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ABSTRACT
Federated Learning (FL) aims to generate a global shared model

via collaborating decentralized clients with privacy considerations.

Unlike standard distributed optimization, FL takes multiple op-

timization steps on local clients and then aggregates the model

updates via a parameter server. Although this significantly reduces

communication costs, the non-iid property across heterogeneous

devices could make the local update diverge a lot, posing a fun-

damental challenge to aggregation. In this paper, we focus on a

special kind of non-iid scene, i.e., label distribution skew, where

each client can only access a partial set of the whole class set. Con-

sidering top layers of neural networks are more task-specific, we

advocate that the last classification layer is more vulnerable to the

shift of label distribution. Hence, we in-depth study the classifier

layer and point out that the standard softmax will encounter several

problems caused by missing classes. As an alternative, we propose

“Restricted Softmax" to limit the update of missing classes’ weights

during the local procedure. Our proposed FedRS is very easy to

implement with only a few lines of code. We investigate our meth-

ods on both public datasets and a real-world service awareness

application. Abundant experimental results verify the superiorities

of our methods.
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• Computing methodologies → Cooperation and coordina-
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1 INTRODUCTION
Although deep learning has experienced great success in many

fields [18, 22, 30], a data center training paradigm is usually required.

Due to data privacy or transmission cost, data from individual par-

ticipants can not be located on the same device in some real-world

applications [10, 43]. Standard distributed optimization [12, 34]

provides solutions to distributed training with big data or huge

model, while Federated Learning (FL) [27, 38, 51] is tailored for data

privacy protection and efficient distributed training. Specifically,

FL takes multiple rounds of local and global procedures [13, 38] to

collaborate isolated data islands (local clients). During local proce-

dure, a subset of clients download the global model from the central

server and update it on local private data. The global procedure is

taken by the central server to aggregate the local model updates.

These two procedures are iterated until convergence. In FL, only

model parameters are transmitted among clients and server, which

brings basic privacy protection. Advanced privacy protection meth-

ods, e.g., differential privacy [1, 17, 48], can be further applied for

stricter privacy protection. In another view, local clients take more

computation steps, e.g., epochs of training on local data, making

the decentralized training more efficient.

FL also faces many challenges, e.g., massive amounts of devices,

limited communication, and non-iid property, etc [38]. The non-iid

data distribution across clients is the most fundamental statistical

challenge, while others are major obstacles at the system level [35].

In this paper, we mainly focus on the non-iid challenge. With het-

erogeneous local data, the local training procedure will diverge a lot

from the global target due to the discrepancy between the local and

global data distribution [57]. The stronger the heterogeneity of the

local data set, the larger the distribution discrepancy, and the harder

it is to aggregate a well-performed global model. Hence, some exist-

ing methods add various regularizations to restrict the local models

not diverge from the global model too much [35, 44, 52].

As further studied in the recent survey of FL [27], the non-iid

scenes can be subdivided into five categories: feature distribution

skew, label distribution skew, concept shift with different features,

concept shift with different labels, and quantity skew. This paper

mainly focuses on the label distribution skew, where the prior distri-

butions across clientsP𝑘 (𝑦)may vary a lot, butP𝑘 (𝑥 |𝑦) is the same,

e.g., the distribution of animal species varies across regions [27].

Existing studies show that the bottom layers of neural networks

extract common features and are more transferable than the top lay-

ers [54]. Hence, the topmost layer is the most task-specific, which

is widely implemented with a softmax classification layer, e.g., a

combination of softmax and cross entropy loss [18, 25, 30]. Faced

with label distribution shift, we advocate that this layer could be the

most vulnerable. Specifically, we first in-depth analyze and show the
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inherent pulling and pushing forces in standard softmax (Sect. 3.1).

Then we point out that several properties will disappear faced with

missing classes (Sect. 3.2), which will be encountered during local

training procedure of FL with label distribution skew (Sect. 4.1). As

an alternative, we slightly modify the standard softmax and intro-

duce “Restricted Softmax" to limit the update of missing classes’

weights during local procedure (Sect. 4.3). We briefly introduce our

methods with three folds: (1) it is the first work diving into the

softmax classification layer to solve the label distribution skew in

FL; (2) it is easy to implement with only a few lines of code; (3) it is

consistent with many classic methods as analyzed in Sect. 4.4.

2 RELATEDWORKS
FL with Non-IID Data Various techniques have been proposed

to solve the non-iid challenge in FL. A natural solution is shar-

ing a small public data set among clients, being a compromise for

privacy protection [26, 50, 53]. Some methods resort to multi-task

learning [11, 45] or meta learning [9, 15] for fast local adaptation.

Taking advantage of fully decentralized learning [4] or private-

shared models [3, 36, 40] are solutions for better aggregation and

personalization. Updating models with momentum on server can

lead to stable performances [28]. The most similar work to ours is

adding regularization terms during local procedure. FedProx [35]

introduces a proximal term and directly restricts the local model pa-

rameters not diverge from the global model toomuch. FedMMD [52]

aims to mitigate the discrepancy between features extracted by lo-

cal and global models. Except that FedAwS [55] studies the extreme

scene that each client could only access one class, relatively few

considerations have been shown on the final classification layer

under label distribution skew.

Label Distribution Shift There are several scenes that are directly
related to label distribution shift. Dataset shift [42] is originally

categorized into covariate shift and label shift. In area of trans-

fer learning, joint distribution alignment [37], generalized domain

adaptation via co-alignment [47], and partial domain adaptation [7]

provide insights for solving label shift problems between source

and target domains. Class imbalanced learning with long tail data

poses a significant challenge for classifiers which could get biased

towards frequent classes [6, 21, 24]. Class incremental learning

with new classes [23] and few-shot classification for generalizing

to unseen meta-test classes [16] handle the class drift problem in

sequential tasks. Different from these studies, our work studies

the label distribution shift problem in FL and searches solutions

from aspect of the most vulnerable task-specific layer, i.e., the final

softmax classification layer.

3 INTUITION AND MOTIVATION
As a major motivation, we progressively introduce the properties

of softmax and the problems when faced with missing classes.

3.1 Properties of Softmax
In standard classification, all samples are centralized on the same

device. We denote {(x𝑖 , 𝑦𝑖 )}𝑁𝑖=1 as the training set with 𝑁 samples,

where 𝑦𝑖 ∈ C = {1, 2, . . . ,𝐶} and 𝐶 is the number of classes. Deep

networks always contain the feature extractor 𝐹𝜃 (·) with param-

eters 𝜃 and the last classification layer with weights {w𝑐 }𝐶𝑐=1 (we

omit the bias for simplification). Without additional declaration,
we refer to the last classification layer as the classifier. We denote

h𝑖 = 𝐹𝜃 (x𝑖 ) ∈ R𝑑 as the extracted feature vector of the 𝑖-th sample.

Borrowing from some related works [39, 46, 56], we refer to the

classification weights {w𝑐 }𝐶𝑐=1 as proxies. For the 𝑐-th proxyw𝑐 , we
denote the features from the 𝑐-th class and other classes as positive
features and negative features respectively.

The softmax operator normalizes the scores of each class (i.e.,

w𝑇𝑐 h𝑖 ) and returns the probability:

𝑝𝑖,𝑐 =
exp(w𝑇𝑐 h𝑖 )∑𝐶
𝑗=1 exp(w𝑇𝑗 h𝑖 )

, (1)

and the cross-entropy loss is calculated as:

L = −
𝑁∑
𝑖=1

𝐶∑
𝑐=1

I{𝑦𝑖 = 𝑐} log𝑝𝑖,𝑐 , (2)

where I{·} is the indication function. The gradient of w𝑐 is:

𝜕L
𝜕w𝑐

= −
𝑁∑
𝑖=1

(
I{𝑦𝑖 = 𝑐} − 𝑝𝑖,𝑐

)
h𝑖 . (3)

We use gradient descent with learning rate 𝜂 to update w𝑐 and
decompose this update into the pulling and pushing forces, i.e.,

w𝑐 = w𝑐 + 𝜂
𝑁∑

𝑖=1,𝑦𝑖=𝑐

(
1 − 𝑝𝑖,𝑐

)
h𝑖︸                     ︷︷                     ︸

pulling

−𝜂
𝑁∑

𝑖=1,𝑦𝑖≠𝑐

𝑝𝑖,𝑐h𝑖︸               ︷︷               ︸
pushing

, (4)

from which we can obtain the inherent properties of softmax:

Property 1 (Properties of Softmax). Classification with soft-
max has the following properties: (1) pulling proxies closer to positive
features; (2) pushing proxies away from negative features.

