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ABSTRACT
Asynchronous parallelization is an effective way to accelerate op-
timization. While asynchronous parallelization can destroy the se-
quential structure of optimization algorithms, it has been found
counter-intuitively that some optimization algorithms are proven
to preserve their performance under asynchronous parallelization,
including the stochastic gradient descent for first-order optimiza-
tion of differentiable functions and Pareto optimization for zeroth-
order optimization in binary space. Following this direction, in this
paper, we show that the classification-based optimization, which is
a recently developed framework for zeroth-order optimization in
continuous space, can also enjoy the asynchronous parallelization.
We implement ASRacos, an asynchronous version of a classificati-
on-based optimization algorithm SRacos, to accelerate the opti-
mization through asynchronous parallelization. We theoretically
provide the query complexity of ASRacos and further show that
on certain conditions, ASRacos can achieve a better performance
than SRacos even if using the same number of evaluations. Ex-
periments on synthetic functions and controlling tasks in OpenAI
Gymdemonstrate that ASRacos can achieve almost linear speedup
while preserving good solution quality.
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1 INTRODUCTION
Asynchronous parallelism is an effective way to accelerate opti-
mization. However, for sequential update optimization algorithms,
asynchronous parallelism can destroy the sequential structure of
the optimization, which deteriorates the optimization performance.
It has been found that some optimization algorithms are proven to
preserve their performance under asynchronous parallelization, in-
cluding the stochastic gradient decent for first-order optimization
of differentiable functions [21] and Pareto optimization for zeroth-
order optimization in binary space [14].

In this paper, we focus on derivative-free optimization, which
regards the objective function f as a black-box function: given a
solution x , only the function value f (x) is available. Other infor-
mation of f such as the gradient is unavailable. Derivative-free op-
timization methods can be roughly categorized into three classes:
model-based methods, deterministic Lipschitz optimization meth-
ods andmeta-heuristic search.Model-basedmethods, such as Baye-
sian optimization methods [2, 5, 15], learn a model from the solu-
tions and the model is then applied to guide sampling of solutions
for the next round. Deterministic Lipschitz optimization methods
need Lipschitz continuity assumption on f , such as [1, 9, 11, 12].
Meta-heuristic search is designed with inspired heuristics, such as
evolutionary strategies [6, 7, 10, 13].

Classification-based optimization is a recently developed theo-
retical framework ofmodel-based derivative-free optimizationmet-
hods, where the model is implemented by a classification model
discriminating good solutions from bad ones. Its implementation,
the SRacos algorithm [8], has shown outstanding performance in
various applications [18–20]. However, the sequential structure of
SRacos keeps it from being parallized, which is unbearable for
time-consuming optimization tasks.

In this paper, we propose an asynchronous classification-based
optimization algorithmASRacos. Our theoretical analyses and em-
pirical studies verify the effectiveness of the proposed method. In
particular, we make the following key contributions:
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• We apply a feasible modification to SRacos to make it par-
allelizable, and implement its asynchronous version ASRa-
cos, which holds the sequential structure while being able
to utilize multiple servers.

• We provide the (ϵ − δ ) query complexity bound of ASRa-
cos in theoretical analysis and further give the condition on
which ASRacos can achieve a better (worse) performance
than SRacos even if using the same number of evaluations.

• We empirically compare ASRacos with several other paral-
lel classification-based optimization algorithms on four syn-
thetic testing functions, and apply them to direct policy sear-
ch for 6 controlling tasks, where an artificial neural net-
work is used as the policy and optimized. Experimental re-
sults show that ASRacos can achieve almost linear speedup
while preserving good solution quality.

The rest four sections present the background, the proposed AS-
Racos algorithm, the empirical results, and the conclusion, respec-
tively.

2 BACKGROUND
Derivative-free optimization, also termed as zeroth-order or black-
box optimization, involves a class of optimization algorithms that
does not rely on gradient information. We consider general mini-
mization problems in continuous domains. LetX denote a bounded
solution space that is a compact subset of Rn , and f : X → R de-
note aminimization problem. Assume that there existsx∗ such that
f (x∗) = minx ∈X f (x). Let F denote the set of all functions that sat-
isfy this assumption. Given f ∈ F , the minimization problem is to
find a solution x∗ ∈ X s.t. ∀x ∈ X : f (x∗) ≤ f (x). For black-box
optimization, given a solution x , only the objective function f (x)
is accessible for evaluating x .

