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1 Robust Multi-Label Learning with PRO Loss
2 Miao Xu , Yu-Feng Li, and Zhi-Hua Zhou, Fellow, IEEE

3 Abstract—Multi-label learningmethods assign multiple labels to one object. In practice, in addition to differentiating relevant labels from

4 irrelevant ones, it is often desired to rank relevant labels for an object, whereas the ranking of irrelevant labels is not important. Thus, we

5 require an algorithm to do classification and ranking of relevant labels simultaneously. Such a requirement, however, cannot bemet

6 becausemost existingmethods were designed to optimize existing criteria, yet there is no criterion which encodes the aforementioned

7 requirement. In this paper, we present a new criterion, PRO LOSS, concerning the prediction of all labels as well as the ranking of only

8 relevant labels.We then propose ProSVMwhich optimizes PRO LOSS efficiently using alternating directionmethod of multipliers.We

9 further improve its efficiency with an upper approximation that reduces the number of constraints fromOðT 2Þ toOðT Þ, where T is the

10 number of labels. We then notice that in real applications, it is difficult to get full supervised information for multi-label data. Tomake the

11 proposed algorithmmore robust to supervised information, we adapt ProSVM to deal with themulti-label learning with partial labels

12 problem. Experiments show that our proposal is not only superior on PROLOSS, but also highly competitive on existing evaluation criteria.

13 Index Terms—Multi-label learning, learning criterion, partial labels, PRO LOSS, ProSVM

Ç

14 1 INTRODUCTION

15 IN real applications, one object may be associated with
16 multiple labels simultaneously, and such problems are
17 realized by multi-label learning [1]. During the past decade,
18 many multi-label methods have been developed and found
19 useful in diverse applications [2], [3], [4].
20 For a multi-label task, generally one object is associated
21 with a subset of labels; we call these labels as relevant ones
22 whereas the remaining as irrelevant ones. The basic goal of
23 multi-label learning is usually label prediction, that is, to pre-
24 dict which labels are relevant and which are irrelevant. In
25 many applications, however, in addition to label prediction,
26 there is often another requirement, i.e., to get a good ranking
27 of the predicted relevant labels. Consider a simple example
28 in Fig. 1. Both images have the relevant labelsmountain, cattle
29 and road, whereas their focuses are quite different. To better
30 describe these images, in addition to predicting which labels
31 are relevant, it would be better to get their relevant labels’
32 rankings as well, that is, {cattle, mountain, road} for the left
33 one and {mountain, road, cattle} for the right one.
34 Although the ranking of relevant labels is important, cor-
35 rect ranking of all the labels, which is classically considered

36in label ranking problems [5], is not necessary in multi-label
37learning. The reason is that irrelevant labels do not occur
38within any image; thus their ranking will make no sense.
39Taking Fig. 1 again as an example, assume we have irrele-
40vant labels sea, ship and pyramid. In this way, whether ship
41should be ranked before sea or pyramid is pointless. Thus
42although we need to consider the ranking of relevant labels,
43the ranking of irrelevant labels, which does not occur within
44any image, is not useful.
45Regarding the ranking of relevant labels, we want to
46emphasize that existing works focusing on top-predicted
47labels [6], [7] could not be used to address this problem prop-
48erly. Such kind of works emphasized on the ranking of top-k
49ranked labels, where k is a fixed number. In our requirement
50here, we need to adaptively decide which labels are relevant
51and focus on the ranking of all relevant labels, while the num-
52ber of relevant labels may be larger or smaller than the sim-
53ply fixed number k.
54Besides existing works focusing on top-predicted labels,
55other existing methods cannot address such a learning prob-
56lem either. They either focused on the label prediction, ignor-
57ing the ranking of relevant labels, or provided a ranking for
58all or a fixed number of labels, without differentiating rele-
59vant labels from irrelevant ones. Considering the ranking of
60all the labels also introduces overfitting and computational
61burden because the ranking of irrelevant labels is unneces-
62sary. So how to design an algorithm to solve our concerned
63problem? We know that most algorithms are designed to
64optimize a specific learning criterion, and the infeasibility of
65existing methods on our concerned problem is owe to the
66fact that they were designed to optimize the classical perfor-
67mance criteria. For example, BR [8], [9] was tailored for HAM-

68MING LOSS; GFM [10] was designed for F1; RankSVM [11] was
69designed for RANKING LOSS; EncDec [12]was designed to opti-
70mize Subset Accuracy. As we will discuss comprehensively
71in the next section, none of the classical criteria is able to
72express the requirement of our concerned problem precisely.
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of73 Therefore, to address our problem, new criteria as well as

74 new algorithms are needed.
75 Another problem with multi-label learning in practice is
76 that it is hard to get the full annotation of multi-label data,
77 especially when there are a large number of candidate
78 labels [13]. Thus it is normal to have partial labels in multi-
79 label learning. Giving the full annotation not only is expen-
80 sive, but also requires labelers to be careful enough to anno-
81 tate all candidate labels. Although there are some works
82 focusing on the multi-label learning with partial labels prob-
83 lem [13], [14], [15], [16], [17], thesemethods focused on giving
84 a good prediction while none of them could give both good
85 classification and ranking of relevant labels. Thus in our
86 problem under partial label scenarios, we need to provide
87 ranking of relevant labels in addition tomere classification.
88 This paper presents the Prediction and Relevance Order-
89 ing Loss (PRO LOSS), a newmulti-label criterion that concerns
90 the label prediction as well as the ranking of relevant labels.
91 We then propose ProSVM, a large margin approach that
92 employs alternating direction method of multipliers to opti-
93 mize the PRO LOSS efficiently. To further improve the effi-
94 ciency, we introduce an upper approximation that reduces
95 the number of constraints from OðT 2Þ to OðT Þ where T is the
96 number of labels. To solve the partial label problem so as to
97 make the proposalmore robust to incomplete annotations, we
98 extend the PRO LOSS to partial label cases. We also propose
99 optimization algorithms ProSVM-P to deal with the partial

100 labels in training data under the inductive setting [18]. Experi-
101 ments show that whenwe have perfect training data, our pro-
102 posal is not only superior to state-of-the-art approaches on
103 PRO LOSS, but also highly competitive on existing evaluation
104 criteria. We also extensively demonstrate the effectiveness of
105 our proposed algorithms on various applications under par-
106 tial label scenarios.
107 The rest of the paper is organized as follows. We will first
108 introduce related work in Section 2. PRO LOSS and ProSVMs
109 are presented in Sections 3 and 4 respectively, followed by
110 proposing ProSVM-P which can deal with partial labels in
111 Section 5. Finally, we present the experimental results in
112 Sections 6 and 7, followed by conclusion in Section 8.
113 Preliminary results of this paper have been reported
114 in [19]. In this paper, our main contribution is that we have
115 considered the relevance ordering problemwith partial labels,
116 which widely occurs in real applications and this line of
117 study has not been presented before. We have also added
118 corresponding optimization algorithms and experimental
119 results. Besides these, we have further added the Critical Dif-
120 ference Diagram of our experimental results, illustrations of
121 real images, rigorous proofs, additional empirical compari-
122 son with more recently proposed algorithms on larger data
123 set, et al.

1242 RELATED WORK

1252.1 Multi-Label Learning

126Multi-label learning, which assumes one instance is associ-
127ated with multiple labels, has diverse applications, e.g., text
128classification [2], genomics [3], image tagging [4], [20],
129action recognition [21], et al. For detailed survey of multi-
130label learning, please refer to [1].
131The most straightforward solution to multi-label learning
132is the Binary Relevance (BR) method [8] which simply
133learned one binary classifier for each label. Although such a
134method is the most intuitive solution to multi-label learn-
135ing [22], it has been criticized for ignoring the label depen-
136dence of multiple labels [1]. To take the label correlation into
137consideration, some works used label correlation directly
138from prior knowledge [23], or tried to identify them explic-
139itly from data [24]. There are also a bunch of other important
140works considering the label correlation implicitly by learning
141multiple binary classifiers simultaneously in one framework
142and incorporating a regularization term into the optimiza-
143tion. One example is RankSVM [11], which used an SVM-
144style algorithm to optimize multiple classifiers for label pairs
145in one optimization. These algorithms have been shown
146effective in various applications.
147Most of these multi-label learning algorithms were pro-
148posed to optimize existing multi-label learning criterion. For
149example, it was proved in [25] that the methods estimating
150the posterior distribution of single labels and multiple labels
151are tailored for HAMMING LOSS and SUBSET ACCURACY respec-
152tively. In this way, BR [8], [9] optimized HAMMING LOSS. [12],
153[26] optimized SUBSET ACCURACY. [27] and [28] optimized
154RANKING LOSS. [10], [29] were designed for optimizing F1.
155One straightforward solution to the problem of consider-
156ing both prediction and ranking of relevant labels is to first
157employ a multi-label learning algorithm to do classification
158and then use some label ranking methods to rank the rele-
159vant labels. However, the objective of this paper is to propose
160the learning objective for such kind of problem, thus an opti-
161mization method can be proposed considering the ranking
162and classification problem in one framework. We will show
163in Section 6 that our one-framework optimization algorithm
164performs significantly better than the two-stage classification
165and ranking methods. The PC method [30] considered a
166combination of multi-label learning and label ranking by cre-
167ating an additional calibrated label. However, it concerned
168either “multi-label learning” or “label ranking” without real-
169izing that only the ranking of relevant labels is crucial. [31]
170proposed a related label ranking method GMLC which
171assumed that labels of all objects have fixed number of
172graded relevancies; in contrast, we do not assume the exis-
173tence of such information.