These properties are illustrated in Fig. 1 (A), where a demo with

three classes is shown. We only show the properties of updating

proxy w1. The data region X1 contains positive features, while X2

and X3 contain negative features. Hence, w1 is pulled closer to X1

and pushed away from X2, X3 simultaneously. The properties are

directly related to deep metric learning [19, 39, 49, 56], where forces

of pulling and pushing exist together. However, the balance could

be broken in same cases.

3.2 Softmax with Missing Classes
In some cases, we can not obtain training samples of several classes,

named as missing classes. Formally, the label set C is split into

observed class set O and missing class setM respectively. We have

O ∩M = ∅ and O ∪M = C, where ∅ is the empty set. We still

denote the training set as {(x𝑖 , 𝑦𝑖 )}𝑁𝑖=1, while 𝑦𝑖 is only from O.
Then, the Eq. 4 can be adapted. For 𝑐 ∈ M:

w𝑐 = w𝑐 + 𝜂
𝑁∑

𝑖=1,𝑦𝑖=𝑐

(
1 − 𝑝𝑖,𝑐

)
h𝑖︸                     ︷︷                     ︸

=0

−𝜂
𝑁∑

𝑖=1,𝑦𝑖≠𝑐

𝑝𝑖,𝑐h𝑖︸               ︷︷               ︸
only pushing exists

. (5)

This shows that due to lacking corresponding training samples,

the pulling force of proxy w𝑐 , 𝑐 ∈ M is missing, and the proxy

is only pushed away from negative features. This phenomenon is
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Figure 1: Illustration of themotivations. The right shows the legends. (A) Softmax classification: the proxy is pulled towards positive features
and pushed away from negative features. (B) Softmax withmissing classes: the second class is missing; its corresponding proxy is only pushed
away from negative features (left); the proxies of observed classes lack part of pushing forces (right). (C) FedAvg with label distribution non-
iid data (5-class case): the global target is to classify 5 classes, while client A and B only has access to 3 and 2 classes respectively; proxies of
missing classes may become inaccurate on local clients (left and middle), leading to a poor aggregation on server (right).

illustrated in the left part of Fig. 1 (B), where w2 is the proxy of

the missing class and the gray arc implies the pulling property is

missing. For the observed class 𝑐 ∈ O, we have the update of w𝑐 :

w𝑐 = w𝑐 + 𝜂
𝑁∑

𝑖=1,𝑦𝑖=𝑐

(
1 − 𝑝𝑖,𝑐

)
h𝑖︸                     ︷︷                     ︸

pulling

−𝜂
𝑁∑

𝑖=1,𝑦𝑖≠𝑐

𝑝𝑖,𝑐h𝑖︸               ︷︷               ︸
( |O | − 1) classes

, (6)

where we can find that the pushing force becomes weaker due to

that the negative features only come from |O| − 1 classes. This is
illustrated in the right part of Fig. 1 (B).

These missing properties could iteratively lead to error accu-

mulation in update of features. This can be observed through the

update of h𝑖 , where we only show the gradient of h𝑖 instead of

further propagating it backward to 𝜃 for simplification:

h𝑖 = h𝑖 + 𝜂
(
1 − 𝑝𝑖,𝑦𝑖

)
w𝑦𝑖︸              ︷︷              ︸

pulling

−𝜂
𝐶∑

𝑗 ∈O, 𝑗≠𝑦𝑖
𝑝𝑖, 𝑗w𝑗︸                  ︷︷                  ︸

( |O | − 1) classes

−𝜂
∑
𝑗 ∈M

𝑝𝑖, 𝑗w𝑗︸            ︷︷            ︸
inaccurate

, (7)

where the update of features can also be decomposed into pulling

and pushing forces. The pulling force makes the features closer

towards corresponding proxies, while the pushing force makes the

features away from proxies of other classes. Compared with the

standard softmax, the pushing force is weaker due to the proxies of

missing classes could be inaccurate and the effective ones are only

from |O| − 1 classes. This could result in less compact features as

declared in [8]. Due to the update of features are too complex to

analyze, we only analyze the update of classifier in the following,

i.e., the proxies, for simplification. Another reason for this is that

the classifier is most vulnerable under label distribution shift as

aforementioned. We conclude the above analysis as a problem of

softmax with missing classes:

Property 2 (Problem of Softmax with Missing Classes).

With missing class setM, the softmax classification has following
problems: (1) the proxies of missing classes, i.e., {w𝑐 }𝑐∈M , are only
pushed away from negative features, becoming more and more in-
accurate; (2) the proxies of observed classes, i.e., {w𝑐 }𝑐∈O , are only
pushed away from |O| − 1 negative feature regions.

A natural solution for missing classes is to discard the proxies

ofM and obtain a |O|-class classification problem. However, these

proxies can not be directly discarded in FL with label distribution

non-iid data.

4 OUR METHODS
In this section, we will first formally introduce the focused problem,

i.e., FL with label distribution non-iid data, and then introduce

the drawbacks of standard FL algorithms. Finally, we present our

methods and provide a thorough analysis.
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Figure 2: Illustration of the update of proxies (3-class case). We
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A, while it only undergoes the indirect pushing on client B. With
multiple local training steps and without the balance of the pulling
force, the indirect pushing on client B could diverge a lot from the
oracle one, leading to a poor aggregation.

4.1 FL with Label Distribution Non-IID Data
Suppose we have 𝐾 clients, and each client owns a local data distri-

butionD𝑘 = P𝑘 (x, 𝑦). FL algorithms aim to optimize a combination

of local losses, i.e., min𝜓=(𝜃,{w𝑐 }𝐶𝑐=1)
∑𝐾
𝑘=1

𝑝𝑘L𝑘 (𝜓 ;D𝑘 ). 𝑝𝑘 is the

weight of each client, satisfying 𝑝𝑘 ≥ 0,
∑𝐾
𝑘=1

𝑝𝑘 = 1. L𝑘 (𝜓 ;D𝑘 )
is the local loss as in Eq. 2, while it is calculated based on local data

D𝑘 . In this paper, we focus on label distribution non-iid challenge

as categorized in [27], i.e., the P𝑘 (𝑦) may vary a lot among clients,

while the P𝑘 (x|𝑦) may be the same. Hence, we assume each client

only has access to a subset of classes. Formally, the 𝑘-th client has a

training set {(x𝑘
𝑖
, 𝑦𝑘
𝑖
)}𝑁𝑘

𝑖=1
with 𝑁𝑘 samples, and the label 𝑦𝑘

𝑖
is only

from O𝑘 , i.e., the observed class set of the 𝑘-th client. Similarly,

the missing class set is denoted asM𝑘
. Note that the local client 𝑘

actually does a |O𝑘 |-class classification problem, while the global

target aims to obtain a 𝐶-class classification model.

4.2 Drawbacks of Standard FL Algorithms
FedAvg [38], as the most standard FL algorithm, takes multiple

rounds of local and global procedures to optimize the global model.

In the beginning of each round, a subset of clients 𝑆 ⊆ K is selected,

where K is the set of all clients. Then, each selected client 𝑘 ∈ 𝑆
executes the following local procedure in parallel.