Model-based derivative-free optimization algorithms share a fra-
mework that iteratively learns a model for promising search areas
and samples solutions from the model. Different kinds of methods
usually vary in the design of themodel. For example, cross-entropy
methods [4] may use Gaussian distribution as the model, Bayesian
optimization methods [15] employ Gaussian process to model the
joint distribution, and the estimation of distribution algorithms
have incorporated many kinds of learning models. Classification-
based optimization algorithms learn a particular type of model:
classification model. A classification model learns to classify solu-
tions into two categories, дood or bad . Then solutions are sampled
from the дood areas.

SRacos[8] is a recently proposed classification-based optimiza-
tion algorithm. Unlike other model-based optimization algorithms,
the sampling region of SRacos is learned by a simple classifier,
which maintains an axis-parallel rectangle to cover all the positive
but no negative solutions. SRacos shows outstanding performance
both in theoretical analyses and empirical studies. Its pseudo-code
is presented in Algorithm 1. To initialize, SRacoa samples a batch
of solutions. We will get a solution-value tuple set B after querying
objective function for each solution in S (line 1 to 2). After that, Se-
lection sub-procedure is used to split B into two tuple sets B+ and
B−, where the positive set B+ is consisted of the best k solutions
and the negative set B− is consisted of the rest. (line 3). Line 4 and
line 11 record the best-so-far solution-value tuple. In the following

Algorithm 1 Sequential Racos (SRacos)
Input:

f : Objective function to be minimized;
C: A binary classification algorithm;
λ: Balancing parameter;
m ∈ N+: Number of negative samples;
k ∈ N+(≤ m): Number of positive samples;
r =m + k ;
N ∈ N+: Budget, i.e., number of evaluations;
Sampling: Sampling sub-procedure;
Selection: Decide the positive/negative solutions;
Replace: Replacing sub-procedures.

Procedure:
1: Collect S = {x1, ..., xr } by i.i.d. sampling fromUX
2: B = {(x1,y1), ..., (xr ,yr )},∀xi ∈ S : yi = f (xi )
3: (B+,B−) = Selection(B;k)
4: Let (x̃, ỹ)) = argmin(x ,y)∈B+ y
5: for t = r + 1 to N do
6: h = C(B+,B−)

7: x =

{
Sampling(UDh ) w.p. λ
Sampling(UX ) w.p. 1 − λ

8: y = f (x)
9: [(x ′,y′),B+] = Replace((x,y),B+, ‘strategy_P’)
10: [,B−] = Replace((x ′,y′),B−, ‘strategy_N’)
11: (x̃, ỹ) = argmin(x ,y)∈B+∪{(x̃ ,ỹ)} y
12: end for
13: return (x̃, ỹ)

loop, SRacos trains a binary classifier C to learn an axis-parallel
region, which contains a randomly selected positive solution in B+
and rules out all the negative solutions in B (line 6). More details
about the classifier C can be found in [17]. Then, a new solution is
uniformly sampled from this learned region with probability λ or
uniformly sampled from the whole solution space with probability
1−λ (line 7). After evaluating the new sampled solution (line 8, the
most time-consuming part), the solution-value tuple is used to up-
date B+, B− and the best-so-far solution-value tuple accordingly
(line 9 to 11). Replace(a,A, ‘s’) subprocedure replaces a tuple in
the set A with a according to a strategy ‘s’. There are three strate-
gies proposed in [8]: replacing the worst solution in A (WR-), ran-
domly replacing a solution inA (RR-), and replacing the solution in
Awhich has the largest margin from the best-so-far solution (LM-).
Note that ‘strategy_P’ can only be ‘WR-’, and ‘strategy_N’ can be
any one of these three strategies. Finally, SRacos will return the
best-so-far tuple (x̃, ỹ) (line 13).