1742.2 Multi-Label Learning with Partial Labels

175Many researchers these years have noticed that fully super-
176vised information for multi-label learning is difficult to
177acquire. Multi-label learning with partial labels problem is a
178weakly supervised learning problem [32] when only a subset
179of all the labels are annotated, and different instances have
180different annotated subsets. In such a kind of learning prob-
181lem, supervised information is not only incomplete but also
182inexact [32]. There are someworks focusing directly on solving

Fig. 1. Rankings of relevant labels in images. Left: {cattle, mountain,
road}. Right: {mountain, road, cattle}.
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183 the multi-label learning with partial labels problem [20], [33],
184 [34], [35], which has also been called learning with incomplete
185 label assignments or missing labels. For example, [36] used the
186 low-rank mapping to fulfill the partial labels; [33] proposed a
187 disciplined approach to handle the partial labels; [37]
188 required the recovered label space to be both low-rank and
189 sparse; [16] used a label graph to propagate the known labels
190 to the unknown labels; [17] combined the prediction using a
191 principled way to make a safe use of unknown labels. How-
192 ever, all these works focus on solving the multi-label learning
193 with partial labels problem and ignore the ranking of relevant
194 labels. Moreover, most of them [14], [15], [35] worked under a
195 transductive settingwhich involves the test data into the train-
196 ing process [18] while in this paper, we will work in an induc-
197 tive setting where the test data can be seen only after the
198 classifier has been learned, and we will solve the problem of
199 acquiring a good classification and ranking of relevant labels
200 simultaneously when there are only partial labels. We will
201 show that our algorithm taking both classification and rank-
202 ing into consideration gets a better performance compared to
203 state-of-the-art multi-label learning methods designed for
204 partial labels problem.

205 2.3 Existing Criteria

206 Suppose thatwe are given a set ofn instances fxigni¼1 and a set
207 of T labels L ¼ fl1; . . . ; lTg. Each instance xi 2 Rd has the
208 ranked relevant label setRi � L and corresponding irrelevant
209 label setRi ¼ L�Ri, onwhich rankingwill not be concerned.
210 Existing multi-label learning algorithms typically learn a
211 function gðxiÞ ¼ ½g1ðxiÞ; . . . ; gT ðxiÞ� that will assign a real-
212 valued score gtðxiÞ to each label lt; t 2 f1; . . . ; Tg. The labels
213 can then be ranked according to these scores. To further dif-
214 ferentiate relevant labels from irrelevant ones, these algo-
215 rithms need to additionally learn a threshold score, denoted
216 by gQðxiÞ. Those labels with scores larger than the threshold
217 will be regarded as relevant ones, or else irrelevant ones.
218 Here gQðxiÞ can be simply set to some fixed constant; or it
219 can also be set more accurately by learning from data [30].
220 We denote all the predicted relevant labels as R̂i, i.e., R̂i ¼
221 flt 2 LjgtðxiÞ > gQðxiÞg.
222 In the following we will discuss existing multi-label crite-
223 ria and their limitations regarding our concerned problem.

224 � HAMMING LOSS [9], [38]

1

nT

Xn
i¼1

jR̂i~Rij:
226226

227 Here ~ stands for the symmetric difference between
228 two label subsets. Obviously, the HAMMING LOSS

229 ignores the fact that relevant and irrelevant labels may
230 have different priorities and relevant labels should be
231 ranked.
232 � RANKING LOSS [27], [28]

1

n

Xn
i¼1

P
ðlt;lsÞ2Ri�Ri

d½gtðxiÞ < gsðxiÞ�
jRij � jRij

:

234234

235 Here d is the indicator function. RANKING LOSS con-
236 cerns the relative ranking of each relevant-irrelevant
237 label pair. However, it does not consider the ranking
238 of relevant labels.

239� ONE-ERROR [11], [39], [40]

1

n

Xn
i¼1

d½largmaxt gtðxiÞ =2 Ri�:
241241

242ONE-ERROR considers the top-predicted relevant label
243only and neglects all the other relevant labels. It can
244also be described as TOP-1 PRECISION [6], [7].
245� AVERAGE PRECISION [11], [39], [40]

1

n

Xn
i¼1

1

jRij
X

t:lt2Ri

jfls 2 RijgsðxiÞ > gtðxiÞgj
jflsjgsðxiÞ > gtðxiÞgj :

247247

248AVERAGE PRECISION does not concern the misclassifica-
249tion of relevant labels and irrelevant labels.
250� COVERAGE [39]

1

n

Xn
i¼1

max
t:lt2Ri

jfsjgsðxiÞ > gtðxiÞgj:
252252

253COVERAGE concerns the position of the relevant label
254with lowest predicted score only, thus neglecting all
255the other relevant labels.
256� SUBSET ACCURACY [12], [25], [26]

1

n

Xn
i¼1

d½R̂i ¼ Ri�:
258258

259SUBSET ACCURACY does not consider label ranking.
260� F1 [10], [29]

1

n

Xn
i¼1

2jRi \ R̂ij
jRij þ jR̂ij

:

262262

263F1 does not take any ranking of relevant labels into
264account.
265There are also some work focusing on the cost-sensitive
266multi-label learning, designing an algorithmwhich can adapt
267to different criteria easily [41]. However, current methods
268can only deal with some special performance measures, and
269do not consider the relevant labels’ ranking information.
270There is another popular ranking evaluation criterion for
271multi-label learning, nDCG@k used in [6]. nDCG@k is a pop-
272ular performance measure for extreme multi-label learning
273and a lot of algorithms have been reported to perform good
274on this measurement [6], [42], [43], [44]. Although nDCG@k
275is also able to evaluate the ranking of relevant labels, the dif-
276ference between nDCG@k and our required loss lies in the
277setup of k. In nDCG@k, k is often known in advance and
278remains the same across all instances. In our requirement, the
279number of relevant labels should be adaptively determined
280for different instances, instead of being a simply fixed integer.
281It is evident that all the above criteria fail to express our
282requirement, i.e., attaining an accurate label prediction and
283a correct ranking of relevant labels without being affected
284by the ranking of irrelevant labels. To the best of our knowl-
285edge, this is the first study on this problem.

2863 PRO LOSS

287We first introduce some notations. Given an instance x and
288its relevant label set R, to characterize the ranking on R, we

XU ET AL.: ROBUST MULTI-LABEL LEARNING WITH PRO LOSS 3
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290 vant than la. The threshold, denoted as Q whose predicted
291 value gQðxÞ should be larger than the scores of irrelevant
292 labels and smaller than those of relevant labels, can be seen
293 as a pseudo label, which should be more relevant than irrele-
294 vant labels and less relevant than relevant labels. Specially,
295 suppose l1 and l2 are relevant labels and l1 is more relevant
296 than l2, while l3 and l4 are the irrelevant labels, we have
297 �x ð1Þ ¼ f2;Q; 3; 4g, �x ð2Þ ¼ fQ; 3; 4g, �x ðQÞ ¼ f3; 4g and
298 �x ð3Þ ¼�x ð4Þ ¼ ;.
299 Inmulti-label learning for an instance x, label la (where a is
300 the index of label) can be either relevant, irrelevant, or the
301 pseudo label used to differentiate relevant labels from irrele-
302 vant ones. Therefore one can divide all the labels into three
303 subgroups, that is, relevant labels, irrelevant labels, and
304 pseudo label. BxðaÞ maps a label la to one of the three sub-
305 groups (relevant, irrelevant or pseudo label). Back to the fl1;
306 l2; l3; l4g example mentioned in the above paragraph, we can
307 have Bxð1Þ ¼ Bxð2Þ ¼ f1; 2g, Bxð3Þ ¼ Bxð4Þ ¼ f3; 4g and BxðQÞ ¼
308 fQg.We then define the PROLOSS for an instance x as

LðR;�; gÞ¼
X

lt2R[fQg

X
s2�xðtÞ

1þd½BxðtÞ¼BxðsÞ�
4jBxðtÞj�jBxðsÞ�ftgj ‘t;s: (1)

310310

311 Here ‘t;s refers to a modified 0-1 error. Specifically, ‘t;s ¼ 1 if
312 gtðxÞ < gsðxÞ, 12 if gtðxÞ ¼ gsðxÞ1 and 0 otherwise. Essentially,
313 PRO LOSS is the weighted counting of incorrectly ranked
314 label pairs.
315 As can be seen, besides the relevant-irrelevant label pairs
316 considered in RANKING LOSS and the label-threshold pairs
317 considered in HAMMING LOSS, PRO LOSS further considers the
318 relevant-relevant label pairs. It is noteworthy that the rank-
319 ing of irrelevant labels is not valued in Eq. (1). Hence, PRO
320 LOSS considers an accurate label prediction as well as a cor-
321 rect ranking of only relevant labels.
322 To balance these label pairs to avoid the situation that
323 one term dominates all others, we normalize four types of
324 label pairs, i.e., (relevant, relevant), (relevant, irrelevant), (rele-
325 vant, threshold) and (threshold, irrelevant), by their respective
326 set sizes. Note that the set sizes of these four label pairs are
327 jRjðjRj � 1Þ=2, jRjjRj, jRj and jRj, respectively, which can be
328 written in a general form as

ht;s ¼ jBxðtÞj � jBxðsÞ � ftgj
1þ d½BxðtÞ ¼ BxðsÞ� :