During local procedure, the client downloads the global parame-

ters, i.e., 𝜃𝑘 ← 𝜃 , w𝑘𝑐 ← w𝑐 ,∀𝑐 ∈ C. We use superscript “𝑘" to dis-

criminate local parameters from the global ones. Then, the client up-

dates the downloaded model on local training set {(x𝑘
𝑖
, 𝑦𝑘
𝑖
)}𝑁𝑘

𝑖=1
. The

downloaded global model contains the full set of proxies {w𝑐 }𝐶𝑐=1,
while the𝑘-th client only observes a partial set (i.e.,O𝑘 ) of thewhole
class set. This local training procedure is just the introduced scene

in Sect. 3.2, which has several problems as shown in Property. 2.

During server procedure, the server collects the updated pa-

rameters from these clients and takes a simple parameter aver-

aging process. We denote
ˆ𝜃𝑘 , {ŵ𝑘𝑐 }𝐶𝑐=1 as the updated parameters

of the 𝑘-th client, and the server updates the global model via:

𝜃 ← 1

|𝑆 |
∑ |𝑆 |
𝑘=1

ˆ𝜃𝑘𝑐 , w𝑐 ← 1

|𝑆 |
∑ |𝑆 |
𝑘=1

ŵ𝑘𝑐 ,∀𝑐 ∈ C. A possible problem

during aggregation is that: due to the missing classes’ proxies of the

𝑘-th client, i.e., {w𝑘𝑐 }𝑐∈M𝑘 , are updated without the pulling force,

it leads to inaccurate {ŵ𝑘𝑐 }𝑐∈M𝑘 and incurs error accumulation

during aggregation. This is illustrated in Fig. 1 (C), where the server

aims to build a 5-class classification model while the two clients

only observe 3 and 2 classes respectively. Proxies w4, w5 on client

A, and w1, w2, w3 on client B could become inaccurate, leading to

a poor aggregation.

4.3 Restricted Softmax and FedRS
During local procedure, we advocate that the update of missing
classes’ proxies, i.e., {w𝑘𝑐 }𝑐∈M𝑘 , should be restricted. An easy way to

implement this is adding “scaling factors" to softmax operation, i.e.,

𝑝𝑘𝑖,𝑐 =
exp(𝛼𝑘𝑐 w𝑘𝑐

𝑇
h𝑘
𝑖
)∑𝐶

𝑗=1 exp(𝛼𝑘𝑗 w
𝑘
𝑗

𝑇
h𝑘
𝑖
)
, (8)

which is denoted as restricted softmax. We set 𝛼𝑘𝑐 = I{𝑐 ∈ O𝑘 }+
𝛼I{𝑐 ∈ M𝑘 }, where 𝛼 ∈ [0, 1]] is the only hyper-parameter. This

is an asymmetric scaling way that works normally with 𝛼𝑘𝑐 = 1 for

observed classes while works as a decaying method with 𝛼𝑘𝑐 = 𝛼 for

missing classes. Although it is a simple modification, we in-depth

analyze the brought advantages from several aspects.

Restricting update of missing classes’ proxies. Based on the

cross-entropy loss L𝑘 = −∑𝑁𝑘

𝑖=1

∑𝐶
𝑐=1 I{𝑦𝑘𝑖 = 𝑐} log 𝑝𝑘

𝑖,𝑐
, we can

obtain the gradients of w𝑘𝑐 :

𝜕L𝑘

𝜕w𝑘𝑐
= −𝛼𝑘𝑐

𝑁𝑘∑
𝑖=1

(
I{𝑦𝑘𝑖 = 𝑐} − 𝑝𝑘𝑖,𝑐

)
h𝑘𝑖 . (9)

For missing class 𝑐 ∈ M𝑘
, we have 𝛼𝑘𝑐 = 𝛼 and the update

process of w𝑘𝑐 is:

w𝑘𝑐 = w𝑘𝑐 −𝛼𝜂
𝑁𝑘∑
𝑖=1

𝑝𝑘𝑖,𝑐h
𝑘
𝑖︸            ︷︷            ︸

restricted

, (10)

where we can find that the pushing force is restricted with𝛼 ∈ [0, 1].
If we take 𝛼 = 0, it degenerates into fixed proxies (if we do not

consider weight decay); if 𝛼 = 1, it is just normal softmax. Overall,

the norm of missing classes’ gradients is restricted.

Restricting the inaccurate terms in update of features. For
the 𝑖-th instance, we have 𝛼

𝑦𝑘
𝑖
= 1, 𝛼 𝑗 ∈O𝑘 = 1, and 𝛼 𝑗 ∈M = 𝛼 . We

can obtain the update process of its corresponding features h𝑘
𝑖
:

h𝑘𝑖 = h𝑘𝑖 + 𝜂 (1 − 𝑝
𝑘
𝑖,𝑦𝑖
)w𝑘𝑦𝑖

−𝜂
𝐶∑

𝑗 ∈O𝑘 , 𝑗≠𝑦𝑘
𝑖

𝑝𝑘𝑖,𝑗w
𝑘
𝑗 −𝛼𝜂

∑
𝑗 ∈M𝑘

𝛼𝑝𝑘𝑖,𝑗w
𝑘
𝑗︸                  ︷︷                  ︸

restricted

, (11)

where we can find that the inaccurate term in Eq. 7 is restricted by

the scaling factor 𝛼 . This brings one benefit that the features are

updated towards more accurate directions.

Leading to more accurate aggregation of proxies.We use the

restricted softmax during local training and aggregate the model as

usual. We name our method as “Federated learning with Restricted

Softmax", i.e., FedRS. We present and analyze the aggregation

process of proxies in detail, i.e., w𝑐 ← 1

|𝑆 |
∑ |𝑆 |
𝑘=1

ŵ𝑘𝑐 ,∀𝑐 ∈ C. In



FedAvg, the local procedure will update the downloaded parameters

on local training data for several epochs. This is too complex to

analyze, and we simplify this local procedure by only taking one

gradient descent step. With restricted softmax, we can obtain the

following propsition:

Propsition 1 (Aggregation with Restricted Softmax). If
we only take one gradient step during local procedure and use the
restricted softmax in Eq. 8, the global update of w𝑐 can be actually
decomposed as:

w𝑐 = w𝑐 +
𝜂

|𝑆 |

|𝑆 |∑
𝑘=1

𝑁𝑘∑
𝑖=1

𝐼𝑘
1,𝑖,𝑐 (1 − 𝑝

𝑘
𝑖,𝑐 )h

𝑘
𝑖︸                              ︷︷                              ︸

Part1: pulling

− 𝜂|𝑆 |

|𝑆 |∑
𝑘=1

𝑁𝑘∑
𝑖=1

𝐼𝑘
2,𝑖,𝑐𝑝

𝑘
𝑖,𝑐h

𝑘
𝑖︸                        ︷︷                        ︸

Part2: direct pushing

−𝛼𝜂|𝑆 |

|𝑆 |∑
𝑘=1

𝑁𝑘∑
𝑖=1

𝐼𝑘
3,𝑐𝑝

𝑘
𝑖,𝑐h

𝑘
𝑖︸                      ︷︷                      ︸

Part3: indirect pushing

, (12)

where 𝐼𝑘
1,𝑖,𝑐

= I{𝑐 ∈ O𝑘 , 𝑦𝑘
𝑖
= 𝑐}, 𝐼𝑘

2,𝑖,𝑐
= I{𝑐 ∈ O𝑘 , 𝑦𝑘

𝑖
≠ 𝑐}, and

𝐼𝑘
3,𝑐

= I{𝑐 ∈ M𝑘 } are indication functions.

Proof. The proof can be found in Appendix. □

The above Eq. 12 shows the proxies’ update process on the server

and it is the aggregation of local updates (Eq. 6). For a specific class

𝑐 , we categorize the clients according to whether the client has

access to samples of this class or not. If the 𝑘-th client observes this

class, it can pull the proxy w𝑐 towards the positive features (Part1).
Simultaneously, it can push the proxy w𝑐 away from a subset of

negative classes (Part2). Otherwise, if the 𝑘-th client does not ob-

serve the 𝑐-th class, i.e., the 𝑐-th class belongs to the missing class

set of the 𝑘-th client, only the pushing force is imposed (Part3).