3 ASYNCHRONOUS SRACOS
The idea of making SRacos parallelizable is straightforward: Sam-
ple Ns (the number of evaluation servers) solutions, rather than 1
solution, after initialization. Then these solutions can be evaluated
parallelly. Whenever an evaluation is finished, the method will up-
date the model and sample the next solution for evaluation. Note
that the sequential update structure is still held through the mod-
ification. With the same as Algorithm 1, Selection(B;k) splits
the solution-value tuple set B into a positive set and a negative set,



Asynchronous Classification-Based Optimization DAI ’19, October 13–15, 2019, Beijing, China

Algorithm 2 Asynchronous SRacos (ASRacos)
Input: (extra input than SRacos)

Ns ∈ N+: The number of evaluation servers;
Procedure:
1: Collect S = {x1, ..., xr } by i.i.d. sampling fromUX
2: B = {(x1,y1), ..., (xr ,yr )},∀xi ∈ S : yi = f (xi )
3: (B+,B−) = Selection(B;k)
4: h1 = C(B+,B−)
5: D, E = SharedQueue{ }, SharedQueue{ }
6: D = {xr+1, ..., xr+Ns } = λ − Samplingn (UDh ,UX )
7: Run Evaluation(D, E) sub-procedures on Ns daemon

threads
8: for t = r + 1 to N do
9: (x,y) = take(E)
10: [(x ′,y′),B+] = Replace((x,y),B+, ‘strategy_P’)
11: [,B−] = Replace((x ′,y′),B−, ‘strategy_N’)
12: (x̃, ỹ) = argmin(x ,y)∈B+∪{(x̃ ,ỹ)} y
13: h = C(B+,B−)
14: x = λ − Sampling1(UDh ,UX )
15: put(x,D)
16: end for
17: return (x̃, ỹ)
18:
19: Evaluation(D, E):
20: while true do
21: x = take(D)
22: y = f (x).
23: put((x,y), E)
24: end while

where the positive set contains k best-so-far tuples. Replace(a,A,
‘s’)means replacing a tuple from the setAwitha according to some
strategy ‘s’, and the replaced tuple and the updated tuple set will be
returned. λ − Samplingn (UDh ,UX ) means sampling n solutions
and for each solution, it is sampled from the distributionUDh with
probability λ andUX with probability 1 − λ.

The proposed Asynchronous SRacos is shown in Algorithm 2.
After initialization, ASRacos will get two tuple sets B+ and B−

according to function values (line 3). Then a binary classifier is
trained on the basis of these two sets to learn the potential high-
quality region in the solution space (line 4). The learned region
contains one selected good solution in the positive set and rules
out all the bad solutions in the negative set. ASRacos contains two
first-in-first-out blocking queues: D for the unevaluated solutions
and E for the evaluated solutions. D and E are also set to be shared
between the main thread and evaluation threads for data commu-
nication. D is initialized with the first batch of sampled solutions
and E is initialized to be empty (line 5 and 6).Then, ASRacos starts
Ns evaluation servers (implemented in the newly created threads),
each keeping evaluating a solution taken from D and putting the
result (x,y) into E (line 21 to 23). In the following loop, ASRacos
takes the evaluated tuple (x,y) from E and uses it to update the
tuple set B+ and B− (line 9 to 11). Once a new binary classifier C
is trained (line 13), a new solution will be sampled and put into D
(line 14, 15).

Figure 1: The flow charts of the optimization procedure
of ASRacos (up, using 3 evaluation servers) and SRacos
(down).

In summary, ASRacos divides the sequential evaluation and up-
date procedure in SRacos into two components: the asynchronous
evaluation component and the sequential model update compo-
nent. The asynchronous evaluation component can make use of
multiple servers, while the model update component can still up-
date the classification model sequentially, which holds the sequen-
tial structure in SRacos. The blocking queue D and E are created
for data communication between threads.

Figure 1 demonstrates the flow charts of the optimization proce-
dure of ASRacos and SRacos, where the solid arrow denotes the
sampling and evaluation procedure, the hollow arrow denotes an
update on the data distribution Dt and si , sj and sk denote the un-
used solutions sampled before. It can be observed thatDt is always
updated by the solution sampled from Dt for SRacos, while it can
be updated by the solution sampled from another ditribution sev-
eral iterations ago for ASRacos, which causes the difference of the
data distribution of two algorithms. The next section discusses the
effect of such difference on the query complexity of ASRacos.