330330

331To further normalize the sum of these weighted pairs’ losses
332to be within the range of [0,1], we divide the weighted sum
333by a factor of 4 which equals the number of types of differ-
334ent label pairs. This leads to our PRO LOSS.
335We will use some examples in Table 1 to illustrate the
336merit of PRO LOSS compared to existing multi-label criteria.
337The example used is the left image of Fig. 1. There are 5 can-
338didate labels, in which l1 ¼cattle, l2 ¼mountain and l3 ¼road
339are relevant labels ranked as cattle > mountain > road, and
340l4 ¼car and l5 ¼sea are irrelevant labels. Outputs are the
341scores of each label. The larger the score, the higher the label
342ranked. Q is the threshold to differentiate relevant labels
343from irrelevant ones.
344The Output 1 in Table 1 gives the output perfectly agree-
345ing with the ground truth. We can see that all the criteria
346give the best evaluation, showing the effectiveness of all
347these criteria for the perfect output. However, when we have
348a look at Output 2, where the ranking of relevant labels is
349incorrect while the classification is correct, we can find that
350only PROLOSS punishes such kind of error while all other cri-
351teria give an evaluation having no difference from that of the
352perfect Output 1. We can conclude that existing multi-label
353criteria cannot penalize the wrongly ranked relevant labels,
354while PRO LOSS can.
355In Output 3, one relevant label is classified as irrelevant,
356but the ranking of all labels remains unchanged compared to
357Output 1 according to their predicted scores. In this way,
358PRO LOSS, HAMMING LOSS and F1 penalize such kind of error,
359while other criteria still give the “perfect” evaluation. This
360phenomenon tells us that RANKING LOSS, ONE-ERROR, AVERAGE

361PRECISION and COVERAGE only care about the ranking of labels,
362while nothing is paid when the classification is wrong. PRO
363LOSS, HAMMING LOSS, and F1, on the contrary, penalize the
364classification error.
365In Output 3 and Output 4, we can see that misclassifica-
366tion happens on relevant label and irrelevant label respec-
367tively, resulting in same HAMMING LOSS, but different PRO
368LOSS and F1. In this example, even though the number of rele-
369vant labels is similar to that of irrelevant labels, we can have
370different F1 and PRO LOSS which measure different types of
371classification errors (i.e., relevant or irrelevant) while HAM-

372MING LOSS remains unchanged. For some real multi-label

TABLE 1
Examples Showing the Effects of Different Multi-Label Criteria on the Left Image in Fig. 1

* PREDICTION
OUTPUTS

Q PRO HAMM. RANK. ONEE. AVEP. COVR. SUBA. F1
l1 l2 l3 l4 l5

1 cattle>mountain> road 5 4 3 2 1 2.5 0.000 0.000 0.000 0.000 1.000 2.000 1.000 1.000
2 cattle> road>mountain 5 3 4 2 1 2.5 0.083 0.000 0.000 0.000 1.000 2.000 1.000 1.000
3 cattle>mountain 5 4 3 2 1 3.5 0.083 0.200 0.000 0.000 1.000 2.000 0.000 0.800
4 cattle>mountain> road> car 5 4 3 2 1 1.5 0.125 0.200 0.000 0.000 1.000 2.000 0.000 0.857
5 sea> car 1 2 3 4 5 3.5 1.000 1.000 1.000 1.000 0.478 4.000 0.000 0.000

There are five candidate labels, in which l1 ¼cattle, l2 ¼mountain, and l3 ¼road are relevant labels ranked as cattle > mountain > road, and l4 ¼car and
l5 ¼sea are irrelevant labels. Outputs are the scores of each label. The larger the score, the higher the label ranked.Q is the threshold to differentiate relevant labels
from irrelevant ones. HAMM., RANK., ONEE., AVEP., COVR., and SUBA. are abbreviations for HAMMING LOSS, RANKING LOSS, ONE ERROR, AVERAGE PRECISION, COV-

ERAGE, and SUBSET ACCURACY respectively.

1. When gtðxÞ ¼ gsðxÞ, neither “lt is more relevant than ls” nor “ls is
more relevant than lt” is judged; thus, we assign the error as 1=2 on
average.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. X, XXXXX 2019
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373 datasets, the number of relevant labels may be much smaller
374 than that of irrelevant labels. In this way, treating the rele-
375 vant and irrelevant labels equally (as HAMMING LOSS does)
376 will make the misclassification of relevant labels insignifi-
377 cant. We want to mention that although F1 have the advan-
378 tage of treating relevant and irrelevant labels unequally just
379 as PRO LOSS, it cannot penalize the wrongly ranked relevant
380 labels, as we have shown in Output 2.
381 Comparing Output 4 and Output 5, although Output 4
382 only misclassifies one label, its SUBSET ACCURACY is equal to
383 that of Output 5 in which none of the labels is correctly clas-
384 sified. We can easily see that SUBSET ACCURACY is too strict to
385 reward the almost-correct output of multi-label learning
386 algorithms.
387 In a word, PRO LOSS concerns both classification of all
388 the labels and ranking of relevant labels as we have shown in
389 the examples in Table 1, while none of the other existing
390 multi-label criteria can fulfill the requirement compared to
391 PRO LOSS.

392 4 PROSVMS

393 Note that ‘t;s, a modified 0-1 loss, is non-convex and difficult
394 to optimize. Instead of optimizing the difficult non-convex
395 PRO LOSS directly, we consider optimizing a large margin
396 surrogate convex loss as follows:

min
g

�
Xn

i¼1
bLðxi; Ri;�; gÞ þ RegularizerðgÞ; (2)

398398

399 where RegularizerðgÞ is a regularizer for g, bLðxi; Ri; �; gÞ ¼
400

P
lt2Ri[fQg

P
s2�xi ðtÞð1þ gsðxiÞ � gtðxiÞÞþ=ð4hs;tÞ is the surro-

401 gate convex loss of PRO LOSS, ðuÞþ ¼ maxf0; ug, and � is a
402 parameter trading off the functional complexity of g and the
403 surrogate convex loss.
404 Without loss of generality, suppose g’s are linear models,
405 i.e., gtðxÞ ¼ w>

t x; t 2 f1; . . . ; Tg [ fQg and RegularizerðgÞ ¼
406

P
t2f1;...;Tg[fQg kwtk2=2. Letw , ½w1; . . . ;wT ;wQ� and letD be

407 the training set. Noting that bLðxi; Ri;�; gÞ is no more than a
408 sum of hinge losses, Eq. (2) can then be cast into an SVM-
409 type problem in the following general form:

min
w;��

1

2
kwk2 þ �C>��;

s.t. Aw � 1p � ��; �� � 0p;

(3)

411411

412 where p ¼ nT þPn
i¼1 jRijð2T � jRij � 1Þ=2 is the total num-

413 ber of constraints, and 1pð0p) is the p� 1 all one (zero) vec-
414 tor. The entries in vector C correspond to the weights of
415 hinge losses and the matrix A corresponds to the constraints
416 across instances.
417 Note that in Eq. (3), �� does not need to be optimized since
418 it can be easily determined by w, hence Eq. (3) can be refor-
419 mulated into the following form without ��, i.e.,

min
w

F ðw; DÞ , 1

2
kwk2 þ �C>ð1p �AwÞþ: (4)

421421

422

423 4.1 An Efficient Algorithm

424 Eq. (4) is large scale. Specifically, although matrixA is sparse,
425 it can still involvesOðdnT 2Þ non-zero entries which is beyond
426 the memory capability of computers even for medium-sized
427 datasets. To address Eq. (4) memory efficient, we in this

428section consider an Alternating Direction Method of Multi-
429pliers (ADMM) solution.
430ADMM [45] is a simple and efficient approach for large
431scale optimization. Its basic idea is to take the decomposition-
432coordinate procedure so that the solution to subproblems can
433be coordinated to find the solution to the original problem.
434Since subproblems can usually be memory efficient, ADMM
435is capable of approximating the solution to large scale prob-
436lems via addressing small subproblems sequentially. More-
437over, ADMM is easy to be parallelized. Recently, ADMM is
438found effective in a number of machine learning prob-
439lems [46], [47].
440Following the ADMM procedure, we first decompose the
441training set D into Z disjoint subsets, i.e., fD1; . . . ; DZg, and
442then rewrite Eq. (4) into the following equivalent form:

min�w0;�w1;...;�wZ

XZ

z¼1
F ð�wz;DzÞ;

s.t.�wz ¼ �w0; 8 z ¼ 1; . . . ; Z:
(5)

444444

445By introducing the surrogate augmented lagrangian func-
446tion [48] into Eq. (5), we have

Lðf�w0; . . . ; �wZg; fazgZz¼1; hÞ ¼
XZ
z¼1

F ð�wz;DzÞ

þ
XZ
z¼1

ðazÞ>ð�wz � �w0Þþh

2

XZ
z¼1

k�wz � �w0k2;
448448

449where az’s and h are the lagrange multipliers. L is then
450solved in an alternative manner, i.e., updating the solutions
451to f�w1; . . . ; �wZg, f�w0g and fazgZz¼1 separately and iteratively
452until the algorithm converges. Detailed processes are shown
453in Algorithm 1.

454Algorithm 1. ProSVM

4551: Decompose datasetD into Z disjoint subsets, i.e.,D1; . . . ; DZ .
456Set k ¼ 0.
4572: Initialize f�w0

0; �w
1
0; . . . ; �w

Z
0 ;a

1
0; . . . ;a

Z
0 g as zeros.

4583: while not converge do
4594: Set k ¼ kþ 1 and update f�w0

k; f�wz
k;a

z
kgZz¼1g as:

f�wz
kgZz¼1 ¼ argmin

�w1;...;�wZ

Lð�w0
k�1; f�wz;az

k�1gZz¼1; hÞ (6)
461461

462

�w0
k ¼ argmin

�w0

Lð�w0; f�wz
k;a

z
k�1gZz¼1; hÞ (7)

464464

465

az
k ¼ az

k�1 þ hð�wz
k � �w0

kÞ>; 8z ¼ 1; . . . ; Z 467467

468

4695: end while
4706: Output the final �w0

471In Algorithm 1 the key for us to design a competent
472ProSVM algorithm is to efficiently solve Eqs. (6) and (7). As
473for Eq. (6), it is equivalent to solving the following Z inde-
474pendent smaller subproblems

min
�wz

F ð�wz;DzÞ þ ðaz
k�1Þ> �wz þ h

2
k�wz � �w0

k�1k2; (8)

476476

477which is a quadratic programming (QP) problem. Further-
478more, noting thatA is sparse and Eq. (8) is similar to standard
479SVM problem, Eq. (8) can be solved efficiently by state-of-art
480SVM solvers. As for Eq. (7), it has a closed-form solution, i.e.,

XU ET AL.: ROBUST MULTI-LABEL LEARNING WITH PRO LOSS 5
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481 �w0
k ¼

PZ
z¼1ðaz

k�1 þ h�wz
kÞ=ðhZÞ. Therefore, both Eqs. (6) and

482 (7) can be solved efficiently.

