
t , s

ār̄
t ) is the reward-irrelevant representation. Only representations

of sr
t are used for policy optimization. We retrain 5 extra observation decoders to reconstruct the

original image, which can precisely characterize what kind of information each type of representation
contains, surpassing the limitations of the original decoder that is used in latent traversal. The
visualization results are shown in Figure 14. It can be observed that sar

t captures the movement
of the agent partially but not well enough; sr

t captures the movement of the agent precisely but sr̄
t

fails (Reacher and Cheetah) or captures extra information of the background (Walker). This finding
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Cheetah IFactor
(Ours)

Dreamer
Pro

Denoised
MDP Dreamer TIA DBC CURL PI-SAC

Noiseless 874±39 803±75 771±60 714±348 766±29 182±50 171±34 369±28

Video Background 573±193 366±96 431±111 171±45 388±297 248±71 70±48 112±31

Video Background
+ Noisy Sensor 456±88 134±41 400±190 166±42 227±13 141±13 199±7 151±14

Video Background
+ Camera Jittering 418±22 150±104 294±100 160±32 202±93 141±35 169±22 156±20

Walker IFactor
(Ours)

Dreamer
Pro

Denoised
MDP Dreamer TIA DBC CURL PI-SAC

Noiseless 966±5 941±16 947±13 955±6 955±5 614±111 417±296 203±92

Video Background 917±52 909±48 790±113 247±135 685±337 199±67 608±100 200±18

Video Background
+ Noisy Sensor 701±174 242±65 661±120 279±145 425±281 95±54 338±92 222±21

Video Background
+ Camera Jittering 524±194 368±301 291±104 106±22 230±332 62±17 448±70 116±6

Reacher IFactor
(Ours)

Dreamer
Pro

Denoised
MDP Dreamer TIA DBC CURL PI-SAC

Noiseless 924±37 924±61 686±216 876±57 587±256 95±58 663±221 166±235

Video Background 963±10 555±92 544±121 253±127 123±21 102±58 751±189 76±35

Video Background
+ Noisy Sensor 839±51 675±137 561±182 202±82 264±280 97±39 607±260 85±5

Video Background
+ Camera Jittering 736±53 675±82 213±106 109±19 89±26 87±51 632±96 84±13

Table 6: Policy optimization evaluation on variants of DMC with various distractors. IFactor
consistently performs well across all four variants with distinct noise types. Bold numbers show the
best model-learning result for specific policy learning choices. Results are averaged over 3 runs.

suggests that sr
t contains sufficient information within the original noisy observation for effective

control, while effectively excluding other sources of noise.
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Figure 13: Estimation of the value of four mutual information terms and their differences in the
Reacher Easy environment with video background and jittering camera.
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Figure 14: Visualization of the DMC variants and the factorization learned by IFactor.
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F Comparison between IFactor and Related Work

F.1 Comparison between IFactor and Denoised MDP

While both IFactor and Denoised MDP share the common aspect of factorizing latent variables
based on controllability and reward relevance, it is crucial to recognize the numerous fundamental
distinctions between them.
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Figure 15: Graphical illustration of our world model and Denoised MDP.
First and foremost, Denoised MDP adopts a rather stringent assumption by solely considering
three types of latent variables and assuming independent latent processes for xt (controllable and
reward-relevant) and yt (uncontrollable but reward-relevant). However, this strict assumption may
not hold in many scenarios where uncontrollable yet reward-relevant factors exhibit dependencies
on controllable and reward-relevant factors. Take, for instance, the case of car driving: the agent
lacks control over surrounding vehicles, yet their behaviors are indirectly influenced by the agent’s
actions. In contrast, our approach encompasses four types of causally related latent variables while
only assuming conditional independence when conditioning on the state in the previous time step.
This assumption holds true naturally within the (PO)MDP framework.

Secondly, Denoised MDP is limited to only factoring out additive rewards ryt from rxt , disregarding
the possibility of non-additive effects in many uncontrollable yet reward-relevant factors. In contrast,
our method embraces the inclusion of non-additive effects of sār

t on the reward, which is more general.

Thirdly, Denoised MDP uses only controllable and reward-relevant latent variables xt for policy
optimization, which we show in the theoretical analysis that it is generally insufficient. In contrast,
our method utilize both controllable and uncontrollable reward-relevant factors for policy training.