4 THEORETICAL ANALYSIS
For a subsetD ⊆ X , let#D =

∫
x ∈X I[x ∈ D]dx , where I [·] is the in-

dicator function. Define |D | = #D/#X . Let Dα = {x ∈ X | f (x) ≤
α }, and Dϵ = {x ∈ X | f (x) − f (x∗) < ϵ} for ϵ > 0. A hypothesis
is a mapping h : X → {1,+1}. Let H ⊆ {h : X → {1,+1}} be
a hypothesis space. Let Dh = {x ∈ X |h(x) = +1} for hypothesis
h ∈ H , i.e., the positive class region represented by h. DenoteUDh
the uniform distribution overDh and τh the distribution defined on
Dh induced by h respectively. Let St = λUDht

+ (1− λ)UX be the
sampling distribution in iteration t , Dt be the distribution under
which the classifier is trained in iteration t , RDt denote the gener-
alization error of ht ∈ H under the distribution Dt , DKL denote
the Kullback-Leibler (KL) divergence between two probability dis-
tributions and N denote the number of iterations. The superscript
S is added to the symbols to represent SRacos and A is added to
represent ASRacos

The complexity of an algorithm is measured by the (ϵ, δ )-query
complexity as Definition 4.1 [16, 17]. It counts the total number of
calls to the objective function by an algorithm before it finds a solu-
tion that reaches the approximation level ϵ , with high probability.

Definition 4.1. (ϵ, δ )-Query Complexity
Given f ∈ F , an algorithmA, 0 < δ < 1 and ϵ > 0, the (ϵ, δ )-query
complexity is the number of calls to f such that, with probability
at least 1 − δ , A finds at least one solution x̃ ∈ X ⊆ Rn satisfying
f (x̃) − f (x∗) ≤ ϵ , where f (x∗) =minx ∈X f (x).
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Then we derive a upper bound of the query complexity of AS-
Racos under the conditions of error-target θ -dependence and γ -
shrinking rate [17].

Lemma 4.2. Given f ∈ F , 0 < δ < 1 and ϵ > 0, if ASRacos has
error-target θ -dependence and γ -shrinking rate, then its (ϵ, δ )-query
complexity is upper bounded by

O(max{ 1

|Dϵ |
((1 − λ) + λ

γ (N − r )

N∑
t=r+1

ΦAt )−1ln
1

δ
,N })

where ΦAt = (1 − RDA
t
− #X

√
1
2DKL(DA

t | |UX ) − θ ) · |Dαt |−1
and #X is the volume of X.

We omit the proof of Lemma 4.2 because the proof is the same
as the proof of Theorem 1 in [8] except for the value of RDt and
DKL(Dt | |UX ) at each iteration. By Lemma 4.2, we can have a com-
parison of the query complexity bound of ASRacos and the bound
of SRacos. The result is shown in Theorem 4.3.

Theorem 4.3. Ignoring the constant factor and fixing θ and γ ,
ASRacos can have a better (or worse) query complexity upper bound
than SRacos if for any iteration t:

RDA
t
− RDS

t
< (>)#X (

√
1

2
DKL(DS

t | |UX ) −
√

1

2
DKL(DA

t | |UX ))

Theorem 4.3 discloses that if the difference of the training distri-
bution between two algorithms has a greater influence than the dif-
ference of generalization error, ASRacos can be better than SRa-
cos even if using the same number of evaluations. Moreover, AS-
Racos can use nearlyNs times more evaluations compared to SRa-
cos within the same time. So it is much easier for ASRacos to find
a better solution than SRacos in actual use. The proof of Theorem
4.3 is presented in the appendix due to the space limitation.

5 EXPERIMENTS
We evaluate the performance of ASRacos in two environments.
One is the optimization of classical synthetic functions, contain-
ing a convex function and three highly non-convex functions; the
other is the controlling tasks in OpenAI Gym, an open source en-
vironment for reinforcement learning research.

We investigate the properties of the asynchronous parallelism
on classification-based optimizationmethods, including convergen-
ce rate, speedup and solution quality. We compare our method
with another two parallel classification-basedmethods: Parallel Ra-
cos (PRacos) and Parallel SRacos (PSRacos). PRacos is a sim-
ple parallel implementation of the batch-mode method Racos [17].
PSRacos shares the same structure with ASRacos, and only varies
in that the classification model will not update until the slowest
evaluation server finishes evaluation. Note that when the number
of evaluation servers is 1, ASRacos and PSRacos are equivalent to
SRacos, and PRacos equals Racos. [8] has compared the perfor-
mance of a sequential classification-based optimization algorithm
with other state-of-the-art derivative-free optimization algorithms,
so we omit these comparisons in this paper.