This is illustrated in Fig. 2, where we show a demo with 3 classes.

Client A has data X1, and the proxy w1 is updated with forces of

pulling and direct pushing. However, the X1 on client B is missing

and w1 is imposed only with indirect pushing force. If we only take

one update step on each client, the aggregation process is accurate

and can be seen as an update with access to full class set. However,

FL algorithms take multiple steps on local clients to reduce commu-

nication cost. Without the balance of pulling force, the individual

indirect pushing force will be more and more inaccurate. As shown

in Eq. 12, our proposed FedRS can restrict the indirect pushing

force.

We then analyze the “strength” of the forces in FedRS. As shown

in [8], the more of the number of classes, the learned features are

more compact and the proxies are more discriminative. In Eq. 12, the

proxyw𝑐 is pulled towards positive features of its own class (Part 1),
directly pushed away from atmost𝐶2 ≜ |

⋃
𝑘∈𝑆,𝑐∈O𝑘 O𝑘 |−1 classes

(Part 2), and indirectly pushed away from 𝐶3 ≜ |
⋃
𝑘∈𝑆,𝑐∈M𝑘 M𝑘 |

classes (Part 3). This implies that the client selection ratio and the

specific class distribution in each client determines the strength of

these forces. For example, if we select all clients in each round, i.e.,

𝑆 = K , 𝐶2 achieves its maximum value and the impact of indirect

pushing will become relatively smaller. Hence, we advocate that

FedRS can be more effective when client selection ratio is small,

Figure 3: Visualization of learned features and proxies with 10, 5,
and 2 observed classes respectively. For the latter two scenes, we also
use the complete network with 10 proxies. The white arrows show
the proxies of the missing classes.

which is empirically verified in experimental studies (Fig. 7). The

complete pseudo code of FedRS can be found in Appendix.

4.4 Discussion from Other Aspects
Effective Learning Rate Adding scaling factors to softmax can be

seen as applying an effective learning rate [2]. Our work can be seen

as only decaying the learning rate of missing classes during local

procedure and the effective learning rate is actually 𝛼𝜂, 𝛼 ∈ [0, 1].
PC-Softmax PC-Softmax [41] proves the softmax cross entropy

loss is a variational lower bound of mutual information between

inputs and labels, using exp(w𝑇𝑐 h)/(
∑𝐶
𝑗=1 𝑝 (𝑦 = 𝑗) exp(w𝑇

𝑗
h)) as

a probability corrected estimator for imbalanced data. If the prior

distribution 𝑝 (𝑦) is uniform, it differs from the normal softmax only

with a constant. Our work can be seen as a similar way that correct

the problem of imbalanced data from the aspect of “scores" as

𝑝𝑐 ∝ exp(𝑝 (𝑦 = 𝑐)w𝑇𝑐 h), where we take a smooth prior distribution

𝑝 (𝑦 = 𝑐) ∝ I{𝑐 ∈ O} + 𝛼I{𝑐 ∈ M}.
Transfer Adaptation The local procedure can be viewed as fine-

tuning the downloaded global model on local data. As aforemen-

tioned, the classifier is most task-specific [54]. Our work can be

seen as a careful finetuning process with more attention on the

final layer faced with missing classes.

Weight Divergence The mismatch between global target and local

data distributions will lead to weight divergence as shown in [53,

57]. Some approaches are proposed to constrain the update of local

models, i.e., FedProx [35], FedMMD [52], etc. Our method works

as diving into the final layer of the network and only constraining

the missing classes’ proxies instead of the whole model.

Fine-Grained Aggregation Standard FL algorithms take a simple

parameter averaging for the proxies, e.g., w𝑐 ←
∑
𝑘 𝑝𝑘 ŵ𝑘𝑐 , where

𝑝𝑘 is either set uniformly or proportional to the number of samples

that the clients own. This is a coarse-grained aggregation. Consid-

ering the 𝑐-th class, the distribution among clients should be set as

𝑝𝑘,𝑐 = 𝑁𝑘,𝑐/
∑
𝑘 𝑁𝑘,𝑐 , where𝑁𝑘,𝑐 is the number of 𝑐-th class samples

on 𝑘-th client. The fine-grained aggregation is w𝑐 ←
∑
𝑘 𝑝𝑘,𝑐ŵ𝑘𝑐 .

We can also take a laplace smoothing, i.e., 𝑝𝑘,𝑐 ∝ 𝑁𝑘,𝑐 + 𝜆. Hence,
if one client observes no samples of the 𝑐-th class, its importance

is only proportional to 𝜆 due to 𝑁𝑘,𝑐 = 0. Our method is related to

this when the 𝛼 is small. For example, if we force 𝛼 = 0, the proxies

of missing classes will not be updated (without weight decay) and

it will not contribute to the aggregation.



Figure 4: Visualization of learned features and proxies in FL with
a 2-client label distribution shift scene (the 5-th round). We only
plot for the first client. The two rows show FedAvg and FedRS (𝛼 =

0.5) respectively. The three columns show the extracted features and
proxies of the newly-downloadedmodel, local tunedmodel, and the
aggregated model respectively. The white arrows show the proxies
of the missing classes.

5 EXPERIMENTS
We investigate our methods on several FL scenes with label dis-

tribution shift based on Mnist [31], Cifar10/Cifar100 [29]. We also

investigate the performances of FedRS on large scale FL datasets, i.e.,

Shakespeare/FEMNIST in LEAF [5]. Finally, we report the effective-

ness of FedRS on a real-world service awareness application. Some

dataset details and hyper-parameters can be found in Appendix.

5.1 Visualization Results
We verify the motivation of our method via visualization on Mnist.

We slightly modify LeNet [32] by setting the final output dimension

as 2 for better visualization. First, we plot the learned features and

proxies with 10, 5, and 2 observed classes respectively. We train

the model for 50 epochs. The results are shown in Fig. 3, where the

arrows show the learned proxies and the white ones show proxies

of missing classes. We scale the norm of proxies by 10x. With all

classes observed, we can find that the features are compact and the

proxies are accurate. With only 5 observed classes, the regions of

features become less compact and the proxies of missing classes are

nearly zero. With only 2 observed classes, the proxies of missing

classes are only forced to be away from the feature regions. Not

so rigorously, proxies of missing classes are updated towards the

negative direction of existing samples’ center.

Then, we visualize the learned features and proxies in a label

distribution shift scene with only 2 clients. The first client owns

samples from class set {0, 1, 2, 3, 4}while the second one has samples

from {5, 6, 7, 8, 9}. We take 200 global rounds and 2 local epochs

in each round. We plot the learned features and proxies at the 5-

th round in Fig. 4. The two rows compare FedAvg (FedRS with

𝛼 = 1.0) and FedRS (𝛼 = 0.5) on the first client. The first column

shows the beginning of local procedure, i.e., the extracted features

via the newly-downloaded global model and its proxies. The second

column shows the local tuned results with only local 5 classes. We
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Figure 5: Performance comparisons based on TFCNN with various
𝛼 in FedRS. Each row shows a scene. The four columns vary in local
epochs. 𝛼 = 1.0 is just FedAvg, which performs poorly. FedRS with
𝛼 = 0.5 can almost obtain the best results.

can obviously observe that proxies of missing classes are suppressed

towards zero in FedAvg, while FedRS can alleviate this phenomenon.

Correspondingly, the aggregated proxies become inaccurate and the

extracted features become less compact in FedAvg, while FedRS can

get more discriminative proxies and the features are more compact

as shown in the last column. This directly shows the problems

of FedAvg faced with label distribution non-iid data and verifies

the superiorities of FedRS. The visualization at the 200-th round is

provided in Appendix.