483 4.2 Reducing the Number of Constraints

484 There are OðT jRjÞ constraints in total for each instance in
485 Eq. (2). Thus, the number of constraints will scale to OðT 2Þ if
486 jRj is large which is still difficult to optimize. In the following
487 we consider approximating Eq. (2) by reducing the number
488 of constraints fromOðT 2Þ toOðT Þ.
489 Note that the relevant-irrelevant label pairs cost the larg-
490 est number of comparisons. As an optimization objective,
491 many of the comparisons may be redundant. Our basic idea
492 is to use fewer comparisons to approximate them. According
493 to [49], we get the following theorem using our notations.

494 Theorem 1. Let P ðl 2 RÞ and P ðl 2 RÞ denote the probability
495 that a label l is relevant or irrelevant, respectively. E½A� is event
496 A’s expectation. Then we have

E
X
lt2R

X
ls2R

‘t;s
jBðtÞj � jBðsÞj

2
4

3
5 	

E½Plt2R ‘t;Q�
P ðlt 2 RÞT þ E½Pls2R ‘Q;s�

P ðls 2 RÞT :

(9)

498498

499

500 Theorem 1 shows that the relevant-irrelevant label pairs
501 can be approximated (in expectation) by the sumofweighted
502 relevant-threshold and irrelevant-threshold pairs, dramati-
503 cally reducing the number of compared label pairs from
504 jRjðT � jRjÞ to T . If we use jRj=T and j �Rj=T as estimations of
505 P ðl 2 RÞ and P ðl 2 �RÞ respectively, an approximation of the
506 righthand side of Eq. (9) can be given. Detailed proof is simi-
507 lar to those in [49] andwe omit it here.
508 Nextwewill consider simplifying the number of compari-
509 sons within relevant labels. Our basic idea is to approximate
510 comparisons between every two relevant labels by a
511 weighted sum of comparisons between every relevant label
512 and its immediate follower. Now the number of compared
513 relevant labels’ pairs reduces from jRjðjRj � 1Þ=2 to jRj.
514 Theorem 2. Denote ri as the index of the ith ranked relevant
515 label, if mi � iðjRj � iÞ, we have

X
li2R

X
lj2R;j2�xðiÞ

‘i;j 	
XjRj�1

i¼1

mi‘ri;riþ1
: (10)

517517

518

519 To prove Theorem 2, we first give the following lemma,

520 Lemma 1. The accumulated pairwise comparison loss between a
521 relevant label and all labels ranked in front of it has an upper
522 bound as Xk

i¼1

‘ri;rkþ1
	

Xk
i¼1

i‘ri;riþ1
: (11)524524

525

526 Proof. Assume the left hand side of Eq. (11) equals z, 0 	
527 z 	 k. We want to prove that there exists at least one i,
528 0 	 i 	 k� ðzþ iÞ, such that the ðzþ iÞth relevant label is
529 ranked incorrectly compared to the ðzþ iþ 1Þth relevant
530 label. We prove this statement by contradiction.
531 Assuming such kind of relevant label pair does not
532 exist, i.e., 80 	 i 	 k� ðzþ iÞ, all ðzþ iÞth relevant labels
533 are ranked correctly compared to the ðzþ iþ 1Þth

534relevant label. Ranking error occurs only within the first
535z� 1 relevant labels. Thus z ¼ Pk

i¼1 ‘ri;rkþ1
¼ Pz�1

i¼1 ‘ri;rkþ1

536	 z� 1. Because z 	 z� 1 is impossible, by contradic-
537tion, there exists at least one i, 0 	 i 	 k� ðzþ iÞ, such
538that the ðzþ iÞth relevant label is ranked incorrectly com-
539pared to its immediate follower, i.e., the ðzþ iþ 1Þth
540relevant label.
541Without losing generality, assume the z’th relevant
542label is ranked incorrectly compared to the ðz0 þ 1Þth,
543z0 � z. Then we have

Pk
i¼1 i‘ri;riþ1

� z0‘rz0 ;rz0þ1
¼ z0 � z.

544Thus we finish the proof. tu
545Proof of Theorem 2. We first rewrite the left hand side of
546Eq. (10) in Theorem 2 as

X
li2Ri

X
lj2R;j�xðiÞ

‘i;j ¼
XjRj�1

k¼1

Xk
i¼1

‘ri;rkþ1
: (12)

548548

549Based on Lemma 1, we have

XjRj�1

k¼1

Xk
i¼1

‘ri;rkþ1
	

XjRj�1

k¼1

Xk
i¼1

i‘ri;riþ1

¼
Xk
i¼1

XjRj�1

k¼1

i‘ri;riþ1
¼

Xk
i¼1

iðjRj � 1Þ‘ri;riþ1
:

(13)

551551

552We can finish the proof by combining Eqs. (12) and (13).tu
553According to Theorems 1 and 2, one can approximate the
554objective function in Eq. (1) with

X
li2R

‘i;Q
2jBðiÞjþ

X
lj2R

‘Q;j

2jBðjÞjþ
XjRj�1

i¼1

ðiðjRj � iÞ‘ri;riþ1
Þ

2jRjðjRj � 1Þ ; (14)

556556

557in which the number of constraints scales to OðT Þ. Eq. (14)
558can be addressed via the same optimization techniques as
559Eq. (5). We refer to this new algorithm as ProSVM-A
560(ProSVMApproximation).

5614.3 Computational Complexity

562In this section, we analyze the computational complexity of
563ProSVM and ProSVM-A. We first define the notations. Let
564�r 	 T be the average number of relevant labels per instance,
565and �d 	 d the average number of non-zero features per
566instance. Assume further the iterations to solve Eq. (4) is K1

567and the number of outer iterations in ProSVM is K2. In the
568following, we first consider the computational complexity
569of solving Eq. (4) without using ADMM and then derive the
570computational complexity using ADMM.
571To solve Eq. (4), we adapt the state-of-the-art SVM solver
572LIBLINEAR [50], whose computational complexity is linear
573in the number of dual variables, non-zero entries per
574instance and number of iterations. Through the definition of
575A in Eq. (3), we know that the number of non-zero entries
576per row of A is 2�d and there are totally Oðn�rT Þ rows in A.
577Thus the time complexity to solve Eq. (4) directly using LIB-
578LINEAR would be Oðn�d�rTK1Þ. If we further use ADMM in
579ProSVM which divides the whole data into Z folders to
580release the storage burden, the time complexity would be
581Oðn�d�rTK1K2Þ as updating �w0 and a cost only linear time. If
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583 tional complexity would beOðn�d�rTK1K2=ZÞ.
584 For ProSVM-A, rows in A would be reduced to OðnT Þ.
585 Thus the computational complexity without using ADMM
586 is Oðn�dTK1Þ. When using ADMM, the computational com-
587 plexity is Oðn�dTK1K2Þ. With the power of parallelization,
588 the computational complexity would be further reduced to
589 Oðn�dTK1K2=ZÞ. The results on computational complexity
590 are summarized in Table 2.
591 As analyzed in [50],K1 would be Oðlog ð1=�1ÞÞ if we need
592 to get an �1-optimal solution to Eq. (6). According to [51],K2

593 would be Oð1=�2Þ if we need the �2-optimal solution.
594 Although theoretically the Oð1=K2Þ does not converge fast,
595 in practice, a good approximate solution is sufficient [45]. In
596 our experiment, the maximal iteration is simply set to 100
597 and empirical results showing how ProSVM will converge
598 within 100 iterations are showed in Fig. 2, validating the
599 effectiveness of our proposal. For the details of the datasets,
600 please refer to Section 6.
601 From Table 2, we can see that the computational complex-
602 ity of ProSVM and ProSVM-A are linear in the number of
603 parameters, and the time complexity can be further
604 improved if the data is sparse (�d 
 d), or using paralleliza-
605 tion. Comparing ProSVM and ProSVM-A, we found that
606 when the number of relevant labels is relatively small (i.e.,
607 �r 
 T ), using the two algorithms will result in no difference
608 asymptotically in computational complexity, although in

609practice, it still involves difference. However, when �r is rela-
610tively large, using ProSVM-Awill save a lot of computational
611cost compared to ProSVM.

6125 PROSVM WITH PARTIAL LABELS

613In this section, we extend ProSVM to handle the partial labels
614in multi-label training data. Here we consider the case when
615the annotation information is uniformly random missing as
616in [14], [20], [35] and defer the non-uniformly missing case to
617futurework.
618Since we are dealing with the problem when relevant
619labels are ranked, we assume for those observed relevant
620labels, we also have the partial ranking information of them.
621Under this scenario, the large margin surrogate convex loss
622will become

min
g

�
Xn

i¼1
~LP ðxi; Ri;�; g;ViÞ þRegularizerðgÞ; (15)

624624

625where

~LP ðxi; Ri;�; g;ViÞ ¼X
lt2ðRi\ViÞ[fQg

X
s2ð�xi ðtÞ\ViÞ

1

4hs;t
ð1þ gsðxiÞ � gtðxiÞÞþ;

627627

628and Vi � ½m� is xi’s indices set of observed labels.
629Assume in the same way as Section 4 gtðxÞ ¼ w>

t x, t 2
630f1; . . . ; Tg [ fQg and RegularizerðgÞ ¼ 1

2

P
t2f1;...;Tg[fQg kwtk2.