5.1 On Synthetic Functions
We choose four benchmark testing functions: the convex Sphere
function and the highly non-convex Ackley, Rastrigin and Griewa-
nk function. They are defined as:

Sphere(x) =
d∑
i=1

x2i

Ackley(x) = −20e−
1
5

√
1
d

∑d
i=1 x

2
i

−e
1
d

∑d
i=1 cos(2πxi ) + 20 + e

Rastriдin(x) = 10d +
d∑
i=1

[xi2 − 10 cos(2πxi )]

Griewank(x) =
d∑
i=1

x2i
4000

−
d∏
i=1

cos( xi√
i
) + 1

Graphs of these functions are presented in the appendix. All
of these functions are minimized within the solution space X =

[−1, 1]d , of which the minimum value is 0 and the optimal solu-
tion is (0, 0, ..., 0). In the implementation, we choose d to be100
and shift the optimal solution by 0.2, whichmeans the new optimal
solution is (0.2, 0.2, ..., 0.2), to avoid possible optimization bias to
the origin point. In addition, we add a fixed 1-second sleep for each
evaluation. This is a reasonable modification since any distributed
algorithm faces the networking overhead. If the evaluation time
cost is even smaller than the networking overhead, parallelization
may not be necessary. Another 1-second sleep with 0.25 probabil-
ity is also added to simulate a situation where evaluation servers
vary in computational performance, i.e. some servers are explicitly
slower than others, which is common in real-world applications.
Each algorithm is repeated 10 times independently, and the aver-
age performance is reported.
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Figure 2: Comparison of the convergence rate with the num-
ber of evaluation servers Ns = 1, 2, 4, 6, 8, 10.
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Figure 3: On each objective function, left: speedup, right: the average of the function value (the one closer to 0 the better).

On convergence rate. We firstly study the convergence rate of
ASRacos. We set the time for optimization to be 2000 seconds and
compare the performance with the number of evaluation servers
Ns = 1, 2, 4, 6, 8, 10. The results are shown in Figure 2. The dot-
ted line represents the optimal value that ASRacos obtains when
uisng one server (also the result of SRacos). It can be observed
that ASRacos with more evaluation servers reduces the objective
function value with a higher rate, indicating that asynchronous
parallelism can accelerate the convergence.

On speedup. We then study the speedup w.r.t the number of
evaluation servers (Ns ). We set the budget to be 2000 for each al-
gorithm and calculate the speedup as Si = T1

Ti , whereTi represents
the time consumed when Ns = i . The results are shown in Figure 3.
From the left plots of each function, we can observe that ASRacos
(blue line) achieves linear speedup, notably better than PRacos and
PSRacos. The results reflect the advantage of asynchronous paral-
lelism over simple parallelism when servers vary in computational
performance.

On solution quality. To study the solution quality w.r.t. the
number of evaluation servers within the same time constraint, we
set the time for optimization to be 20 minutes for each algorithm.
The results are shown in the right plots of Figure 3. We can see
that algorithms using more servers get better solution quality and
ASRacos achieves the best performance among them.

5.2 On Controlling Tasks in OpenAI Gym
OpenAI Gym is a toolkit for developing and comparing reinforce-
ment learning algorithms. The toolkit provides many controlling
tasts, fromwhich we choose ‘Acrobot’, ‘MountainCar’, ‘Pendulum’,
‘HalfCheetah’, ‘Swimmer’ and ‘Ant’ to investigate the speedup and
solution quality of ASRacos.

Table 1: Parameters of the Gym tasks

Task dState #Actions NN nodes #Weights Horizon
Acrobot-v1 6 1 5, 3 48 500

MountainCar-v0 2 1 5 15 200
Pendulum-v0 3 1 5 20 200

HalfCheetah-v2 17 6 10 230 1000
Swimmer-v2 8 2 5, 3 61 1000

Ant-v2 111 8 15 1785 1000

We use the framework of direct policy search to solve these
tasks. Direct policy search employs optimization algorithms to sea-
rch in the parameter space of a policy for maximizing the cumula-
tive reward. The policy is often represented by a neural network
[3], whose weights w = {w1,w2, ...,wn } are the parameters to be
optimized. The neural network takes the observation of the state
as input and outputs an action according to its policy. After that, it
will get the reward of that action and the observation of the next
state. This interaction can be repeated until the game is over or
the maximum step is reached. The cumulative reward is used as
an evaluation of the policy network, i.e. f (w)i =