5.2 Performance Comparisons
Basic Settings We then compare the performances based on Ci-

far10/Cifar100. We construct label distribution shift scenes via label

partitions as done in several previous works [33, 55, 57]. Specif-

ically, we decentralize the data onto 100 clients with each client

only has a subset of classes. We construct three scenes: Cifar10-

100-5, Cifar10-100-2, and Cifar100-100-20. Take Cifar10-100-5 as

an example, we split the samples of each class into 50 shards and

obtain 10 × 50 = 500 shards in all, then we randomly allocate 5

shards to each client. Hence, each client contains 5 classes on av-

erage and 100 samples for each class. We take 1000 global rounds,

a batch size of 64, and a weight decay of 5𝑒 − 4. We use SGD with

momentum 0.9 as the optimizer, and use a constant learning rate

of 0.03. In each global round, we randomly select 10% clients. We

report the accuracy of aggregated model on the global test set, i.e.,

the test partition of Cifar10/Cifar100. We mainly compare FedRS

under different settings of 𝛼 , i.e., {0.0, 0.1, 0.5, 0.9, 1.0}. For 𝛼 = 1.0,

it degenerates into FedAvg. We also investigate the impact of local

epochs in each round, i.e., {1, 2, 3, 5}. We investigate the perfor-

mances with different backbones, including TFCNN (Tensorflow

CNN)
1
used in FedAvg [38] and VGG11 without BN in PyTorch

2
.

The results with VGG11 backbone are presented in Appendix.

Results and Analysis The convergence curves based on TFCNN

are plotted in Fig. 5. The three rows correspond to the three scenes

and the columns vary in the local epochs. We can observe that

1
https://www.tensorflow.org/tutorials/images/cnn

2
https://pytorch.org/docs/stable/torchvision/models.html

https://www.tensorflow.org/tutorials/images/cnn
https://pytorch.org/docs/stable/torchvision/models.html
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Figure 6: Statistics during optimization in two scenes. Each row
shows a scene. The three columns show “gradients of missing
classes’ proxies", “gradients of observed classes’ proxies", and “prob-
ability of observed classes" respectively.
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Figure 7: Performance comparisons with different client selection
ratios (𝑄). The top and bottom shows two scenes. Each line corre-
sponds to a setting of selection ratio. The x-axis shows the settings
of 𝛼 .

FedAvg (FedRS with 𝛼 = 1.0) converges slower and fluctuates a

lot. FedRS with 𝛼 = 0.5 can almost obtain the best performances.

Taking a closer look at FedRS with 𝛼 = 0.9 and 𝛼 = 0.0, we can find

setting 𝛼 = 0.9 can obtain better performances than FedAvg, while

it also oscillates slightly. In most cases, FedRS with 𝛼 = 0.0 can get

comparable results with 𝛼 = 0.5, while it could become worse with

more local epochs. From another aspect, with more local epochs,

FedAvg converges earlier but with larger fluctuations. However,

FedRS with 𝛼 = 0.5 can always obtain stable improvements.

We then plot some statistics during the training procedure of

FedRS with different settings of 𝛼 . We show the statistics in the

Cifar10-100-5 and Cifar10-100-2. The most concerning statistic

is the gradients of missing classes’ proxies. We calculate norms

of these gradients in each client and report the mean value as

shown in the first column of Fig. 6 (denoted as “Grad.Norm of

Missing.Cs").We can find that smaller𝛼 can indeed lead to gradients

with smaller norms, which prevents the missing classes’ proxies

being updated too much. We also care about the ones of observed

Table 1: Performance comparisons with standard FL algorithms
(TFCNN). Columns correspond to three scenes. The average accu-
racy of the last 50 rounds and the standard deviations are reported.

C10-100-5 C10-100-2 C100-100-20

FedAvg 71.6+ 1.524 55.9+ 3.376 41.1+ 0.684

FedMMD (0.0001) [52] 72.0+ 1.492 54.7+ 3.047 41.7+ 0.608

FedMMD (0.001) [52] 71.5+ 1.590 53.5+ 3.582 41.3+ 0.595

FedProx (0.0001) [35] 71.4+ 1.609 52.9+ 3.429 41.1+ 0.698

FedProx (0.001) [35] 73.0+ 1.123 55.1+ 3.210 41.2+ 0.644

FD [26] 73.7+ 0.772 64.2+ 1.736 42.1+ 0.227

FLDA [40] 67.4+ 0.180 58.8+ 0.521 37.6+ 0.138

FedAwS [55] 75.4+ 0.578 62.4+ 2.304 44.3+ 0.304

Scaffold [28] 72.3+ 1.338 56.6+ 3.284 41.8+ 0.569

FedRS (𝛼 = 0.5) 78.0+ 0.141 70.8+ 0.203 45.7+ 0.201

FedRS (𝛼 = 0.9) 77.2+ 0.338 69.8+ 0.665 45.6+ 0.252

Scaffold [28]/RS (𝛼 = 0.5) 78.4+ 0.176 71.5+ 0.169 46.0+ 0.168

classes. We plot them in the second column (denoted as “Grad.Norm

of Observed.Cs"). There is a similar phenomenon that smaller 𝛼

can lead to smaller norms. We explain this via the magnitude of

observed classes’ probabilities, i.e., 𝑝𝑘
𝑖,𝑐
. Form the third column

(denoted as “Probability of Observed.Cs"), we can find that smaller

𝛼 leads to larger 𝑝𝑘
𝑖,𝑐
. Since the gradients of observed classes’ proxies

have a term I{𝑦𝑘
𝑖
= 𝑐} − 𝑝𝑘

𝑖,𝑐
, larger 𝑝𝑘

𝑖,𝑐
leads to slower update.

Studies on Client Selection Ratio We investigate the perfor-

mances of FedRS with different client selection ratios (denoted

as 𝑄). We set 𝑄 ∈ {0.1, 0.5, 1.0} and plot the average accuracy of

the last 50 rounds and the deviations based on TFCNN in Fig. 7. We

find that with smaller 𝐶 = 0.1, the performance degradation from

𝛼 < 1.0 to 𝛼 = 1.0 is especially obvious. Larger client selection

ratio can mitigate this gap progressively and make the fluctuations

smaller. In real-world applications, due to large amounts of clients

or limited transmission, a smaller ratio is required to deal with

stragglers. This implies that our method is especially advantageous

with smaller client selection ratio as analyzed in the last of Sect. 4.3.

Comparing with Other FL MethodsWe compare our methods

with other FL methods including: FedMMD [52] and FedProx [35]

based on regularization; FD [26] based on federated distillation;

FLDA [40] based on private-shared model; FedAwS [55] based on

spreading out; Scaffold [28] based on momentum and controllable

variates. We take 2 local epochs and randomly select 10% clients in

each round. Both the average accuracy of the last 50 rounds based

on TFCNN and the deviations are listed in Tab. 1. For FedMMD

and FedProx, we vary the coefficient of the regularization term in

{0.0001, 0.001}. We only show the results of FedRS with 𝛼 = 0.5

and 𝛼 = 0.9, and we can find that our methods can obtain the

best performances (bolded). We also find that our method can be

easily combined with other methods, e.g., Scaffold, and we report

the performances in the last row, which can further improve the

performances. The results based on VGG11 are shown in Appendix.

5.3 Large Scale Datasets
We also investigate the settings of 𝛼 on large scale FL scenes, includ-

ing Shakespeare and FEMNIST from LEAF
3
[5]. The Shakespeare

3
https://leaf.cmu.edu/

https://leaf.cmu.edu/
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Figure 8: Performance comparisons on Shakespeare scene. Four
settings of client selection ratio𝑄 and batch size 𝐵 are investigated.
Each plot shows both training loss and test accuracy.
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Figure 9: Performance comparisons on FEMNIST scene. Two set-
tings of local epoch are investigated. Each plot shows both training
loss and test accuracy.

scene is a next character prediction task, where each speaking role

in each play is constructed as an individual client [38]. It contains

1129 clients and each client owns 3743 samples on average. There

are 3550 different users in FEMNIST and each user owns 229 sam-

ples on average. For both two scenes, We split local data into 80% as

local training set on this client, and the other 20% across all clients

are combined as a global test set. Although these two scenes are

not typical label distribution non-iid scenes, there exists obvious

label imbalance on each client. For example, the fraction of classes

with a sample size greater than 20 (2) in Shakespeare (FEMNIST) is

only 53/81 (25/62). There are 81 and 62 classes in Shakespeare and

FEMNIST respectively. Hence, for each local client, we view classes

with samples less than 20 (2) in Shakespeare (FEMNIST) as missing

classes. We train FedRS with different 𝛼 on these two scenes. We

utilize networks used in LEAF [5]. Details and hyper-parameters

can be found in Appendix. The results are shown in Fig. 8 and Fig. 9.