631Let w , ½w1; . . . ;wT ;wQ� and D be the training set, Eq. (15)
632can be cast into the following optimization problem

min
w

FP ðw; DÞ , 1

2
kwk2 þ �C>

P

�
1p̂ �APw

�
þ
; (16)

634634

635where p̂ is the total number of constraints introduced by
636observed labels in all Vi; 8i. AP is defined in the same way
637as A but considering necessary comparisons between only
638observed labels.
639One crucial difference between Eqs. (16) and (4) is thatCP

640in Eq. (16) is unknown since we do not have any idea how
641many relevant and irrelevant labels are presented in one

TABLE 2
The Computational Complexity of ProSVM and ProSVM-A w/o
Using ADMM and Parallelization with up to Z Cores, where n is
the Number of Instances, T is the Number of Labels, �d is the
Average Number of Non-Zero Features per Instance, and �r is

the Average Number of Relevant Labels per Instance

No ADMM
Using ADMM

No parallel With parallel

ProSVM Oðn�d�rTK1Þ Oðn�d�rTK1K2Þ Oððn�d�rTK1K2=ZÞ
ProSVM-A Oðn�dTK1Þ Oðn�dTK1K2Þ Oðn�dTK1K2=ZÞ
K1 is the number of iterations of solving Eq. (6), and K2 is the total number of
outer iterations.

Fig. 2. Convergence results of ProSVM on 8 representative datasets in 100 iterations. The Y -axis is the optimization objective L, and the X-axis is
the kth iteration.
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642 instance given partial labels, thus we cannot use the same
643 optimization procedure as Eq. (4) directly. Before using the
644 same optimization strategy, we need to first estimate CP . To
645 estimate CP , there are a bunch of ways. The most simple and
646 straightforward one is to ignore the weights of different label
647 pairs and simply set CP to be an all-one matrix. We call this
648 method ProSVM-PI (ProSVM for Partial Labels with Identity
649 Weights) as it sets all weights to be identical.
650 Considering that the labels are observed uniformly at
651 random, another way to estimate CP is to get an unbiased
652 estimation of it. More specially, by assuming the annotation
653 information is uniformly random missing with probability
654 1� v%, we can have an unbiased estimation of the real
655 number of relevant and irrelevant labels: when the observed
656 labels’ indices are in jVij, the estimated number of relevant
657 labels and irrelevant labels are jVi \Rij=vi and jVi \ �Rij=vi

658 respectively. We call this method ProSVM-PU (ProSVM for
659 Partial Labels with Unbiased Estimation).
660 We can also estimateCP using domain knowledge or ask-
661 ing domain experts to provide the real number of relevant
662 labels directly. Note that this is the best result that our pro-
663 posed ProSVM-P methods can achieve, and we call this
664 method ProSVM-PD (ProSVM for Partial Labels with
665 Domain Knowledge/Experts).
666 Note that ProSVM-A approximately optimizes PRO LOSS

667 using the comparisons between relevant labels and their
668 immediate followers. When the labels are partial, it is non-
669 trivial for the algorithm todeterminewhether the label ranked
670 behind is its immediate follower or not, thus making the
671 ProSVM-A method unsuitable for the partial label case. Fur-
672 thermore, when the labels are partial, we have amuch smaller
673 number of pairwise comparisons, making the ProSVM-A
674 method unnecessary in most cases. Parallelization of
675 ProSVM-P algorithms could probably be solved by recent
676 work on distributed learning with incomplete data [52] and
677 we plan to study such kind of possibility in future work.

678 6 EXPERIMENTS WITH FULL LABELS

679 Our proposals are compared to a number of algorithms.
680 First, we compare with classical multi-label methods which
681 cannot handle relevant labels’ ranking. For small datasets,
682 these methods include PC [30], RankSVM [11], BSVM [8],
683 ML-kNN [40] and BoosTexter [39]. We use two implementa-
684 tions of PC, i.e., PCn and PC0. In PCn, Perceptron stops after
685 n rounds while in PC0, it stops when no error occurs. Next,
686 we extend these methods to take the relevant labels’ ranking
687 into consideration, i.e., after we do classification, we further
688 use the pairwise label ranking method [53] to rank the rele-
689 vant labels. In this way, we get two variants of PC, namely
690 PCnR and PC0R, and one extension of RankSVM, named as
691 RankSVM-R. Third, we comparewith GMLC [31] which con-
692 siders multiple degrees of label relevancies. To run GMLC,
693 the number of relevance levels is fixed to bemaxni¼1ðjRij þ 1Þ,
694 and the ith relevant label is assigned to the ith level while the
695 irrelevant labels are assigned to the maxni¼1ðjRij þ 1Þ� �

th
696 level. Finally we will compare with two extreme multi-label
697 learning algorithms, PD-Sparse [44] and PfastreXML [6]. For
698 large datasets, we will compare with four recent proposed
699 methods including GLOCAL [24], LIMO [38], MLGT [54]
700 and genEML [13]. Since these methods are designed recently

701targeted at more large datasets, thus we will conduct these
702comparedmethods on large data only.
703The setups of our proposals and comparedmethods are as
704follows. For ProSVM and RankSVM, the regularization
705parameter is selected from f2�10; 2�8; . . . ; 28; 210g by ten-fold
706cross validation on small data sets, and simply set as 1 on
707two large data sets. For BSVM, the SVM is implemented by
708LIBSVM [55] package with parameters selected in the same
709way as RankSVM. For ML-kNN, we use the parameter set-
710ting recommended by [40]. For BoosTexter, we use the ver-
711sion AdaBoost.MH [39]. For ProSVMs h is fixed to 0.1. The
712split number Z is fixed to ðp� dÞ=107 where p is the number
713of constraints in Eq. (3). Hence, the memory requirement of
714ProSVM is low and applicable for most personal computers.
715For PD-Sparse and PfastreXML, we have conducted exten-
716sive parameter selection recommended in the original paper
717and report the best results on test data. For GLOCAL we use
718the default parameter. For LIMO, we use the version of opti-
719mizing Hamming Loss. For MLGT and genEML, we use the
720recommended parameters.

7216.1 Data with Synthetic Ranking of Relevant Labels

722Most of the multi-label datasets do not contain ranking infor-
723mation for relevant labels, thus in this part, we consider syn-
724thesizing the relevant labels’ ranking for real multi-label
725data, and evaluate our proposal on these datasets. To synthe-
726size a reasonable ranking for relevant labels, we first consider
727employing several human annotators in a crowdsourcing
728way to give the relevant labels’ rankings, and then aggregat-
729ing by averaging the results and giving the final ranking for
730all the relevant labels. However, employing people to label
731ten or more multi-label datasets will take a lot of money, thus
732in this part, we consider simulating this process by employ-
733ing several agents replacing the human annotators, and
734employ real people to construct a real data set in Section 6.2.
735Inspired by that existing multi-label learning methods can
736give each label a real value indicating the algorithm’s confi-
737dence in predicting the label as relevant, we will use existing
738algorithm as “pseudo human annotator”. We then evaluate
739our proposal and compared methods on the synthetic data-
740sets to see whether our proposal can fit the oracle of pseudo
741annotators. More specially, for smaller data sets we synthe-
742size the relevant labels’ ranking by automatically running 3
743state-of-the-art multi-label methods [56], [57], [58]. Each pre-
744dicts a real-valued score for each label, and then we obtain
745the ranking of relevant labels by sorting the aggregated
746scores. By this approach, a broad range of 19 datasets which
747cover diverse domains, e.g., music, biology, image and text, are
748studied. The numbers of samples vary from 590 to 5,000, the
749numbers of dimensionality vary from 72 to 1,449 and the
750numbers of labels vary from 5 to 53. These datasets have been
751widely used and public available.2 For large data sets, we use
752Bibtex andDelicious3 containing 7395 and 16105 instances, 159
753and 983 labels respectively.We run FastXML [43] and use the

2. The EMOTIONS, ENRON, GENBASE, MEDICAL, SCENE, and YEAST datasets
are publicly available at http://mulan.sourceforge.net/datasets.html,
the IMAGE and 11 YAHOO datasets are available at http://cse.seu.edu.
cn/people/zhangml/Resources.htm, and the SLASHDOT data are avail-
able at http://meka.sourceforge.net.

3. These two data sets are available at http://manikvarma.org/
downloads/XC/XMLRepository.html
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754 predicted real-valued scores for each label to rank the rele-
755 vant labels.
756 The results on small data sets are shown in Table 3. As can
757 be seen, ProSVMs perform superior compared to state-of-
758 the-art methods. In particular, ProSVM achieves the best
759 results on 13 over 19 datasets followed by ProSVM-A achiev-
760 ing the best results on the remaining 6. The results on large
761 data sets are shown in Table 4. genEML fails to give any
762 result on Bibtex data so we use an NaN. We can see that,
763 compared with more recent proposed methods, our pro-
764 posals are still superior on large datasets. Specially, the two
765 proposed methods perform the best in all compared meth-
766 ods. LIMO targeting at Hamming Loss performs the second
767 on Bibtex but not that good onDelicious.