∑T
t=1 Rt . The

agent would have different cumulative rewards if the initial state
is reset to be different, so we take the avarage of multiple simula-
tions as the final evaluation value of one neural network: f (w) =∑m
i=1 f (w)i/m, which can reduce the noise to some extent. In a nut-

shell, our aim is to find the optimal parameter w for this network
so as to achieve the best performance. We list the task information
and the settings of neural network in Table 1, where dState, #Ac-
tions, NN nodes, #Weights and Horizon respectively denote the
dimension size of observation, the dimension size of action, the
hidden layers of the neural network, the total number of parame-
ters in the neural network and the maximum step.

Wewill briefly summarize each task and the details can be found
in the homepage of OpenAI Gym. The ‘Acrobot’ system includes
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(a) On Acrobot
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(b) On Mountain Car
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(c) On Pendulum
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(d) On HalfCheetah
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(e) On Swimmer
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(f) On Ant

Figure 4: For each task, left: speedup, right: the mean step (Acrobot, MountainCar) or minus score (Pendulum, HalfCheetah,
Swimmer, Ant) of the best found policy (the smaller y-axis coordinate value the better).

two joints and two links, where the joint between the two links is
actuated. Initially, the links are hanging downwards and the goal
of this task is to swing the end of the low link up to a given height.
In ‘MountainCar’, a car is on a one-dimensional track, positioned
between two ”mountains”. The goal is to drive up the mountain
on the right through driving back and forth to build up momen-
tum. In ‘Pendulum’, a pendulum starts in a random position, and
the goal is to swing it up so it stays upright. ‘HalfCheetah’, ‘Swim-
mer’ and ‘Ant’ are simulation tasks. In those tasks, a simulated
object is controlled by a policy to achieve a specific goal. For ex-
ample, in ‘Ant’, the policy should control a four-legged creature
to make it walk forward as fast as possible. Among these tasks,
‘Acrobot’ and ‘MountainCar’ are finding policies with the smallest
step number to achieve the goal. Other tasks are to find policies to
get score from the environment as high as possible.The average cu-
mulative reward of 200 simulations is used as the evaluation value
of one network for ‘Acrobot’, ‘MountainCar’ and ‘Pendulum. And
for other tasks, the average reward of 20 simulations is used. The
solution space X is set to be [−10, 10]#Weight. The output of the
neural network is scaled to be within the action space, which is
defined by the environment. Each algorithm is repeated 10 times
and the mean value of the top-5 results is reported. The results are
plotted in Figure 4.

On speedup. Budget is set to be 2000 for each algorithm. From
the left plots of each task, we can observe that ASRacos (blue
line) can still achieve almost linear speedup, better than PRacos
and PSRacos. Due to the competition for computing resource, the
speedup ratio in these environments is smaller than that on syn-
thetic functions, which simulate the time-consuming tasks simply
by adding sleep operations. In addition, for ‘Acrobot’, ‘Mountain-
Car’ and ‘Ant’, a better solution would make the game stop ear-
lier, which consumes less evaluation time, and result in a lower
speedup.

On solution value. We convert the maximization problems in
‘Pendulum’, ‘HalfCheetah’, ‘Swimmer’ and ‘Ant’ to the minimiza-
tion problems by adding a minus to the score. The time for opti-
mization is set to be 20 minutes for each algorithm. From the right
plots in each subfigure, we can see that the algorithm using more
serves can get better solution quality in most cases. Nevertheless,
in some cases, the algorithm may get worse solution quality. The
reason is that in one case there exists randomness in the process of
optimization, in another the evaluation is inaccurate under noisy
environments, which may make a bad solution seem to be good
and lead the optimization to the wrong direction. Similar to the
results of the synthetic functions, ASRacos achieves the best per-
formance in most cases.
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6 CONCLUSION
In this paper, we propose an asynchronous derivative-free classifi-
cation-based optimization method, ASRacos, for accelerating the
optimization. We analyze the query complexity of ASRacos and
further provide the condition on which ASRacos can achieve a
better (worse) performance than SRacos using the same number
of evaluations. In experiments, we first study the convergence rate
of ASRacos on synthetic functions, showing that ASRacos can
achieve higher convergence rate when havingmore evaluation ser-
vers. On both synthetic functions and direct policy search for con-
trolling tasks, ASRacos demonstrates almost linear speedup and
gets a better solution quality than other parallel algorithms, which
verifies the effectiveness of asynchronous parallelism. Future work
includes combining noise-handlingmethods intoASRacos to speed
up the optimization under noisy environments and applying AS-
Racos to large-scale optimization problems in real world.