We vary different settings of client selection ratio 𝑄 , batch size 𝐵,

and local epoch in these two scenes, and we can find that FedRS

with 𝛼 = 0.5 can almost obtain the best performances.

5.4 Real-World Application
We finally compare FedRS with other FL methods on a real-world

service awareness application, which is denoted as SA. This task

aims to identify which APP is used through network byte streams.

The total number of APPs is 32. There are 89 local clients. Each

client only has samples from 17.5 classes on average. We utilize a

CNN as the classification model. More details of SA and the network
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Figure 10: Performance comparisons on SA scene.

can be found in Appendix. We take 2000 rounds, and report the

test accuracy on a global test set every 10 rounds. Due to this is

a real-world application, we add Gaussian noise N(0, 𝜎2) to each

uploaded parameter individually. This can lead to stricter privacy

protection, and the detail can be found in Appendix.We take 𝜎 = 0.1

and report the accuracy curves in Fig. 10. We can find that FedRS

with 𝛼 = 0.1 can obtain the best performances.

6 CONCLUSION
We study the label distribution non-iid challenge in FL and in-depth

analyze themost vulnerable layer, i.e., softmax classification layer in

deep networks. We advocate the classification weights of missing

classes should be updated carefully during local procedure. We

propose Restricted Softmax and FedRS to obtain a more accurate

aggregation. Abundant experimental studies verify the superiorities

of our methods.

7 ACKNOWLEDGEMENTS
This research was supported by National Natural Science Foun-

dation of China (Grant Nos. 61773198, 61632004 and 61921006),

and NSFC-NRF Joint Research Project under Grant 61861146001.

Professor De-Chuan Zhan is the corresponding author.

REFERENCES
[1] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In

Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security. 308–318.

[2] Atish Agarwala, Jeffrey Pennington, Yann N. Dauphin, and Samuel S. Schoenholz.

2020. Temperature check: theory and practice for training models with softmax-

cross-entropy losses. CoRR abs/2010.07344 (2020).

[3] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav

Choudhary. 2019. Federated Learning with Personalization Layers. CoRR
abs/1912.00818 (2019).

[4] Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, and Marc Tommasi. 2018. Per-

sonalized and Private Peer-to-Peer Machine Learning. In International Conference
on Artificial Intelligence and Statistics, Vol. 84. 473–481.

[5] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konecný, H. Brendan McMahan,

Virginia Smith, and Ameet Talwalkar. 2018. LEAF: A Benchmark for Federated

Settings. CoRR abs/1812.01097 (2018).

[6] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Aréchiga, and Tengyu Ma. 2019.

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss. In

Advances in Neural Information Processing Systems 32. 1565–1576.
[7] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Michael I. Jordan. 2018. Par-

tial Transfer Learning With Selective Adversarial Networks. In IEEE Conference
on Computer Vision and Pattern Recognition. 2724–2732.

[8] Binghui Chen, Weihong Deng, and Haifeng Shen. 2018. Virtual Class Enhanced

Discriminative Embedding Learning. InAdvances in Neural Information Processing
Systems 31. 1946–1956.

[9] Fei Chen, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. 2018. Federated Meta-

Learning for Recommendation. CoRR abs/1802.07876 (2018).



[10] Mingqing Chen, Ananda Theertha Suresh, Rajiv Mathews, Adeline Wong, Cyril

Allauzen, Françoise Beaufays, and Michael Riley. 2019. Federated Learning of

N-Gram Language Models. In Proceedings of the 23rd Conference on Computational
Natural Language Learning. 121–130.

[11] Luca Corinzia and Joachim M. Buhmann. 2019. Variational Federated Multi-Task

Learning. CoRR abs/1906.06268 (2019).

[12] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le,

Mark Z. Mao, Marc’Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang,

and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In Advances in
Neural Information Processing Systems 25. 1232–1240.

[13] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. 2020. Personalized

Federated Learning with Moreau Envelopes. In Advances in Neural Information
Processing Systems 33.

[14] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differen-

tial Privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4 (2014),
211–407.

[15] Alireza Fallah, Aryan Mokhtari, and Asuman E. Ozdaglar. 2020. Personalized Fed-

erated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning

Approach. In Advances in Neural Information Processing Systems 33.
[16] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-

Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning. 1126–1135.

[17] Robin C. Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially Private Feder-

ated Learning: A Client Level Perspective. CoRR abs/1712.07557 (2017).

[18] Ross B. Girshick. 2015. Fast R-CNN. In 2015 IEEE International Conference on
Computer Vision. 1440–1448.

[19] Samantha Guerriero, Barbara Caputo, and Thomas Mensink. 2018. DeepNCM:

Deep Nearest Class Mean Classifiers. In 6th International Conference on Learning
Representations.

[20] Jenny Hamer, Mehryar Mohri, and Ananda Theertha Suresh. 2020. FedBoost: A

Communication-Efficient Algorithm for Federated Learning. In Proceedings of
the 37th International Conference on Machine Learning. 3973–3983.

[21] Munawar Hayat, Salman H. Khan, Waqas Zamir, Jianbing Shen, and Ling Shao.

2019. Max-margin Class Imbalanced Learning with Gaussian Affinity. CoRR
abs/1901.07711 (2019).

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition. 770–778.

[23] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. 2019.

Learning a Unified Classifier Incrementally via Rebalancing. In IEEE Conference
on Computer Vision and Pattern Recognition. 831–839.

[24] Muhammad Abdullah Jamal, Matthew Brown, Ming-Hsuan Yang, Liqiang Wang,

and Boqing Gong. 2020. Rethinking Class-Balanced Methods for Long-Tailed Vi-

sual Recognition From a Domain Adaptation Perspective. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 7607–7616.

[25] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. 2009.

What is the best multi-stage architecture for object recognition?. In IEEE 12th
International Conference on Computer Vision. 2146–2153.

[26] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and

Seong-Lyun Kim. 2018. Communication-Efficient On-Device Machine Learning:

Federated Distillation and Augmentation under Non-IID Private Data. CoRR
abs/1811.11479 (2018).

[27] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi

Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode,

Rachel Cummings, Rafael G. L. D’Oliveira, Salim El Rouayheb, David Evans, Josh

Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Chaoyang He, Lie He,

Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri

Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushan-

far, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri,

Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel

Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng

Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu

Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao.

2019. Advances and Open Problems in Federated Learning. CoRR abs/1912.04977

(2019).

[28] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Se-

bastian U. Stich, and Ananda Theertha Suresh. 2020. SCAFFOLD: Stochastic

Controlled Averaging for Federated Learning. In Proceedings of the 37th Interna-
tional Conference on Machine Learning. 5132–5143.

[29] Alex Krizhevsky. 2012. Learning Multiple Layers of Features from Tiny Images.

(2012).

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Clas-

sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 25. 1106–1114.

[31] Yann LeCun. 1998. The mnist database of handwritten digits. (1998). http:

//yann.lecun.com/exdb/mnist/

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–

2324.

[33] Daliang Li and Junpu Wang. 2019. FedMD: Heterogenous Federated Learning

via Model Distillation. CoRR abs/1910.03581 (2019).

[34] Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and Alexander

Smola. 2013. Parameter server for distributed machine learning. In Big Learning
NeurIPS Workshop, Vol. 6. 2.