Finally, Denoised MDP makes the assumption of an instantaneous causal effect from xt to zt and from
yt to zt,which is inherently unidentifiable without further intervention. It is worth noting that imposing
interventions on the latent states is unrealistic in most control tasks, as agents can only choose actions
at specific states and cannot directly intervene on the state itself. In contrast, our method assumes
that there exists no instantaneous causal effect for latent variables. In conjunction with several weak
assumptions, we provide a proof of block-wise identifiability for our four categories of latent variables.
This property serves two important purposes: (1) it ensures the removal of reward-irrelevant factors
and the utilization of minimal and sufficient reward-relevant variables for policy optimization, and
(2) it provides a potential means for humans to comprehend the learned representations within the
reinforcement learning (RL) framework. Through latent traversal of the four types of latent variables,
humans can gain insights into the specific kind of information that each category of representation
contains within the image.

From the perspective of model structure, it is worth highlighting that the architecture of both the
transition model (prior) and the representation model (posterior) in IFactor differs from that of
Denoised MDP. The structure of prior and posterior of IFactor is shown as follows:

Prior: Posterior:
pγ1

(
sar

t | s
r
t−1, at−1

)
pγ2

(
sār

t | s
r
t−1

)
pγ3

(
sar̄

t | st−1, at−1
)

pγ4

(
sār̄

t | st−1
)


qϕ1

(
sar

t | ot, sr
t−1, at−1

)
qϕ2

(
sār

t | ot, sr
t−1

)
qϕ3

(
sar̄

t | ot, st−1, at−1
)

qϕ4

(
sār̄

t | ot, st−1
) (44)

While Denoised MDP has the following prior and posterior:
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Prior: Posterior: pγ1 (xt | xt−1, at−1)
pγ2 (yt | yt−1)
pγ3 (zt | xt, yt, zt−1)

 pϕ1 (xt | xt−1, yt−1, zt−1, ot, at−1)
pϕ2 (yt | xt−1, yt−1, zt−1, ot, at−1)
pϕ3 (zt | xt, yt, ot, at−1)

(45)

A notable distinction can be observed between Denoised MDP and IFactor in terms of the assumptions
made for the prior and posterior structures. Denoised MDP assumes independent priors for xt
and yt, whereas IFactor only incorporates conditional independence, utilizing sr

t−1 as input for the
transition of both sar

t and sār
t . Moreover, the posterior of yt receives at−1 as input, potentially

implying controllability. Similarly, the posterior of xt incorporates zt−1 as input, which may introduce
noise from zt−1 into xt. These implementation details can deviate from the original concept. In
contrast, our implementation ensures consistency between the prior and posterior, facilitating a clean
disentanglement in our factored model.

From the perspective of the objective function, IFactor incorporates two supplementary mutual
information constraints, namely J t

RS and J t
AS, to promote disentanglement and improve policy

performance.

F.2 Comparison between IFactor, InfoPower and IsoDream

IFactor learns different categories of state representations according to their relation with action and
reward, which is different from InfoPower [48] and IsoDream [12], and moreover, IFactor emphasizes
block-wise identifiability for the four categories of representations while InfoPower and Iso-Dream
do not. Specifically, InfoPower learns 3 types of latent variables, including sar

t , s
ār
t and sār̄

t . IsoDream
uses three branches for latent dynamics, distinguishing controllable, noncontrollable, and static parts.

Other differences with InfoPower:

• Reconstruction Basis: InfoPower is reconstruction-free, while IFactor is reconstruction-
based.
• Objective Functions: InfoPower prioritizes mutual information and empowerment, while

IFactor utilizes reconstruction, KL constraints, and mutual information constraints for
disentanglement. InfoPower formulates policy using task reward value estimates and the
empowerment objective, while IFactor learns policy by maximizing the estimated Q value
and dynamics backpropagating.

Other differences with IsoDream:

• Objective Functions and Dynamics Modeling: IsoDream models controllable transitions
using inverse dynamics, while IFactor disentangles with multiple mutual information and
KL divergence constraints. IsoDream learns policy using a future-state attention mechanism
rooted in present controllable and future uncontrollable states. In contrast, IFactor focuses
on reward-relevant states, ensuring sr

t variables are optimal for policy optimization.
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