REFERENCES
[1] Sébastien Bubeck, Gilles Stoltz, and Jia Yuan Yu. Lipschitz bandits without the
Lipschitz constant. In Proceedings of the 22nd International Conference on Algorithmic
Learning Theory, pages 144–158, Espoo, Finland, 2011.

[2] AdamD. Bull. Convergence rates of efficient global optimization algorithms. Jour-
nal of Machine Learning Research, 12:2879–2904, 2011.

[3] Andres El-Fakdi Marc Carreras and Narcís Palomeras. Direct policy search rein-
forcement learning for robot control. In Artificial Intelligence Research and Develop-
ment, Proceedings of the 8th International Conference of the ACIA, pages 9–16, Alguer,
Italy, 2005.

[4] Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A
tutorial on the cross-entropy method. Annals of Operations Research, 134(1):19–67,
2005.

[5] Nando de Freitas, Alexander J. Smola, and Masrour Zoghi. Exponential regret
bounds for gaussian process bandits with deterministic observations. In Proceedings
of the 29th International Conference on Machine Learning, Edinburgh, UK, 2012.

[6] David E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

[7] Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing the time
complexity of the derandomized evolution strategy with covariance matrix adapta-
tion (CMA-ES). Evolutionary Computation, 11(1):1–18, 2003.

[8] Yi-Qi Hu, Hong Qian, and Yang Yu. Sequential classification-based optimization
for direct policy search. In Proceedings of the 31st AAAI Conference on Artificial
Intelligence, pages 2029–2035, San Francisco, CA, 2017.

[9] Donald R. Jones, Cary D. Perttunen, and Bruce E. Stuckman. Lipschitzian opti-
mization without the Lipschitz constant. Journal of Optimization Theory and Appli-
cations, 79(1):157–181, 1993.

[10] Pedro Larrañaga and Jose A. Lozano. Estimation of distribution algorithms: A
new tool for evolutionary computation, volume 2. Springer Science; Business Media,
2001.

[11] RémiMunos. From bandits toMonte-Carlo Tree Search:The optimistic principle
applied to optimization and planning. Foundations and Trends in Machine Learning,
7(1):1–130, 2014.

[12] Arnold Neumaier. Global optimization in action, continuous and Lipschitz op-
timization: Algorithms, implementations and applications. nonconvex optimization
and its applications. Journal of Global Optimization, 12(3):319–321, 1998.

[13] Frank Neumann and Ingo Wegener. Randomized local search, evolutionary al-
gorithms, and the minimum spanning tree problem. Theoretical Computer Science,
378(1):32–40, 2007.

[14] ChaoQian, Jing-Cheng Shi, Yang Yu, Ke Tang, and Zhi-Hua Zhou. Parallel Pareto
optimization for subset selection. In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence, pages 1939–1945, New York, NY, 2016.

[15] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimiza-
tion of machine learning algorithms. In Advances in Neural Information Processing
Systems 25, pages 2960–2968, Lake Tahoe, NV, 2012.

[16] Yang Yu and Hong Qian. The sampling-and-learning framework: A statistical
view of evolutionary algorithms. In Proceedings of the IEEE Congress on Evolutionary
Computation, pages 149–158, Beijing, China, 2014.

[17] Yang Yu, Hong Qian, and Yi-Qi Hu. Derivative-free optimization via classifi-
cation. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, pages
2286–2292, Phoenix, AZ, 2016.

[18] Yang Yu, Wei-YangQu, Nan Li, and Zimin Guo. Open category classification by
adversarial sample generation. In Proceedings of the 26th International Joint Confer-
ence on Artificial Intelligence, pages 3357–3363, Melbourne, Australia, 2017.

[19] Jianbing Zhang, Yixin Sun, Shujian Huang, Cam-Tu Nguyen, Xiaoliang Wang,
Xinyu Dai, Jiajun Chen, and Yang Yu. AGRA: An analysis-generation-ranking frame-
work for automatic abbreviation from paper titles. In Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence, pages 4221–4227, Melbourne, Aus-
tralia, 2017.