[35] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and

Virginia Smith. 2020. Federated Optimization in Heterogeneous Networks. In

Proceedings of Machine Learning and Systems.
[36] Paul Pu Liang, Terrance Liu, Ziyin Liu, Ruslan Salakhutdinov, and Louis-Philippe

Morency. 2020. Think Locally, Act Globally: Federated Learning with Local and

Global Representations. CoRR abs/2001.01523 (2020).

[37] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S.

Yu. 2013. Transfer Feature Learning with Joint Distribution Adaptation. In IEEE
International Conference on Computer Vision. 2200–2207.

[38] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-

works fromDecentralized Data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics. 1273–1282.

[39] Yair Movshovitz-Attias, Alexander Toshev, Thomas K. Leung, Sergey Ioffe, and

Saurabh Singh. 2017. No Fuss Distance Metric Learning Using Proxies. In IEEE
International Conference on Computer Vision. 360–368.

[40] Daniel Peterson, Pallika Kanani, and Virendra J. Marathe. 2019. Private Federated

Learning with Domain Adaptation. CoRR abs/1912.06733 (2019).

[41] Zhenyue Qin and Dongwoo Kim. 2019. Rethinking Softmax with Cross-Entropy:

Neural Network Classifier as Mutual Information Estimator. CoRR abs/1911.10688

(2019).

[42] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil

Lawrence. 2009. Dataset Shift in Machine Learning. (01 2009).

[43] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays.

2019. Federated Learning for Emoji Prediction in a Mobile Keyboard. CoRR
abs/1906.04329 (2019).

[44] Neta Shoham, Tomer Avidor, Aviv Keren, Nadav Israel, Daniel Benditkis, Liron

Mor-Yosef, and Itai Zeitak. 2019. Overcoming Forgetting in Federated Learning

on Non-IID Data. CoRR abs/1910.07796 (2019).

[45] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S. Talwalkar. 2017.

Federated Multi-Task Learning. In Advances in Neural Information Processing
Systems 30. 4424–4434.

[46] Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017. Prototypical Networks

for Few-shot Learning. In Advances in Neural Information Processing Systems 30.
4077–4087.

[47] Shuhan Tan, Xingchao Peng, and Kate Saenko. 2019. Generalized Domain Adap-

tation with Covariate and Label Shift CO-ALignment. CoRR abs/1910.10320

(2019).

[48] KangWei, Jun Li, Ming Ding, ChuanMa, Howard H. Yang, Farhad Farokhi, Shi Jin,

Tony Q. S. Quek, and H. Vincent Poor. 2020. Federated LearningWith Differential

Privacy: Algorithms and Performance Analysis. IEEE Transactions on Information
Forensics and Security 15 (2020), 3454–3469.

[49] Kilian Q. Weinberger, John Blitzer, and Lawrence K. Saul. 2005. Distance Metric

Learning for Large Margin Nearest Neighbor Classification. In Advances in Neural
Information Processing Systems 18. 1473–1480.

[50] Xi-Zhu Wu, Song Liu, and Zhi-Hua Zhou. 2019. Heterogeneous Model Reuse via

Optimizing Multiparty Multiclass Margin. In Proceedings of the 36th International
Conference on Machine Learning. 6840–6849.

[51] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. FederatedMachine

Learning: Concept and Applications. ACM Transactions on Intelligent Systems
and Technology 10, 2 (2019), 12:1–12:19.

[52] Xin Yao, Chaofeng Huang, and Lifeng Sun. 2018. Two-Stream Federated Learning:

Reduce the Communication Costs. In IEEE Visual Communications and Image
Processing. 1–4.

[53] Xin Yao, Tianchi Huang, Rui-Xiao Zhang, Ruiyu Li, and Lifeng Sun. 2019. Fed-

erated Learning with Unbiased Gradient Aggregation and Controllable Meta

Updating. CoRR abs/1910.08234 (2019).

[54] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How transfer-

able are features in deep neural networks?. In Advances in Neural Information
Processing Systems 27. 3320–3328.

[55] Felix X. Yu, Ankit Singh Rawat, Aditya Krishna Menon, and Sanjiv Kumar. 2020.

Federated Learning with Only Positive Labels. In Proceedings of the 37th Interna-
tional Conference on Machine Learning. 10946–10956.

[56] Andrew Zhai and Hao-Yu Wu. 2018. Making Classification Competitive for Deep

Metric Learning. CoRR abs/1811.12649 (2018).

[57] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chan-

dra. 2018. Federated Learning with Non-IID Data. CoRR abs/1806.00582 (2018).

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


A EXPERIMENTAL DETAILS
We first report the details of the investigated scenes from several

aspects: the number of clients 𝐾 , the total number of classes 𝐶 ,

the observed classes of each client on average Avg.|O𝑘 |, the total
training samples of each client on average Avg.|𝑁𝑘 |, and the num-

ber of global test samples Test.𝑁 . The details are shown in Tab. 2.

The Mnist scene is used for visualization and others are used for

performance comparison. For the real-world SA dataset, we plot

the class distributions of the 89 clients in Fig. 11. We then report

the default hyper-parameters of these scenes including: number of

global rounds 𝑅, number of local epochs 𝐸, client selection ratio 𝑄 ,

learning rate 𝜂, momentum 𝜇, batch size 𝐵, and the network. With-

out additional declaration, we use these as default and list them in

Tab. 3. Finally, we report the details of utilized networks including:

the total number of parameters in feature extractor (Num.Ps.Feat),

the dimension of features 𝑑 , and the total number of layers 𝐿 (we

do not count the pooling or activation layers owing to they do not

contain parameters). These are shown in Tab. 4.

B STRICTER PRIVACY PROTECTION IN SA
We resort to differential privacy [1, 14, 48] (DP) for stricter privacy

protection in SA. Formally, the (𝜖, 𝛿)-DP is defined as:

Definition B.1 ((𝜖, 𝛿)-DP [14]). A randomized mechanismM :

X → R with domain X and range R satisfies (𝜖, 𝛿)-DP, if for
all measurable sets S ⊆ R and for any two adjacent datasets
D𝑖 ,D ′𝑖 ∈ X,

𝑃𝑟 [M(D𝑖 ) ∈ S] ≤ 𝑒𝜖𝑃𝑟
[
M(D ′𝑖 ) ∈ S

]
+ 𝛿. (13)

The 𝛿 > 0 is a relaxation term that allows a smaller probability

of privacy protection in some cases. With an arbitrarily given 𝛿 , a

Table 2: Details of the investigated scenes. Each row shows a scene.

𝐾 𝐶 Avg.|O𝑘 | Avg.|𝑁𝑘 | Test.𝑁

Mnist 2 10 5 27.5k 10k

C10-100-5 100 10 5 500 10k

C10-100-2 100 10 2 500 10k

C100-100-20 100 100 20 500 10k

Shakespeare 1129 81 53 2994 845k

FEMNIST 3550 62 25 181 161k

SA 89 32 17.5 576 18k
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Figure 11: The label distributions in SA. Each column in themiddle
shows the label distribution of a single client. There are 89 clients
and 32 classes in total. The top shows the number of samples in each
client, and the right shows the number of samples in each class.

Table 3: Default hyper-parameters for each scene.

𝑅 𝐸 𝑄 𝜂 𝜇 𝐵 Network

Mnist 200 2 1.0 0.1 0.9 64 LeNet

C10-100-5 1000 2 0.1 0.03 0.9 64 TF/VGG11

C10-100-2 1000 2 0.1 0.03 0.9 64 TF/VGG11

C100-100-20 1000 2 0.1 0.03 0.9 64 TF/VGG11

Shakespeare 1000 1 0.01 1.47 0.0 10 CharLSTM

FEMNIST 1000 1 0.001 0.004 0.0 10 FeCNN

SA 2000 5 0.1 0.01 0.9 64 SACNN

Table 4: Details of utilized networks.