768 6.2 Data with Real Ranking of Relevant Labels

769 In this part, we exploit the strategy of employing several
770 human annotators, and provide the first real-world data
771 MSRA-M with relevant labels’ ranking. Specifically, we use a
772 subset of the widely-used MSRA dataset [59], which contains
773 1868 images, with 899 features for each image. There are 19
774 candidate labels, while each image contains 1 to 11 relevant
775 labels. We use a crowdsourcing platform to spread the task
776 to human annotators, asking them to provide the ranking of
777 all the relevant labels. Then we average all the obtained

778results and provide the real-world dataset. In our experi-
779ment, 10-CV is conducted to give the average results.
780The experimental results are shown in Table 5. Since PD-
781Sparse fails to give any result, we just use an NAN to denote
782its evaluation. As can be seen, ProSVMs perform signifi-
783cantly better than all other compared methods. Demonstra-
784tion of two concrete examples in the MSRA-M dataset is
785shown in Table 6. From the last two columns, we can see that
786compared to state-of-the-art algorithms, our proposal can
787not only give a good classification of all the labels, but also a
788good ranking of relevant labels.

7896.3 Performance on Other Measurements

790We have shown our algorithm can perform well measured
791by PRO LOSS. Although our proposed algorithm are targeted
792at PRO LOSS, we may also expect that it will not perform bad
793on other measurement. In this part, we will show our
794proposal can have comparable performance with existing
795methods on classical multi-label measurements without con-
796sidering relevant labels’ ranking. We will use the same 19
797small datasets in Section 6.1. Here to give a fair comparison,

TABLE 3
Comparison Results on PRO LOSS for Data with Synthetic Ranking of Relevant Labels on Small Data

Data set ProSVM ProSVM-A PCn PCnR PC0 PC0R RSVM RSVM-R BSVM MLk Btx GMLC PD-S PfXML

emotions .1982 .1980 .3557 .3509 .2821 .2641 .2159 .2110 .1814 .2210 .2397 .2255 .2493 .4928
enron .1343 .1349 .3015 .3032 .3143 .3031 .1507 .1587 .2136 .2533 .2121 .3733 .2887 .4868
genbase .0022 .0023 .2544 .2544 .0511 .0489 .0057 .0074 .0232 .0181 .0049 .0113 .0233 .3696
image .1604 .1595 .2755 .2738 .2481 .2518 .1992 .2009 .1601 .1914 .1737 .2150 .4036 .0069
medical .0569 .0600 .2769 .2769 .2038 .1998 .0890 .0895 .1265 .1647 .0838 .1684 .1355 .4153
scene .0994 .1010 .2829 .2840 .2710 .2713 .1198 .1243 .1132 .1228 .1081 .1405 .1692 .2743
slashdot .1153 .1180 .2877 .2877 .2781 .2766 .1674 .1676 .1892 .2944 .1793 .3632 .3961 .4387
YahooArts .1503 .1509 .3176 .3179 .3062 .3060 .2287 .2304 .2519 .3067 .2474 .3888 .4295 .4674
YahooBusiness .0601 .0600 .2673 .2673 .1713 .1713 .0832 .0845 .1123 .0921 .0912 .1206 .4274 .0192
YahooComputers .0971 .0993 .2861 .2864 .1599 .1599 .1669 .1675 .2044 .2073 .1852 .2695 .4141 .5120
YahooEducation .1114 .1102 .2951 .2939 .1830 .1828 .2057 .2064 .2182 .2479 .2264 .3228 .4172 .5169
YahooEntertainment .1192 .1188 .2955 .2933 .1677 .1674 .1866 .1875 .1870 .2419 .2064 .3118 .4103 .6088
YahooHealth .0898 .0930 .3045 .2961 .1553 .1547 .1467 .1494 .2280 .2044 .1619 .2933 .4340 .5094
YahooRecreation .1544 .1524 .3026 .3018 .2800 .2803 .2244 .2252 .2162 .3045 .2438 .3715 .4140 .4550
YahooReference .0934 .0920 .2779 .2779 .1480 .1485 .1565 .1566 .1914 .2296 .1783 .3092 .3932 .5451
YahooScience .1389 .1386 .2985 .2988 .2154 .2157 .2176 .2190 .2400 .2628 .2480 .3297 .4132 .4649
YahooSocial .0858 .0890 .2853 .2856 .1630 .1626 .1356 .1369 .1663 .1648 .1542 .2299 .4035 .5165
YahooSociety .1515 .1503 .3114 .3111 .2654 .2632 .2016 .2020 .2279 .2280 .2308 .2993 .4250 .5646
yeast .1853 .1867 .3472 .3406 .4177 .4141 .1931 .2557 .2094 .2338 .2548 .2326 NaN .5082

R-Total 32 32 215 211 150 142 79 102 114 151 113 190 227 237

Each entry presents the PRO LOSS; the best result of each dataset is bold. For IMAGE and SLASHDOT that have not provided training/testing splits, 10-CV is con-
ducted and average performances are recorded. For other datasets, we use the provided training/testing splits. The last row R-total presents the sum of ranks; the
smaller the R-total, the better the overall performance. (RSVM(-R): RankSVM(-R); MLk: MLkNN; BTX: BoosTexter; PD-S: PD-Sparse; and PFXM: PfastreXML)

TABLE 4
Comparison Results on PRO LOSS for Data with Synthetic

Ranking of Relevant Labels on Large Data

Data Set P-SVM P-SVM-A GLOCAL LIMO MLGT genEML

Bibtex 0:1499 0.1529 0.3456 0.1949 0.3140 NaN
Delicious 0.2139 0:2030 0.3701 0.3365 0.4415 0.3641

Each entry presents the PRO LOSS; the best result of each dataset is bold. 10-
CV is conducted and average performances are recorded. (P-SVM(-A):
ProSVM(-A))

TABLE 5
Results (mean�std) on MSRA-M with
Real Ranking of Relevant Labels

Method PRO Loss Method PRO Loss

ProSVM .2536 � .0107 RSVM .2955 � .0145
ProSVM-A .2587 � .0115 RSVM-R .2656 � .0117
PCn .3754 � .0406 BSVM .2913 � .0070
PCnR .3469 � .0420 MLkNN .3228 � .0099
PC0 .3149 � .0107 Btx .2957 � .0112
PC0R .3040 � .0090 GMLC .3052 � .0130
PD-Spar NaN P-XML .2802 � .0037

The best performance and its comparable ones (pairwise t-test at 95 percent
confidence) are bold. (RSVM(-R): RankSVM(-R); BTX: BoosTexter; PD-SPAR:
PD-Sparse; and P-XML: PfastreXML.)

XU ET AL.: ROBUST MULTI-LABEL LEARNING WITH PRO LOSS 9
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TABLE 6
Demonstration of the Prediction on Image Annotations Tasks

Below the image is the ground truth. “A.” denotes the abbreviation of algorithms (P: ProSVM; A: ProSVM-A; n: PCn; nR: PCnR; 0: PC0; 0R: PC0R; R:
RankSVM; RR: RankSVM-R; B: BSVM; M: MLkNN; T: BoosTexter; G: GMLC; and X: PfastreXML). The right two columns are the “number of wrongly clas-
sified labels” denoted by C and “number of wrongly ranked relevant label pairs” denoted by R. The smaller the value, the better the performance.

Fig. 3. Comparison of ProSVM
 with nine other multi-label methods on classical measurements to show that ProSVM
 can get comparable perfor-
mance. The average rank of classifiers across multiple datasets are shown on the number line. Groups of classifiers that are not significantly different
are connected by red line.

TABLE 7
Comparison Showing the Training Time in Seconds on the Algorithm Denoted by Column and Dataset Denoted by Row

Dataset ProSVM ProSVM-A PCn PC0 RankSVM BSVM MLknn Boostexter GMLC PD-Sparse PfastreXML

emotions 8� 10�1 1� 100 2� 101 2� 102 2� 100 4� 100 4� 10�1 6� 100 3� 100 6� 10�2 3� 10�1

enron 1� 103 7� 102 3� 103 2� 104 2� 102 1� 101 1� 101 1� 102 1� 103 1� 100 1� 100

genbase 5� 101 3� 101 5� 102 1� 102 5� 100 3� 10�1 2� 100 7� 101 5� 101 8� 10�3 2� 10�1

image 1� 101 6� 100 6� 101 1� 103 7� 100 1� 102 1� 101 9� 101 4� 101 6� 10�1 5� 100

medical 1� 102 1� 102 1� 103 1� 101 9� 100 1� 10�1 5� 100 6� 101 8� 101 2� 10�2 2� 10�1

scene 4� 100 2� 100 4� 101 6� 102 5� 100 2� 101 5� 100 7� 101 2� 101 9� 10�1 3� 100

slashdot 3� 102 2� 102 2� 103 6� 103 6� 101 1� 101 1� 102 5� 102 6� 102 1� 10�1 2� 100

Y.Arts 2� 102 1� 102 8� 102 5� 103 7� 101 5� 101 2� 101 1� 102 5� 102 2� 10�1 1� 100

Y.Heal. 4� 102 2� 102 1� 103 5� 103 7� 101 4� 101 3� 101 2� 102 5� 102 2� 10�1 1� 100

Y.Sci. 8� 102 3� 102 2� 103 2� 103 8� 101 2� 101 3� 101 2� 102 6� 102 3� 10�1 2� 100

Y.Bus. 3� 102 1� 102 1� 103 9� 103 7� 101 3� 101 2� 101 1� 102 6� 102 2� 10�1 1� 100

Y.Com. 5� 102 2� 102 2� 103 2� 104 7� 101 3� 101 3� 101 2� 102 1� 103 2� 10�1 1� 100

Y.Edu. 3� 102 2� 102 1� 103 2� 103 7� 101 5� 101 2� 101 2� 102 5� 102 2� 10�1 1� 100

Y.Ent. 2� 102 1� 102 7� 102 4� 103 5� 101 2� 101 3� 101 2� 102 4� 102 2� 10�1 1� 100

Y.Rec. 2� 102 2� 102 7� 102 6� 103 4� 101 2� 101 3� 101 2� 102 6� 102 2� 10�1 1� 100