[20] Wen-Ji Zhou, Yang Yu, and Min-Ling Zhang. Binary linear compression for
multi-label classification. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence, pages 3546–3552, Melbourne, Australia, 2017.

[21] Martin Zinkevich, Markus Weimer, Alexander J. Smola, and Lihong Li. Paral-
lelized stochastic gradient descent. In Advances in Neural Information Processing
Systems 23, pages 2595–2603, British Columbia, Canada, 2010.



DAI ’19, October 13–15, 2019, Beijing, China Yu-Ren Liu, Yi-Qi Hu, Hong Qian, and Yang Yu

A APPENDIX
A.1 Proof of Theorem 4.3
In order to explicitly compare the query complexity of ASRacos
with that of SRacos, we let DA

t and DS
t denote the distribution

under which the classifier is trained in iteration t of ASRacos
and SRacos, and RDA

t
and RDS

t
denote the generalization error

of them, respectively.
Lemma 4.2. Given f ∈ F , 0 < δ < 1 and ϵ > 0, if ASRacos has

error-target θ -dependence and γ -shrinking rate, then its (ϵ, δ )-query
complexity is upper bounded by

O(max{ 1

|Dϵ |
((1 − λ) + λ

γ (N − r )

N∑
t=r+1

ΦAt )−1ln
1

δ
,N })

where ΦAt = (1 − RDA
t
−#X

√
1
2DKL(DA

t | |UX ) − θ ) · |Dαt |−1 and
#X is the volume of X.

Theorem 4.1. Ignoring the constant factor and fixing θ and γ ,
ASRacos can have a better (or worse) query complexity upper bound
than SRacos if for any iteration t:

RDA
t
− RDS

t
< (>)#X (

√
1

2
DKL(DS

t | |UX ) −
√

1

2
DKL(DA

t | |UX ))

Before proving Theorem 4.3, we first recall the (ϵ ,δ )-query com-
plexity bound of a classification-based sequential derivative-free
optimization algorithm, which has been derived in [8].

Theorem A.1[[8]] Given f ∈ F , 0 < δ < 1 and ϵ > 0, if
a classification-based sequential derivative-free optimization algo-
rithm has error-target θ -dependence and γ -shrinking rate, then its
(ϵ ,δ )-query complexity is upper bounded by

O
©«max


1

|Dϵ |

(
(1 − λ) + λ

γ (N − r )

N∑
t=r+1

ΦSt

)−1
ln

1

δ
,N

ª®¬ ,
where ΦSt =

(
1 − RDS

t
−#X

√
1
2DKL(DS

t ∥UX ) − θ

)
· |Dαt |−1 and

#X is the volume of X .
Proof of Theorem 4.3
In Lemma 4.2, ignoring the constant factor and letting ϵ > 0 be

small enough such that we only need to focus on the part of

1

|Dϵ |

(
(1 − λ) + λ

γ (N − r )

N∑
t=r+1

ΦAt

)−1
ln

1

δ
,

where ΦAt =
(
1 − RDA

t
−#X

√
1
2DKL(DA

t ∥UX ) − θ

)
· |Dαt |−1 and

#X is the volume of X . On the basis of Lemma 4.2 and Theorem
A.1, to compare ASRacos with SRacos, it is sufficient to compare
the part of 1 − RDA

t
− #X

√
1
2DKL(DA

t ∥UX ) − θ with 1 − RDS
t
−

#X
√

1
2DKL(DS

t ∥UX )−θ if we ignore the corresponding constant
factors. It can be verified directly that, for any iteration t , if RDA

t
−

RDS
t
< #X (

√
1
2DKL(DS

t | |UX ) −
√

1
2DKL(DA

t | |UX )), then ASRa-

cos is better than SRacos; ifRDA
t
−RDS

t
> #X (

√
1
2DKL(DS

t | |UX )−√
1
2DKL(DA

t | |UX )), then ASRacos is worse than SRacos.

A.2 Synthetic Functions

(a) Sphere (b) Ackley

(c) Rastrigin (d) Griewank

Figure 5: Graphs of four synthetic functions
(http://www.sfu.ca/ ssurjano/optimization.html).
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