Num.Ps.Feat 𝑑 𝐿

LeNet 33,654 2 5

TFCNN (TF) 56,320 1024 4

VGG11 9,220,480 512 9

CharLSTM 799,368 256 4

FeCNN 6,476,672 2048 4

SACNN 15,984 256 7

Algorithm 1 FedRS

ServerProcedure:
1: for global round 𝑟 = 0, 1, 2, . . . , 𝑅 do
2: 𝑆𝑡 ← sample max(𝑄 · 𝐾, 1) clients
3: for 𝑘 ∈ 𝑆𝑡 do
4:

ˆ𝜓𝑘𝑡 ← ClientProcedure(𝑘 ,𝜓𝑡 )

5: end for
6: 𝜓𝑡+1 ←

∑ |𝑆𝑡 |
𝑘=1

1

|𝑆𝑡 |
ˆ𝜓𝑘𝑡

7: end for
ClientProcedure(𝑘 ,𝜓𝑡 ):

1: 𝜓𝑘𝑡 ← 𝜓𝑡
2: for local epoch 𝑒 = 1, 2, . . . , 𝐸 do
3: for each batch with 𝐵 samples from D𝑘 do
4: Apply restricted softmax as in Eq. 8 and calculate cross

entropy loss, update𝜓𝑡 using, e.g., SGD with momentum

5: end for
6: end for
7: Return: the updated model

ˆ𝜓𝑘𝑡

larger 𝜖 gives a clearer distinguishability of adjacent datasets and
hence a higher risk of privacy violation. The (𝜖, 𝛿)-DP can be guar-

anteed via adding Gaussian noise, e.g., N(0, 𝜎2). The noise scale
should satisfy 𝜎 ≥ 𝑐Δ𝑠/𝜖 , where 𝑐 is a constant that should satisfy

𝑐 ≥
√
2 ln(1.25/𝛿), and Δ𝑠 is the sensitivity of the function 𝑠 given

by Δ𝑠 = maxD𝑖 ,D′𝑖 ∥𝑠 (D𝑖 ) −𝑠 (D
′
𝑖
)∥. In FL, the sensitivity of uplink

is Δ𝑠 = 2𝐿
𝑚 [48], where 𝐿 is the maximum norm of the uploaded

parameters and𝑚 is the minimum number of local samples. We clip

the norm of the uploaded parameters via Δ𝜓 = min(𝐿, ∥Δ𝜓 ∥) Δ𝜓
∥Δ𝜓 ∥ ,

where 𝜓 = (𝜃, {w𝑐 }𝐶𝑐=1) denotes the full set of parameters, and

Δ𝜓 is the model update. We take 𝐿 = 20 and𝑚 = 400 in SA. We

set 𝛿 = 0.01 and add the noise with scale 𝜎 = 0.1. Hence, we can

theoretically obtain a (3, 0.01)-DP in SA.



Figure 12: Visualization of learned features and proxies in FL with
a 2-client label distribution shift scene (the 200-th round).
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Figure 13: Performance comparisons based on VGG11 with differ-
ent settings of 𝛼 in FedRS.

C PSEUDO CODE
We present the pseudo code of FedRS as in Algo. 1.

D MORE EXPERIMENTAL RESULTS
We first present the visualization results based on Mnist at the 200-

th global round. The results are shown in Fig. 12, where we can

obtain similar results as in Fig. 4. Then we present the performances

on the three cifar scenes based on VGG11 as in Fig. 13 and Tab. 5. We

can observe that our methods can still obtain better performances

than compared methods, while the improvements is slightly weaker

than the results based on TFCNN (Tab. 1). This may be owing to that
VGG11 has much more parameters in the feature extractor, and the
impact of the final layer is not as large as in TFCNN. Hence, we guess
that FedRS could boost performances more with smaller backbones.
Overall, FedRS can lead to better performances.

E PROOF OF THE PROPOSITION
We present the proof of the Proposition. 1. For each selected client

𝑘 ∈ 𝑆 , we first download the global parameters, i.e., 𝜃𝑘 ← 𝜃 ,

Table 5: Performance comparisons with standard FL algorithms
(VGG11).

C10-100-5 C10-100-2 C100-100-20

FedAvg 82.0+ 1.104 69.6+ 3.274 49.8+ 0.417

FedMMD (0.0001) [52] 82.6+ 1.005 70.6+ 2.311 50.1+ 0.479

FedMMD (0.001) [52] 82.6+ 0.674 70.4+ 2.993 50.2+ 0.363

FedProx (0.0001) [35] 82.7+ 0.971 68.4+ 2.551 50.4+ 0.439

FedProx (0.001) [35] 82.0+ 0.982 65.8+ 3.100 50.1+ 0.470

FD [26] 82.9+ 0.532 72.2+ 0.482 49.8+ 0.429

FLDA [40] 72.8+ 0.186 57.7+ 0.597 33.6+ 0.199

FedAwS [55] 82.8+ 0.440 71.5+ 2.080 49.7+ 0.242

Scaffold [28] 82.6+ 0.587 71.8+ 2.466 50.1+ 0.357

FedRS (𝛼 = 0.5) 83.4+ 0.136 73.9+ 0.182 47.5+ 0.170

FedRS (𝛼 = 0.9) 83.5+ 0.370 73.1+ 0.794 51.0+ 0.274

Scaffold [28]/RS (𝛼 = 0.5) 83.8+ 0.285 73.0+ 0.669 50.6+ 0.191

w𝑘𝑐 ← w𝑐 ,∀𝑐 ∈ C. Then a local training step can be obtained as:

ŵ𝑘𝑐 = w𝑘𝑐 + 𝜂𝛼𝑘𝑐
𝑁𝑘∑
𝑖=1

(I{𝑦𝑘𝑖 = 𝑐} − 𝑝𝑘𝑖,𝑐 )h
𝑘
𝑖 (14)

= w𝑐 + 𝜂𝛼𝑘𝑐
𝑁𝑘∑
𝑖=1

(I{𝑦𝑘𝑖 = 𝑐} − 𝑝𝑘𝑖,𝑐 )h
𝑘
𝑖 , (15)

and then the aggregation process is:

w𝑐 =
1

|𝑆 |

|𝑆 |∑
𝑘=1

ŵ𝑘𝑐

=
1

|𝑆 |

|𝑆 |∑
𝑘=1

(
w𝑐 + 𝜂𝛼𝑘𝑐

𝑁𝑘∑
𝑖=1

(I{𝑦𝑘𝑖 = 𝑐} − 𝑝𝑘𝑖,𝑐 )h
𝑘
𝑖

)
= w𝑐 +

𝜂

|𝑆 |

|𝑆 |∑
𝑘=1

(
𝛼𝑘𝑐

𝑁𝑘∑
𝑖=1

(I{𝑦𝑘𝑖 = 𝑐} − 𝑝𝑘𝑖,𝑐 )h
𝑘
𝑖

)
= w𝑐 +

𝜂

|𝑆 |

|𝑆 |∑
𝑘=1

(
I{𝑐 ∈ O𝑘 }

𝑁𝑘∑
𝑖=1

(I{𝑦𝑘𝑖 = 𝑐} − 𝑝𝑘𝑖,𝑐 )h
𝑘
𝑖

−I{𝑐 ∈ M𝑘 }𝛼
𝑁𝑘∑
𝑖=1

𝑝𝑘𝑖,𝑐h
𝑘
𝑖

)
= w𝑐 +

𝜂

|𝑆 |

|𝑆 |∑
𝑘=1

(
I{𝑐 ∈ O𝑘 }

𝑁𝑘∑
𝑖=1

(
I{𝑦𝑘𝑖 = 𝑐}(1 − 𝑝𝑘𝑖,𝑐 )h

𝑘
𝑖

−I{𝑦𝑘𝑖 ≠ 𝑐}𝑝𝑘𝑖,𝑐h
𝑘
𝑖

)
− I{𝑐 ∈ M𝑘 }𝛼
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