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APPENDIX A
MORE IMPLEMENTATION DETAILS
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Fig. 1. Overall network structure of GMAIL. The act. in the policy network indicates the dimension of the action space.

TABLE 1
Full Hyper-parameters Settings of GMAIL.

Hyper-parameters Value

Network

Learning rate of the context encoder 3× 10−4

Learning rate of the policy network 3× 10−4

Learning rate of the value network 1× 10−3

Learning rate of the discriminator 1× 10−3

Batch size of the generator 256
Batch size of the discriminator 32

Optimizer Adam

SAC

Target network update rate τ 0.995
Discount factor γ 0.99

Temperature parameter auto [1] for HalfCheetah and Highway
0.2 for Hopper and Ant

GMAIL

H 4

History length L
16 for HalfCheetah and Ant
2 for Hopper and Highway

Absorting state False for HalfCheetah and Highway
True for Hopper and Ant

Gradient penalty weight 0 for HalfCheetah and Highway
10 for Hopper and Ant

Total training steps 1× 106

A.1 Software

We use the following software versions:

• Python 3.8
• MuJoCo 2.2.0 [2]
• Gym 0.21.0 [3]
• MuJoCo-py 2.1.2.14
• PyTorch 1.12.1 [4]
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A.2 Hardware
We use the following hardware:

• NVIDIA RTX A4000
• 12th Gen Intel(R) Core(TM) i9-12900K

A.3 Expert Demonstration
Table 2 illustrates returns of the collected expert trajectories and the corresponding ω, where gravity is the changeable
parameter. For the Highway task, all the returns are 70.

TABLE 2
Return of each collected expert trajectory and the corresponding ω.

ω HalfCheetah Hopper Ant

-2.9968 7002 2621 2002

-2.8878 9445 2369 1960

-2.8332 7001 2685 2195

-2.4872 7858 2818 2840

-2.4434 7517 2416 2737

-2.3782 7005 2543 2603

-1.2358 9310 3543 4291

-1.1043 9999 3778 3570

-0.6169 9532 3606 3966

0.3547 6978 3382 5471

1.1138 5698 3459 6000

1.1564 6702 3227 5005

1.4915 5454 3545 6239

1.8070 6542 3397 6132

2.2714 6244 2666 6089

2.7498 4921 298 5783

A.4 Baselines
Below are details of the implementation of baselines:

• BC. [5], one of the traditional imitation learning algorithms, uses supervised learning methods to fit expert policies. In
our implementation, we update the policy network by minimizing the mean squared error between predicted and expert
actions. The architecture of the policy network is a three-layer MLP with the number of the two hidden layers’ units being
400 and 300, respectively.

• DAC-S. DAC [6] utilizes the state-action pair as the discriminator’s input and trains the generator using TD3 [7]. To
be compatible with our setting and for a fair comparison, we implement a discriminator taking the state-next-state pair as
input and use SAC [1] to train the generator.

• InfoGAIL-H. InfoGAIL [8] considers multi-modal imitation learning and extends GAIL [9] with a posterior network
which approximately maximizes the mutual information between the latent space and trajectories, similar to InfoGAN [10].
However, InfoGAIL does not consider predicting modality (i.e., dynamic in our setting) during evaluation, which is
essential for the learned policy to adapt to dynamics change. We thus modify InfoGAIL as follows. First, we change the
input of the posterior network from (s, a) to (s, s′). Then, we get k predictions using the posterior network with the latest
k state transitions. Finally, we use majority voting [11] on the k predictions to infer the current dynamic. The generator is
also trained via SAC [1]. We name this modified version as InfoGAIL-H.

• OOD-IL. To address the dynamic mismatch issue, OOD-IL [12] computes the transferability of expert demonstrations
collected in environments with different dynamics and samples each demonstration with probability proportional to
its transferability. Specifically, it first clusters the demonstrations in an unsupervised way and then trains K dis-
criminators, each for a cluster, to calculate the transferability t(st, st+1) for every state-next-state pair (st, st+1) as
t(st, st+1) =

∑K
k=1 I[(st, st+1) ∈ Dk]Dk(st, st+1). Here, Dk is the set of expert trajectories in the k-th cluster. Dk is

the trained discriminator for the kth cluster. I is the indicator function. K is the number of clusters. In our implementation,
we use K = 4 for HalfCheetah and Ant and K = 3 for Hopper and Highway. The architectures of the networks are the
same as DAC-S. Other settings are kept default as the authors provided in its implementation1.