Y.Ref. 3� 102 2� 102 2� 103 9� 103 5� 101 1� 101 4� 101 2� 102 4� 102 2� 10�1 2� 100

Y.Social 6� 102 5� 102 3� 103 6� 102 7� 101 2� 101 4� 101 3� 102 1� 103 3� 10�1 2� 100

Y.Society 3� 102 2� 102 1� 103 4� 103 6� 101 4� 101 3� 101 2� 102 8� 102 2� 10�1 2� 100

yeast 1� 101 3� 100 2� 102 0� 100 3� 101 6� 101 5� 100 3� 101 1� 102 NaN 9� 10�1
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of798 our proposal is evaluated by neglecting the relevant labels’

799 ranking. Specifically, a simpler loss function without com-
800 paring pairs of relevant labels is used for ProSVMs, and the
801 same optimization techniques are applied. We call our new

802variants as ProSVM
. Note that PCnR, PC0R and RankSVM-
803R could not be compared since they require the ranking
804information. For GMLC, two relevance levels, i.e., relevant
805and irrelevant, are used.
806We use the Critical Distance (CD) Diagram [60] to show
807the ProSVM
’s overall performance on 19 datasets compared
808to 9 methods. The CD Diagram widely used in previous
809multi-label studies [61], [62], shows the average rank, as well
810as the Nemnyi test results. The CD Diagram on 6 measure-
811ments are shown in Fig. 3. As can be seen, our proposal still
812performs highly competitive on existing criteria. Specifically,
813ProSVM
’s performance is comparable to the best one by
814state-of-the-art methods on RANKING LOSS, ONE-ERROR, AVER-

815AGE PRECISION, SUBSET ACCURACY and F1 criteria, and achieves
816comparable performance to most algorithms on HAMMING

Fig. 4. Comparison on the time of ProSVM on multiple cores. TheX-axis
is the number of cores, and the Y -axis is the ratio dividing the running
time on multiple cores by the running time on 1 core.

TABLE 8
Results (mean�std) on Small Multi-Label Datasets with Partial Labels where MC can Finish within 24 Hours, Measured by PRO LOSS

Data Algo. v ¼ 10% v ¼ 20% v ¼ 30% v ¼ 40%

emotions

BSVM .2560 � .0009 .2350 � .0009 .2163 � .0007 .2088 � .0008
MC-b .4100 � .0006 .4230 � .0004 .4276 � .0006 .4257 � .0005
MC-1 .4140 � .0008 .4159 � .0003 .4200 � .0005 .4221 � .0004
Maxide .3169 � .0006 .2949 � .0005 .2858 � .0003 .2865 � .0004

ProSVM-PI .2657 � .0010 .2378 � .0006 .2230 � .0007 .2145 � .0008
ProSVM-PU .2656 � .0009 .2298 � .0009 .2093 � .0004 .1990 � .0007
ProSVM-PD .2433 � .0005 .2106 � .0006 .1878 � .0004 .1861 � .0004

genbase

BSVM .1051 � .0007 .0724 � .0006 .0533 � .0003 .0484 � .0003
MC-b .2769 � .0010 .2613 � .0007 .2631 � .0000 .2556 � .0003
MC-1 .2962 � .0011 .2759 � .0005 .2799 � .0004 .2996 � .0002
Maxide .1268 � .0003 .1075 � .0001 .1020 � .0002 .1058 � .0002

ProSVM-PI .0312 � .0005 .0147 � .0001 .0083 � .0000 .0070 � .0000
ProSVM-PU .0310 � .0004 .0136 � .0000 .0082 � .0000 .0071 � .0000
ProSVM-PD .0302 � .0005 .0137 � .0000 .0081 � .0000 .0076 � .0000

image

BSVM .2327 � .0001 .2175 � .0001 .2103 � .0001 .2049 � .0002
MC-b .3995 � .0000 .4016 � .0001 .4009 � .0001 .4028 � .0001
MC-1 .3694 � .0001 .3642 � .0003 .3643 � .0002 .3614 � .0001
Maxide .2899 � .0001 .2877 � .0001 .2843 � .0000 .2862 � .0000

ProSVM-PI .2412 � .0001 .2298 � .0001 .2226 � .0001 .2162 � .0001
ProSVM-PU .2377 � .0001 .2222 � .0001 .2060 � .0001 .1921 � .0001
ProSVM-PD .2154 � .0001 .1954 � .0001 .1867 � .0001 .1821 � .0001

medical

BSVM .2727 � .0012 .2007 � .0012 .1685 � .0003 .1485 � .0001
MC-b .2977 � .0001 .2861 � .0000 .2844 � .0000 .2815 � .0000
MC-1 .2916 � .0001 .2830 � .0000 .2787 � .0000 .2757 � .0000
Maxide .1652 � .0002 .1576 � .0000 .1549 � .0000 .1536 � .0000

ProSVM-PI .1566 � .0007 .1185 � .0004 .0966 � .0002 .0895 � .0001
ProSVM-PU .1535 � .0005 .1094 � .0002 .0786 � .0001 .0673 � .0001
ProSVM-PD .1286 � .0004 .0926 � .0002 .0712 � .0001 .0613 � .0001

scene

BSVM .1466 � .0001 .1380 � .0001 .1349 � .0001 .1308 � .0001
MC-b .3860 � .0000 .3824 � .0001 .3815 � .0000 .3819 � .0000
MC-1 .3179 � .0006 .3054 � .0009 .3158 � .0014 .3027 � .0007
Maxide .2148 � .0001 .2118 � .0001 .2102 � .0001 .2100 � .0001

ProSVM-PI .1561 � .0001 .1476 � .0001 .1437 � .0002 .1379 � .0001
ProSVM-PU .1500 � .0001 .1388 � .0001 .1246 � .0002 .1139 � .0002
ProSVM-PD .1226 � .0001 .1099 � .0001 .1051 � .0001 .1012 � .0001

slashdot

BSVM .2890 � .0002 .2499 � .0001 .2403 � .0000 .2280 � .0001
MC-b .3263 � .0000 .3274 � .0000 .3280 � .0000 .3271 � .0000
MC-1 .3296 � .0000 .3299 � .0000 .3286 � .0000 .3277 � .0000
Maxide .2409 � .0001 .2332 � .0001 .2280 � .0000 .2205 � .0001

ProSVM-PI .2282 � .0001 .2057 � .0000 .1962 � .0000 .1870 � .0000
ProSVM-PU .2270 � .0001 .1974 � .0000 .1801 � .0000 .1641 � .0000
ProSVM-PD .1908 � .0001 .1667 � .0000 .1507 � .0001 .1389 � .0001

yeast

BSVM .2481 � .0002 .2337 � .0001 .2295 � .0000 .2297 � .0000
MC-b .2870 � .0002 .2859 � .0001 .2844 � .0001 .2805 � .0001
MC-1 .2815 � .0001 .2781 � .0001 .2726 � .0000 .2699 � .0000
Maxide .4226 � .0001 .4062 � .0001 .3995 � .0001 .3981 � .0001

ProSVM-PI .2416 � .0001 .2187 � .0001 .2116 � .0001 .2062 � .0000
ProSVM-PU .2360 � .0001 .2189 � .0001 .2048 � .0001 .1961 � .0000
ProSVM-PD .2195 � .0001 .2007 � .0000 .1919 � .0001 .1873 � .0001

“ALGO.” specifies the name of the algorithms. v% represents the percentage of observed label assignments in training instances. The best result and its comparable
ones (pairwise single-tailed t-tests at 95 percent confidence level) are bold.

XU ET AL.: ROBUST MULTI-LABEL LEARNING WITH PRO LOSS 11
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TABLE 9
Results (mean�std) on Small Multi-Label Datasets with Partial Labels whereMCcannot Finish within 24 Hours,Measured by PRO LOSS

Data Algo. v ¼ 10% v ¼ 20% v ¼ 30% v ¼ 40%

enron

BSVM .3184 � .0006 .2761 � .0003 .2612 � .0003 .2501 � .0002
Maxide .2787 � .0001 .2735 � .0001 .2760 � .0000 .2678 � .0001

ProSVM-MI .2375 � .0002 .2130 � .0001 .2015 � .0001 .1910 � .0001
ProSVM-MU .2230 � .0002 .1861 � .0001 .1701 � .0001 .1603 � .0001
ProSVM-MD .1810 � .0002 .1639 � .0001 .1562 � .0001 .1499 � .0001

Msra-m

BSVM .3225 � .0000 .3096 � .0001 .3042 � .0001 .3022 � .0000
Maxide .3938 � .0000 .3917 � .0000 .3954 � .0000 .3932 � .0000

ProSVM-MI .3212 � .0001 .3053 � .0001 .2969 � .0000 .2898 � .0000
ProSVM-MU .3208 � .0000 .2994 � .0000 .2885 � .0000 .2804 � .0000
ProSVM-MD .3123 � .0000 .2918 � .0001 .2811 � .0000 .2754 � .0000

YahooArts

BSVM .3074 � .0003 .2864 � .0002 .2756 � .0002 .2711 � .0002
Maxide .2948 � .0000 .2824 � .0000 .2728 � .0000 .2684 � .0000

ProSVM-MI .2677 � .0001 .2564 � .0001 .2494 � .0001 .2424 � .0001
ProSVM-MU .2484 � .0000 .2093 � .0000 .1780 � .0000 .1642 � .0000
ProSVM-MD .1786 � .0001 .1659 � .0000 .1592 � .0000 .1547 � .0000

YahooBusiness

BSVM .1554 � .0001 .1356 � .0001 .1318 � .0001 .1269 � .0002
Maxide .2097 � .0000 .1973 � .0000 .1885 � .0000 .1820 � .0000