1. https://github.com/EvieQ01/OODIL

https://github.com/EvieQ01/OODIL
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• RIME. [13], which imitates multiple experts in sampled environment dynamics to enhance the robustness to general
variations in environment dynamics. Technically, it minimizes the risk with respect to the JS divergence [14] between the
agent’s policy and each of the sampled experts. We use the implementation provided by the authors2.

APPENDIX B
MORE EXPERIMENTAL RESULTS

B.1 Full Visualization Results

Figure 2 and Figure 3 illustrate how GMAIL encodes the environment dynamics within an episode in non-stationary
environments and how the contexts relate to different gravity values on the 3 MuJoCo tasks. GMAIL differentiates among
various dynamics and swiftly identifies the current dynamic. In contrast, InfoGAIL-H performs poorly and cannot stably
and accurately infer the real dynamic. Furthermore, The contexts generated by GMAIL have a strong linear correlation
with the real gravity values, and this relationship is maintained in OOD environments. These results demonstrate that
GMAIL is highly sensitive to dynamics change and generalizes well to OOD dynamics.

HalfCheetah Hopper Ant

ID
O

O
D

GMAIL_x GMAIL_y

Fig. 2. Latent contexts in ID and OOD non-stationary environments.

B.2 Full Sensitivity Analysis Results

Figure 4 displays the full results of sensitivity analysis experiments on H , where we see that the policy performs well
with a properly large H . However, an excessively large H does not help since some sub-optimal states may be mistakenly
assigned high rewards.

Figure 5 shows the full results of sensitivity analysis experiments on different history lengths L, which shows that
a small or huge L will degrade the performance. We argue that a small L may not provide enough information for the
encoder to accurately infer the real gravity, whereas a huge L will drag the encoder from sensitively reacting to dynamics
change.

Figure 6 shows the full results of sensitivity analysis experiments on different history lengths α, where we can see that
a proper α works well across all the environments. We use α = 3000 to get the main results as shown in Figure 9. Recall
that α controls the scale of the ∥z̄p − z̄q∥22. A big α will make exp

(
−α∥z̄p − z̄q∥22

)
sensitive, while a small α will make it

sluggish.
Figure 7 shows the full results of sensitivity analysis experiments on different history lengths λ, where we can see that

a proper λ works well across all the environments. We use λ = 50 to get the main results as shown in Figure 9. Recall that
λ controls the weight of historical moving average ẑi. A big λ will hinder the update of the moving average ẑi, while a
small λ will make its update unstable.

2. https://github.com/JongseongChae/RIME

https://github.com/JongseongChae/RIME
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Fig. 3. Visualization of the contexts generated by GMAIL in ID and OOD environments.

B.3 More Results on Other Varying Parameters
Besides gravity, we also experiment with another varying parameter, body mass, on the three MuJoCo tasks3. We
change the body mass in the same way as gravity. Let b0 denote the default value of body mass. Then we get a new
environment with its body mass

b′ = 1.5ωb0,

where ω is a scaling factor. Like the experiments on gravity, we first collect expert demonstrations using SAC [1]. Table 3
illustrates the return of each trajectory. For each task, we then train GMAIL and baseline methods for 1M steps. Figure 8
presents the results over 3 random seeds, where GMAIL still performs best.

3. We do not experiment on the Highway task because it only has two changeable parameters, friction and mass, taking effect in an
equivalent way.
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Fig. 4. Full sensitivity analysis results on H.

TABLE 3
Return of each collected trajectory with body mass being the varying parameter.

ω HalfCheetah

-2.6804 10043

-2.2548 5997

-2.1778 10078

-2.1757 9885

-1.5784 10778

-1.2387 6142

-0.9261 8547

-0.8566 2460

-0.5154 9902

-0.4736 8028

1.0223 6358

1.1535 6638

1.3555 9896

1.5005 5313

2.0518 10442

2.7886 1888

ω Hopper

-2.8359 3656

-2.7006 3927

-2.3810 3989

-2.2201 4076

-2.1198 3774

-1.8117 3896

-0.6142 3485

-0.0509 3379

0.2326 3501

0.5190 3225

1.1510 3234

1.1983 3260

1.3557 3149

1.5006 3048

2.2580 2872

2.2686 2875

ω Ant

-2.8824 4895

-2.4266 5874

-2.0334 5684

-0.8420 6683

-0.4165 6038

-0.3808 5445

-0.0615 5193

0.6354 5906

0.6905 5406

0.7246 4685

1.1520 4912

1.7843 4379

2.0756 5922

2.3769 4050

2.5502 5582

2.6636 6169
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Fig. 5. Full sensitivity analysis results on L.
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Fig. 6. Full sensitivity analysis results on α.
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Fig. 7. Full sensitivity analysis results on λ.
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Fig. 8. Learning curves with body mass being the varying parameter.
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