ProSVM-MI .0991 � .0000 .0944 � .0000 .0924 � .0000 .0890 � .0000
ProSVM-MU .0823 � .0000 .0738 � .0000 .0660 � .0000 .0618 � .0000
ProSVM-MD .0684 � .0000 .0642 � .0000 .0610 � .0000 .0584 � .0000

YahooComputers

BSVM .2566 � .0002 .2249 � .0001 .2130 � .0001 .2051 � .0001
Maxide .2485 � .0000 .2425 � .0000 .2343 � .0000 .2258 � .0000

ProSVM-MI .1977 � .0001 .1837 � .0000 .1743 � .0000 .1699 � .0000
ProSVM-MU .1727 � .0000 .1329 � .0000 .1208 � .0000 .1135 � .0000
ProSVM-MD .1207 � .0000 .1134 � .0000 .1085 � .0000 .1043 � .0000

YahooEducation

BSVM .3606 � .0004 .3082 � .0002 .2820 � .0003 .2684 � .0003
Maxide .2540 � .0001 .2589 � .0001 .2501 � .0000 .2406 � .0000

ProSVM-MI .2376 � .0000 .2278 � .0001 .2217 � .0000 .2164 � .0000
ProSVM-MU .2079 � .0000 .1628 � .0000 .1338 � .0000 .1234 � .0000
ProSVM-MD .1314 � .0000 .1237 � .0000 .1206 � .0000 .1177 � .0000

YahooEntertainment

BSVM .2883 � .0009 .2412 � .0007 .2286 � .0002 .2173 � .0000
Maxide .2595 � .0000 .2523 � .0000 .2464 � .0000 .2376 � .0000

ProSVM-MI .2228 � .0001 .2056 � .0000 .1978 � .0000 .1924 � .0000
ProSVM-MU .2112 � .0001 .1796 � .0000 .1508 � .0000 .1367 � .0000
ProSVM-MD .1476 � .0000 .1344 � .0000 .1296 � .0000 .1271 � .0000

YahooHealth

BSVM .2946 � .0004 .2592 � .0003 .2367 � .0003 .2193 � .0001
Maxide .2314 � .0002 .2321 � .0001 .2278 � .0001 .2205 � .0000

ProSVM-MI .1811 � .0001 .1663 � .0001 .1584 � .0001 .1527 � .0000
ProSVM-MU .1548 � .0001 .1210 � .0001 .1057 � .0001 .0991 � .0000
ProSVM-MD .1102 � .0001 .1044 � .0001 .0976 � .0001 .0950 � .0000

YahooRecreation

BSVM .2730 � .0001 .2587 � .0000 .2507 � .0000 .2450 � .0000
Maxide .2815 � .0001 .2715 � .0000 .2630 � .0000 .2563 � .0000

ProSVM-MI .2610 � .0001 .2448 � .0000 .2339 � .0001 .2301 � .0000
ProSVM-MU .2546 � .0001 .2225 � .0000 .1917 � .0001 .1739 � .0001
ProSVM-MD .1893 � .0000 .1691 � .0000 .1594 � .0001 .1579 � .0000

YahooReference

BSVM .3039 � .0004 .2583 � .0003 .2381 � .0004 .2232 � .0003
Maxide .2096 � .0001 .2190 � .0001 .2138 � .0001 .2088 � .0001

ProSVM-MI .1842 � .0001 .1756 � .0001 .1695 � .0001 .1655 � .0000
ProSVM-MU .1658 � .0001 .1417 � .0001 .1260 � .0001 .1135 � .0001
ProSVM-MD .1210 � .0001 .1082 � .0001 .1040 � .0001 .1018 � .0001

YahooScience

BSVM .3182 � .0003 .2871 � .0004 .2676 � .0002 .2533 � .0001
Maxide .2686 � .0001 .2646 � .0000 .2543 � .0001 .2448 � .0001

ProSVM-MI .2589 � .0001 .2462 � .0001 .2386 � .0001 .2321 � .0001
ProSVM-MU .2403 � .0001 .2032 � .0001 .1773 � .0001 .1621 � .0001
ProSVM-MD .1735 � .0002 .1620 � .0001 .1535 � .0001 .1488 � .0001

YahooSocial

BSVM .2215 � .0003 .1972 � .0001 .1884 � .0002 .1797 � .0001
Maxide .2153 � .0001 .2171 � .0001 .2087 � .0001 .2060 � .0000

ProSVM-MI .1606 � .0001 .1537 � .0000 .1473 � .0000 .1441 � .0000
ProSVM-MU .1373 � .0001 .1124 � .0001 .0966 � .0000 .0922 � .0000
ProSVM-MD .1016 � .0000 .0923 � .0000 .0895 � .0000 .0874 � .0000

YahooSociety

BSVM .2907 � .0002 .2724 � .0002 .2642 � .0002 .2539 � .0002
Maxide .2882 � .0000 .2825 � .0001 .2747 � .0001 .2620 � .0000

ProSVM-MI .2453 � .0001 .2342 � .0000 .2265 � .0000 .2211 � .0000
ProSVM-MU .2190 � .0000 .1945 � .0000 .1784 � .0000 .1669 � .0000
ProSVM-MD .1736 � .0000 .1641 � .0000 .1596 � .0000 .1567 � .0000

“ALGO.” specifies the name of the algorithms. v% represents the percentage of observed label assignments in training instances. The best result and its comparable
ones (pairwise single-tailed t-tests at 95 percent confidence level) are bold.
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818 comparison between relevant labels and irrelevant labels, it
819 is not surprised to see that it achieves best performance on
820 RANKING LOSS. The F1 measure is recognized as suitable for
821 class-imbalanced data. Since PRO LOSS weights different
822 label pairs, it is under expectation that it performs good
823 when facing data whose number of relevant labels is much
824 smaller.

825 6.4 Time Cost and Parallel Computing

826 Table 7 shows the training time (in seconds) . As can be seen,
827 the time efficiencies of ProSVMs are comparable to most
828 methods. Specifically, PD-Sparse and PfastreXML are the
829 fastest since they are designed to solve extreme multi-label
830 learning problem. Our proposal is much faster than PCn,
831 PC0, and GMLC. ProSVM-A performs slightly faster than
832 ProSVM, especially on larger data such as ENRON. The time
833 efficiency of ProSVM can be further improved using parallel
834 computing in Fig. 4. Here each point is the relative time effi-
835 ciency compared to the time efficiency using only one core,
836 that is, the paralleled training time in seconds are divided by
837 that on single core to make different datasets’ results compa-
838 rable in one figure. As can be seen, the time cost of ProSVM
839 can be reduced by parallelization.

840 7 EXPERIMENTS WITH PARTIAL LABELS

841 In this section, we compare our proposed ProSVM-P with
842 state-of-the-art methods on multi-label learning with partial
843 labels problem. We conduct experiments on the same data-
844 sets used in Section 6. On 20 relatively small data sets, to sim-
845 ulate partial labels, we adopt the same method as [14], i.e.,
846 first sampling 10 percent of the instances as test data, and for
847 the remaining 90 percent, making f10%; 20%; 30%; 40%g of
848 the annotations observed and all others missing. We repeat
849 the algorithm ten times and present the average results. On 2
850 large data sets, we onlymake 10 percent of the training anno-
851 tations observe. For our ProSVM-P, we test three versions of
852 it, i.e., ProSVM-PD, ProSVM-PI and ProSVM-PU, which are
853 different in estimating CP . For regularization parameter �,
854 we conduct 10-fold cross validation and pick the best � from
855 2f�10;�8;...;8;10g on small data and set it 1 on large data.
856 We compare ProSVM-P on small data sets with four clas-
857 sical state-of-the-art algorithms. The first is the BSVM
858 method [8]. We train one model on each label using all the
859 observed annotations as training information.As in Section 6,
860 we use the LibSVM [55] with linear kernel as the base classi-
861 fier and the regularization parameter is tuned in the same
862 way as ProSVM-P. We also compare our proposal with two
863 MCmethods [15] calledMC-b andMC-1, depending on how

864they treat the bias term.We further compare ProSVM-P with
865Maxide [14], a matrix completion algorithm using features
866and label correlations as side information. For MC andMax-
867ide methods, we adopt the recommended parameter tuning
868strategy by authors. We then compare ProSVM-P on two
869large data sets with more recently proposed methods which
870can deal with partial labels, including GLOCAL [24], gen-
871EML [13] and safeML [17]. For GLOCAL and genEML, the
872parameters are selected in the same way as Section 6. For
873safeML, we try different parameters and select the one with
874the best performance.
875The PRO LOSS results on smallest datasets are shown in
876Table 8. For these datasets, the MC methods can give results
877within 24 hours, thus we compare ProSVM-P with four
878methods. From the results, we can see that ProSVM-PD
879always works the best, followed by ProSVM-PU. We further
880show the results on the remaining small datasets in Table 9
881where MCmethods are not able to give any results within 24
882hours. Thus we compare our proposal with the other two
883methods. We can see that all the three ProSVM-P methods
884get the best three on all datasets. The PRO LOSS results on two
885large datasets are shown in Table 10. We can see that on data
886sets with only 10 percent observed partial labels, our pro-
887posed algorithms can still perform the best. Specially, the
888results of ProSVM-U and ProSVM-I without knowing
889the number of relevant labels can still perform better than
890the recently proposed baselines.

8918 CONCLUSION

892This paper extended our preliminary research [19]. In this
893paper, we studied a newmulti-label problem that in practice
894the user usually concerns about the prediction on labels as
895well as the ranking of relevant labels while the annotation
896information can be partial. To address our problem, we pre-
897sented a new multi-label criterion, i.e., PRO LOSS, and pro-
898posed the corresponding ProSVM algorithms. ProSVM was
899further extended to handle the partial labels problem.
900Experiments exhibited encouraging performance of our pro-
901posal. We will consider extending our proposal to the appli-
902cation of recommendation systems in future work.
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